Infix Expressions - c++

I am trying to evaluate an infix expression using two stacks, however, my program keeps getting a segmentation fault and I am not sure what is causing the error. I have tried following the pseudocode for the RPN algorithm, however I think my issue arises when I call doOperation. I am not sure what parameters to include when calling this. I know I need a (ValueType, char, ValueType), however I do not want to write doOperation (ch, ch, ch) since I am pretty sure that won't help. Can anyone help me figure out a way to call this function? (I'm pretty sure that's one of the reasons causing the segmentation fault).

The opStack and valStack in doOperation should use the variable in processExpression.
Its function prototype should be like this:
ValueType doOperation(ValueType operandL, char operation, ValueType operandR, stack<char>& opStack, stack<ValueType>& valueStack)
Pay attention to the last two parameters: stack<char>& opStack, stack<ValueType>& valueStack. They must be pointer-passed or reference-passed, NOT value-passed.
processExpression call doOperation like this: doOperation(operandL, ch, operandR, opStack, valueStack) .
Besides, the current segmentation fault happens because opStack and valueStack defined in doOperation has no items. top() will reference noexist value.

Try removing these lines from doOperation:
stack<char> opStack;
stack<ValueType> valStack;
operandR = valStack.top();
valStack.pop();
operandL = valStack.top();
valStack.pop();
operation = opStack.top();
opStack.pop();
Note that your declaration of double result isn't there - you should keep that.
So, what's happening in the above lines:
You create stacks opStack and valStack. Both of these are empty.
You call .top(), which does bad things when the stack is empty. .pop() does bad things on empty stacks as well.
You are attempting to assign values to the parameters you passed in. Even if this was successful, your parameters would be useless. You just end up creating/initializing them in your function any way.
Now, after removing the above lines, you'll need to change your calls to doOperation. In processExpression you will want to do these calls before calling doOperation:
operandL = valStack.top();
valStack.pop();
operandR = valStack.top();
valStack.pop();
operation = opStack.top();
opStack.pop();
doOperation(operandL, operation, operandR)
Which isn't pretty, especially when you do that for the three times you call doOperation, but it's a start. The first goal is to get working code. You can make it pretty if you're so inclined later.
Also, and this is a bit pedantic, but you should rename your operation variable to be operator, since that is what it really is. The "operation" is the thing that happens when you execute the operator.

Related

What does a semicolon after function inside function mean?

I saw an answer for a c++ challenge that had you copy a certain part of a string x times.
std::string repeatString(int xTimes)
{
repeatString;(3); //What's happening here?
}
He seemed to have solved the challenge with this code and I'm guessing he solved it the wrong way but I'm still unsure what's happening.
original challenge:
https://edabit.com/challenge/vxpP4nnDhRr2Yc3Lo
original answer by Marcus_2008
repeatString; is an expression that does nothing useful. Same for (3);. Its the same as 3; and does literally nothing. After removing that unnecessary fluff, the function is
std::string repeatString(int) {
//What's happening here?
// - nothing at all
}
And this, not only does it not repeat a string, but it invokes undefined behavior when called, because it is declared to return a std::string but does not.
Even changing the line to repeatString(3); would leave us with the same issue while return repeatString(3); would result in infinite recursion.
It is not possible that this code solves the task. You must have misunderstood something, or the real code looks different.

Dummy call makes a difference in Fortran program?

I'm working on a Fortran program and running into a strange bug with some Heisenbug-type characteristics, and looking for some insight into what might be going on. The code is too large to post in full but I hopefully I can the general idea.
What's basically going on is I have a subroutine that reads a list of numerical parameters from a text file,
call read_parameters(filename, parameter_array)
and then this list of parameters is sent into another subroutine that runs a program using those parameter values.
call run_program(parameter_array)
These calls are part of a loop that calls run_program with slightly different parameters each time through the loop---the intention is to find better parameter sets.
I've found that on the first pass through this loop, run_program gives bizarre results, which seems to indicate that something is going wrong with the first call to read_parameters. But all the subsequent passes behave normally and I haven't been able to understand what's going wrong with that first pass despite a lot of investigating, including for example printing the values of the parameters themselves within the actual run_program code.
While testing, I realized that if I put another call to read_parameters right above the call to run_program, then the first pass of the program runs normally, but here's the thing: this new call to read_parameters is just a dummy call, with an output array parameter_array2 that doesn't even get used! As in,
call read_parameters(parameter_array)
call read_parameters(parameter_array2)
call run_program(parameter_array)
If the second line is present, the program runs just fine, even though parameter_array2 isn't used anywhere, while if it's absent the program gives erroneous results for the first pass through the loop.
Does anyone have any ideas about what might be going on?
Thanks.

Why use int functions over void?

I was looking over some example functions and methods (I'm currently in a C++ class), and I noticed that there were a few functions that, rather than being void, they were something like
int myFunction() {
// ...;
return 0;
}
Where the ellipses is obviously some other statement. Why are they returning zero? What's the point of returning a specific value every time you run a function?
I understand that main() has to be int (at least according to the standards) because it is related (or is?) the exit code and thus works with the operating system. However, I can't think of a reason a non-main function would do this.
Is there any particular reason why someone might want to do this, as opposed to simply making a void function?
If that's really what they're doing, returning 0 regardless of what the function does, then it's entirely pointless and they shouldn't be doing it.
In the C world, an int return type is a convention so that you can return your own "error code", but not only is this not idiomatic C++ but if, again, your programmer is always returning 0, then it's entirely silly.
Specifically:
I understand that main() has to be int (at least according to the standards) because it is related (or is?) the exit code and thus works with the operating system. However, I can't think of a reason a non-main function would do this.
I agree.
There's a common convention of int functions returning 0 for success and some non-zero error code for failure.
An int function that always returns 0 might as well be a void function if viewed in isolation. But depending on the context, there might be good reasons to make it compatible with other functions that returning meaningful results. It could mean that the function's return type won't have to be changed if it's later modified so it detects errors -- or it might be necessary for its declaration to be compatible with other int-returning functions, if it's used as a callback or template argument.
I suggest examining other similar functions in the library or program.
It's a convention, particularly among C programmers, to return 0 if the function did not experience any errors and return a nonzero value if there was an error.
This has carried over into C++, and although it's less common and less of a convention due to exception handling and other more object-oriented-friendly ways of handling errors, it does come up often enough.
One more issue that was not touched by other answers. Within the ellipses may be another return statement:
int myFunction() {
// ...;
if (error)
return code;
// ...;
return 0;
}
in which case myFunction is not always returning 0, but rather only when no error has occurred. Such return statements are often preferred over more structured but more verbose if/else code blocks, and may often be disguised within long, sloppy code.
Most of the time function like this should be returning void.
Another possibility is that this function is one of a series of closed-related functions that have the same signature. The return int value may signal the status, say returning 0 for success, and a few of these functions always succeed. To change the signature may break the consistency, or would make the function unusable as function objects since the signature does not match.
Is there any particular reason why someone might want to do this, as opposed to simply making a void function?
Why does your mother cut the ends off the roast before putting it in the oven? Answer: Because that's what her grandmother did. However, her grandmother did that for a simple reason: Her roast pan wasn't big enough to hold a full-sized roast.
I work with a simulation tool that in its earliest incarnations required that all functions callable by the simulation engine must return a success status: 0=success, non-zero=failure. Functions that could never fail were coded to always returned zero. The simulation engine has been able to accommodate functions that return void for a long, long, time. That returning an integer success code was the required behavior from some previous millennium hasn't stopped cargo cult programmers from carrying this behavior of writing functions that always returning zero forward to the current day.
In certain programming languages you find procedures and functions. In C, C++ and similar languages you don't. Rather you only have functions.
In practice, a procedure is a part of a program that performs a certain task. A function on the other hand is like a procedure but the function can return an answer back.
Since C++ has only functions, how would you create a procedure? That's when you would either create a void function or return any value you like to show that the task is complete. It doesn't have to be 0. You can even return a character if you like to.
Take for example, the cout statement. It just outputs something but not return anything. This works like a procedure.
Now consider a math function like tan(x). It is meant to use x and return an answer back to the program that called it. In this case, you cannot return just anything. You must return the value of the TAN operation.
So if you need to write your own functions, you must return a value based on what you're doing. If there's nothing to return, you may just write a void function or return a dummy value like 0 or anything else.
In practice though, it's common to find functions returning 0 to indicate that 'all went off well' but this is not necessarily a rule.
here's an example of a function I would write, which returns a value:
float Area ( int radius)
{
float Answer = 3.14159 * radius * radius;
return Answer;
}
This takes the radius as a parameter and returns the calculated answer (area). In this case you cannot just say return 0.
I hope this is clear.

Remove never-run call to templated function, get allocation error on run-time

I have a piece of templated code that is never run, but is compiled. When I remove it, another part of my program breaks.
First off, I'm a bit at a loss as to how to ask this question. So I'm going to try throwing lots of information at the problem.
Ok, so, I went to completely redesign my test project for my experimental core library thingy. I use a lot of template shenanigans in the library. When I removed the "user" code, the tests gave me a memory allocation error. After quite a bit of experimenting, I narrowed it down to this bit of code (out of a couple hundred lines):
void VOODOO(components::switchBoard &board) {
board.addComponent<using_allegro::keyInputs<'w'> >();
}
Fundementally, what's weirding me out is that it appears that the act of compiling this function (and the template function it then uses, and the template functions those then use...), makes this bug not appear. This code is not being run. Similar code (the same, but for different key vals) occurs elsewhere, but is within Boost TDD code.
I realize I certainly haven't given enough information for you to solve it for me; I tried, but it more-or-less spirals into most of the code base. I think I'm most looking for "here's what the problem could be", "here's where to look", etc. There's something that's happening during compile because of this line, but I don't know enough about that step to begin looking.
Sooo, how can a (presumably) compilied, but never actually run, bit of templated code, when removed, cause another part of code to fail?
Error:
Unhandled exceptionat 0x6fe731ea (msvcr90d.dll) in Switchboard.exe:
0xC0000005: Access violation reading location 0xcdcdcdc1.
Callstack:
operator delete(void * pUser Data)
allocator< class name related to key inputs callbacks >::deallocate
vector< same class >::_Insert_n(...)
vector< " " >::insert(...)
vector<" ">::push_back(...)
It looks like maybe the vector isn't valid, because _MyFirst and similar data members are showing values of 0xcdcdcdcd in the debugger. But the vector is a member variable...
Update: The vector isn't valid because it's never made. I'm getting a channel ID value stomp, which is making me treat one type of channel as another.
Update:
Searching through with the debugger again, it appears that my method for giving each "channel" it's own, unique ID isn't giving me a unique ID:
inline static const char channel<template args>::idFunction() {
return reinterpret_cast<char>(&channel<CHANNEL_IDENTIFY>::idFunction);
};
Update2: These two are giving the same:
slaveChannel<switchboard, ALLEGRO_BITMAP*, entityInfo<ALLEGRO_BITMAP*>
slaveChannel<key<c>, char, push<char>
Sooo, having another compiled channel type changing things makes sense, because it shifts around the values of the idFunctions? But why are there two idFunctions with the same value?
you seem to be returning address of the function as a character? that looks weird. char has much smaller bit count than pointer, so it's highly possible you get same values. that could reason why changing code layout fixes/breaks your program
As a general answer (though aaa's comment alludes to this): When something like this affects whether a bug occurs, it's either because (a) you're wrong and it is being run, or (b) the way that the inclusion of that code happens to affect your code, data, and memory layout in the compiled program causes a heisenbug to change from visible to hidden.
The latter generally occurs when something involves undefined behavior. Sometimes a bogus pointer value will cause you to stomp on a bit of your code (which might or might not be important depending on the code layout), or sometimes a bogus write will stomp on a value in your data stack that might or might not be a pointer that's used later, or so forth.
As a simple example, supposing you have a stack that looks like:
float data[10];
int never_used;
int *important pointer;
And then you erroneously write
data[10] = 0;
Then, assuming that stack got allocated in linear order, you'll stomp on never_used, and the bug will be harmless. However, if you remove never_used (or change something so the compiler knows it can remove it for you -- maybe you remove a never-called function call that would use it), then it will stomp on important_pointer instead, and you'll now get a segfault when you dereference it.

Function pointers and unknown number of arguments in C++

I came across the following weird chunk of code.Imagine you have the following typedef:
typedef int (*MyFunctionPointer)(int param_1, int param_2);
And then , in a function , we are trying to run a function from a DLL in the following way:
LPCWSTR DllFileName; //Path to the dll stored here
LPCSTR _FunctionName; // (mangled) name of the function I want to test
MyFunctionPointer functionPointer;
HINSTANCE hInstLibrary = LoadLibrary( DllFileName );
FARPROC functionAddress = GetProcAddress( hInstLibrary, _FunctionName );
functionPointer = (MyFunctionPointer) functionAddress;
//The values are arbitrary
int a = 5;
int b = 10;
int result = 0;
result = functionPointer( a, b ); //Possible error?
The problem is, that there isn't any way of knowing if the functon whose address we got with LoadLibrary takes two integer arguments.The dll name is provided by the user at runtime, then the names of the exported functions are listed and the user selects the one to test ( again, at runtime :S:S ).
So, by doing the function call in the last line, aren't we opening the door to possible stack corruption? I know that this compiles, but what sort of run-time error is going to occur in the case that we are passing wrong arguments to the function we are pointing to?
There are three errors I can think of if the expected and used number or type of parameters and calling convention differ:
if the calling convention is different, wrong parameter values will be read
if the function actually expects more parameters than given, random values will be used as parameters (I'll let you imagine the consequences if pointers are involved)
in any case, the return address will be complete garbage, so random code with random data will be run as soon as the function returns.
In two words: Undefined behavior
I'm afraid there is no way to know - the programmer is required to know the prototype beforehand when getting the function pointer and using it.
If you don't know the prototype beforehand then I guess you need to implement some sort of protocol with the DLL where you can enumerate any function names and their parameters by calling known functions in the DLL. Of course, the DLL needs to be written to comply with this protocol.
If it's a __stdcall function and they've left the name mangling intact (both big ifs, but certainly possible nonetheless) the name will have #nn at the end, where nn is a number. That number is the number of bytes the function expects as arguments, and will clear off the stack before it returns.
So, if it's a major concern, you can look at the raw name of the function and check that the amount of data you're putting onto the stack matches the amount of data it's going to clear off the stack.
Note that this is still only a protection against Murphy, not Machiavelli. When you're creating a DLL, you can use an export file to change the names of functions. This is frequently used to strip off the name mangling -- but I'm pretty sure it would also let you rename a function from xxx#12 to xxx#16 (or whatever) to mislead the reader about the parameters it expects.
Edit: (primarily in reply to msalters's comment): it's true that you can't apply __stdcall to something like a member function, but you can certainly use it on things like global functions, whether they're written in C or C++.
For things like member functions, the exported name of the function will be mangled. In that case, you can use UndecorateSymbolName to get its full signature. Using that is somewhat nontrivial, but not outrageously complex either.
I do not think so, it is a good question, the only provision is that you MUST know what the parameters are for the function pointer to work, if you don't and blindly stuff the parameters and call it, it will crash or jump off into the woods never to be seen again... It is up to the programmer to convey the message on what the function expects and the type of parameters, luckily you could disassemble it and find out from looking at the stack pointer and expected address by way of the 'stack pointer' (sp) to find out the type of parameters.
Using PE Explorer for instance, you can find out what functions are used and examine the disassembly dump...
Hope this helps,
Best regards,
Tom.
It will either crash in the DLL code (since it got passed corrupt data), or: I think Visual C++ adds code in debug builds to detect this type of problem. It will say something like: "The value of ESP was not saved across a function call", and will point to code near the call. It helps but isn't totally robust - I don't think it'll stop you passing in the wrong but same-sized argument (eg. int instead of a char* parameter on x86). As other answers say, you just have to know, really.
There is no general answer. The Standard mandates that certain exceptions be thrown in certain circumstances, but aside from that describes how a conforming program will be executed, and sometimes says that certain violations must result in a diagnostic. (There may be something more specific here or there, but I certainly don't remember one.)
What the code is doing there isn't according to the Standard, and since there is a cast the compiler is entitled to go ahead and do whatever stupid thing the programmer wants without complaint. This would therefore be an implementation issue.
You could check your implementation documentation, but it's probably not there either. You could experiment, or study how function calls are done on your implementation.
Unfortunately, the answer is very likely to be that it'll screw something up without being immediately obvious.
Generally if you are calling LoadLibrary and GetProcByAddrees you have documentation that tells you the prototype. Even more commonly like with all of the windows.dll you are provided a header file. While this will cause an error if wrong its usually very easy to observe and not the kind of error that will sneak into production.
Most C/C++ compilers have the caller set up the stack before the call, and readjust the stack pointer afterwards. If the called function does not use pointer or reference arguments, there will be no memory corruption, although the results will be worthless. And as rerun says, pointer/reference mistakes almost always show up with a modicum of testing.