below is a snippet from the opencv SVM tutorial at this link. And in that snippet is this line of code ' Mat sampleMat = (Mat_(1,2) << j,i);'. Instead of using the Mat_ template, I would need to use a regular Mat object. I was hoping someone can show me how to convert the Mat_ to a Mat in the previous line.
I tried Mat sampleMat = (Mat(1,2, CV_32FC1) << j,i); //but get a long page of errors
I tried Mat sampleMat = Mat(1,2, CV_32FC1) << j,i; //same, long page of errors
I just need the code at the link at the top of the page to run without using the Mat_ and only use a Mat in its place...if someone can show me how to write that line I'd appreciate it.
for (int i = 0; i < image.rows; ++i)
for (int j = 0; j < image.cols; ++j)
{
Mat sampleMat = (Mat_<float>(1,2) << j,i);
float response = SVM.predict(sampleMat);
if (response == 1)
image.at<Vec3b>(i,j) = green;
else if (response == -1)
image.at<Vec3b>(i,j) = blue;
}
Edit: Trying to run like below but getting errors
Vec3b green(0,255,0), blue (255,0,0);
// Show the decision regions given by the SVM
for (int i = 0; i < image.rows; ++i)
for (int j = 0; j < image.cols; ++j)
{
Mat sampleMat(1, 2, CV_32F);
float * const pmat = sampleMat.ptr<float>();
pmat[0] = i;
pmat[1] = j;
float response = SVM.predict(sampleMat);
if (response == 1)
pmat[0] = green;
pmat[1] = green;
else if (response == -1)
pmat[0] = blue;
pmat[1] = blue;
}
I figured you'd know enough so I didn't need the errors=)
Set the values directly:
Mat sampleMat(1, 2, CV_32F);
sampleMat.at<float>(0,1) = j;
sampleMat.at<float>(0,2) = i;
or
Mat sampleMat(1, 2, CV_32F);
float * const pmat = sampleMat.ptr<float>();
pmat[0] = j;
pmat[1] = i;
Addendum:
Seeing your loop, you could make it a bit more efficient in the case that SVM.predict doesn't modify sampleMat. You can set the image row just once per row, instead of doing it all the time:
for (int i = 0; i < image.rows; ++i)
{
Mat sampleMat(1, 2, CV_32F);
sampleMat.at<float>(0, 2) = i;
for (int j = 0; j < image.cols; ++j)
{
sampleMat.at<float>(0, 1) = j;
...
}
}
Related
I have two matrices:
cv::Mat bgr(rows, cols, CV_16UC3);
cv::Mat ir(rows, cols, CV_16UC1 );
and I want to subtract ir from each channel of bgr element-wise. I couldn't find an elegant solution yet.
EDIT
One possible solution might be:
// subtract IR from BGR
Vec3u tmp;
for (int i = 0; i < ir.rows; i++) {
for (int j = 0; j < ir.cols; j++) {
tmp = bgr.at<Vec3u>(i,j);
tmp[0] = tmp[0] - ir.at<ushort>(i,j);
tmp[1] = tmp[1] - ir.at<ushort>(i,j);
tmp[2] = tmp[2] - ir.at<ushort>(i,j);
bgr.at<Vec3u>(i, j) = tmp;
}
}
The question is that whether there is a faster solution.
If we're talking about an elegant way, it could be like this:
Mat mat = Mat::ones(2,2,CV_8UC1);
Mat mat1 = Mat::ones(2,2,CV_8UC2)*3;
Mat mats[2];
split(mat1,mats);
mats[0]-=mat;
mats[1]-=mat;
merge(mats,2,mat1);
You shouldn't use at(), if you wanted your code to be more efficient. Use pointers and check Mats for continuity:
int rows = mat.rows;
int cols = mat.cols;
if(mat.isContinuous() && mat1.isContinuous())
{
cols*=rows;
rows = 1;
}
for(int j = 0;j<rows;j++) {
auto channe2limg = mat1.ptr<Vec2b>(j);
auto channelimg = mat.ptr<uchar>(j);
for (int i = 0; i < cols; i++) {
channe2limg[i][0]-=channelimg[i];
channe2limg[i][1]-=channelimg[i];
}
}
I have utilised the OpenCV GrabCut functionality to perform an image segmentation. When viewing the segmented image as per the code below, the segmentation is reasonable/correct. However, when looking at(at attempting to use) the segmrntation mask values, I am getting some very large numbers, and not the enumerated values one would expect from the cv::GrabCutClasses enum.
void doGrabCut(){
Vector2i imgDims = getImageDims();
//Wite image to OpenCV Mat.
const Vector4u *rgb = getRGB();
cv::Mat rgbMat(imgDims.height, imgDims.width, CV_8UC3);
for (int i = 0; i < imgDims.height; i++) {
for (int j = 0; j < imgDims.width; j++) {
int idx = i * imgDims.width + j;
rgbMat.ptr<cv::Vec3b>(i)[j][2] = rgb[idx].x;
rgbMat.ptr<cv::Vec3b>(i)[j][1] = rgb[idx].y;
rgbMat.ptr<cv::Vec3b>(i)[j][0] = rgb[idx].z;
}
}
//Do graph cut.
cv::Mat res, fgModel, bgModel;
cv::Rect bb(bb_begin.x, bb_begin.y, bb_end.x - bb_begin.x, bb_end.y - bb_begin.y);
cv::grabCut(rgbMat, res, bb, bgModel, fgModel, 10, cv::GC_INIT_WITH_RECT);
cv::compare(res, cv::GC_PR_FGD, res, cv::CMP_EQ);
//Write mask.
Vector4u *maskPtr = getMask();//uchar
for (int i = 0; i < imgDims.height; i++) {
for (int j = 0; j < imgDims.width; j++) {
cv::GrabCutClasses classification = res.at<cv::GrabCutClasses>(i, j);
int idx = i * imgDims.width + j;
std::cout << classification << std::endl;//Strange numbers here.
maskPtr[idx].x = (classification == cv::GC_PR_FGD) ? 255 : 0;//This always evaluates to 0.
}
}
cv::Mat foreground(rgbMat.size(), CV_8UC3, cv::Scalar(255, 255, 255));
rgbMat.copyTo(foreground, res);
cv::imshow("GC Output", foreground);
}
Why would one get numbers outside the enumeration when the segmentation is qualitatively correct?
I doubt on your //Write mask. step, why do you re-iterate the res and modify maskPtr as maskPtr[idx].x = (classification == cv::GC_PR_FGD) ? 255 : 0;, Basically you already have a single channel Binary image stored in the res variable, the cv::compare() returns a binary image
However if you still want to debug the values by iteration then you should use the standard technique for iterating a single channel image as:
for (int i = 0; i < m.rows; i++) {
for (int j = 0; j < m.cols; j++) {
uchar classification = res.at<uchar>(i, j);
std::cout << int(classification) << ", ";
}
}
As you are iterating a single channel mat you must use res.at<uchar>(i, j) and not res.at<cv::GrabCutClasses>.
I work on traffic sign detection, firstly I am applied a segmentation on RGB image to obtain red channel image as it is illustrated in image 1:
Secondely I try to find homogeneous region to eliminate not interested region (not a traffic sign) by calculating the variance of sliding window above the image
I use this code but I have always exception
int main(int argc, char** argv)
{
IplImage *image1;
if ((image1 = cvLoadImage("segmenter1/00051.jpg", 0)) == 0)
return NULL;
int rows = image1->width;
int cols = image1->height;
Mat image = Mat::zeros(cols, rows, CV_32FC1);
double x = 0;
double temp = 0;
for (int i = 0; i < rows; i++){
for (int j = 0; j < cols; j++){
temp = cvGet2D(image1, j, i).val[0];
x = temp / 255;
image.at<float>(j, i) = x;
x = image.at<float>(j, i);
}
}
int k = 16;
double seuil = 0.0013;
CvScalar blanc;//pixel blanc
blanc.val[0] = 255;
cv::Scalar mean, stddev; //0:1st channel, 1:2nd channel and 2:3rd channel
for (int j = 0; j < rows - k; j++)
{
for (int i = 0; i < cols - k; i++)
{
double som = 0;
double var = 0;
double t = 0;
for (int jj = j; jj < k+j; jj++)
{
for (int ii = i; ii < k+i; ii++)
{
t = image.at<float>(jj, ii);
som = som + t;
t = t*t;
var =var+ t;
}
}
som = som / (k*k);
if (som>0.18){
var = (var / (k*k)) - (som*som);
if (var < seuil)
cvSet2D(image1, j, i, blanc);
}
}
}
char stsave[80];
cvSaveImage("variance/00051.jpg", image1);
cv::waitKey(0);
return 0;
}
Without the specific exception, I can only guess it is out_of_range. According to opencv docs, cvGet2D and cvSet2D parameters are image, y, x which effectively translates to image, rows, cols. You have flipped the definition of rows, cols and have conflicting usage between the two loops. Maybe fix these and try again.
I am trying to make a classifier using OpenCV 3.0.0's CvSVM and color histogram. I already tried to make my own using the following code to make the datasets:
int labels[510];
if (label.compare("raw")){
for (int i = 0; i < 509; i++){
labels[i] = 1;
}
}
else if (label.compare("ripe")){
for (int i = 0; i < 509; i++){
labels[i] = 2;
}
}
else if (label.compare("rotten")){
for (int i = 0; i < 509; i++){
labels[i] = 3;
}
}
float trainingData[510][2];
for (int i = 0; i < 254; i++){
trainingData[i][1] = r_hist.at<float>(i - 1);
trainingData[i][2] = i;
}
int j = 0;
for (int i = 255; i < 509; i++){
trainingData[i][1] = g_hist.at<float>(j - 1);
trainingData[i][2] = i;
j++;
}
And this code for the SVM:
int width = 512, height = 512;
Mat image = Mat::zeros(height, width, CV_8UC3);
Mat labelsMat(510, 1, CV_32SC1, labels);
Mat trainingDataMat(510, 2, CV_32FC1, trainingData);
Ptr < cv::ml::SVM > svm = SVM::create();
svm = cv::Algorithm::load<ml::SVM>("svm.xml");
svm->setC(0.01);
svm->setType(ml::SVM::C_SVC);
svm->setKernel(ml::SVM::LINEAR);
svm->setTermCriteria((cvTermCriteria(TermCriteria::MAX_ITER, 100, 1e6)));
svm->train(trainingDataMat, ROW_SAMPLE, labelsMat);
svm->save("svm.xml");
The problem with the code above is that it won't save properly. Is there a better way to do it?
I have copied a grayscale image into a cv::Mat1b, and I want to loop through each pixel and read and change its value. How can I do that?
My code looks like this :
cv::Mat1b newImg;
grayImg.copyTo(newImg);
for (int i = 0; i < grayImg.rows; i++) {
for (int j = 0; i < grayImg.cols; j++) {
int pixelValue = static_cast<int>(newImg.at<uchar>(i, j));
if(pixelValue > thresh)
newImg.at<int>(i,j) = 0;
else
newImg.at<int>(i, j) = 255;
}
}
But in the assignments (inside of if and else), I get the error Access violation writing location.
How do I read and write specific pixels correctly?
Thanks !
Edit
Thanks to #Miki and #Micka, this is how I solved it :
for (int i = 0; i < newImg.rows; i++) {
for (int j = 0; j < newImg.cols; j++) {
// read :
cv::Scalar intensity1 = newImg.at<uchar>(i,j);
int intensity = intensity1.val[0];
// write :
newImg(i, j) = 255;
}
}
newImg.at<int>(i,j)
should be
newImg.at<uchar>(i,j)
Because cv::Mat1b is of uchar type
i suggest :
cv::Mat1b newImg;
newImg = grayImg > thresh ;
or
cv::Mat1b newImg;
newImg = grayImg < thresh ;
also look at the OpenCV Tutorials to know how to go through each and every pixel of an image