I would like to ask if the ReliefF algorithm for attribute selection,
as implemented in Weka toolkit, performs any normalization in the
attributes before ranking them.
Thank you
Yes, internally ReliefF algorithm does min-max normalisation for numeric attributes. You can check the source code of weka.attributeSelection.ReliefFAttributeEval class to confirm the same.
Related
Is it possible in Weka to train a model minimizing a cost factor?
I have a data set containing a cost factor in each sample. It defines what using this sample would cost. Now, I would like to select as much of the samples as possible while minimizing this cost factor.
E.g. with Multilayer perceptron, I want to train the neurons in a way, that it chooses as many samples as possible while minimizing the sum of the cost factor.
I've checked all the model options and also searched the package manager for something like that, but I was unable to find anything. Could someone tell me whether this can be done using Weka?
What you are describing sounds more like an optimization problem rather than a classification or regression problem (for which you would use a Weka classifier).
Weka does have some limited support for optimization through its abstract weka.core.Optimization class (e.g., used internally by weka.classifiers.functions.Logistic). But that requires implementing some methods.
To cast your net wider, you might want to take a look at the following article that describes various optimization techniques:
https://machinelearningmastery.com/tour-of-optimization-algorithms/
I'm using weka with some db's and i'm trying to understand how works Random tree algorithm. I don't understand if it choose, in every node, a random attribute to split, or if it uses (in every node) the information gain of an attribute to decide which one it has to split.
Thank you
Regards,
Andrea
Is there a way to incorporate the uncertainties on my data set into the result of the Savitzky Golay fit? Since I am not passing this information into the function, I asume that it is simply calcuating the 'best fit' via an unweighted least-squares process. I am currently working with data that has non-uniform uncertainty, and so the fit of the data could be improved by including the errors that I have for my main dataset.
The wikipedia page for the Savitzky-Golay filter suggests how I might go about alter the process of calculating the coefficients of the fit, and I am staring at the code for scipy.signal.savgol_filter, but I cannot get my head around what I need to adjust so that this will do what I want it to.
Are there any ready-made weighted SG filters floating about? I find it hard to believe that no-one else has ever needed this tool in Python, but maybe I have missed something.
Check out this Python module: https://github.com/surhudm/savitzky_golay_with_errors
This python script improves upon the traditional Savitzky-Golay filter
by accounting for errors or covariance in the data. The inputs and
arguments are all modelled after scipy.signal.savgol_filter
Matlab function sgolayfilt supports weights. Check the documentation.
I have used the output predictions of J48 classifier in Weka and got the results with predictions (probability). As I need to use these predictions number in my research, I need to know how the weka calculates these numbers? What is the formula? Is it specified for each classifier?
In addition to Jan Eglinger answer.
The J48 classifier is Weka's implementation of the infamous C4.5 decision tree classifier, which is a classification algorithm based on ID3 that classifies using information entropy.
The training data is a set S = {s_1, s_2, ...} of already classified samples. Each sample s_i consists of a p-dimensional vector (x_{1,i}, x_{2,i}, ...,x_{p,i}) , where the x_j represent attribute values or features of the sample, as well as the class in which s_i falls.
At each node of the tree, C4.5 chooses the attribute of the data that most effectively splits its set of samples into subsets enriched in one class or the other. The splitting criterion is the normalized information gain (difference in entropy). The attribute with the highest normalized information gain is chosen to make the decision. The C4.5 algorithm then recurs on the smaller sublists.
This algorithm has a few base cases.
All the samples in the list belong to the same class. When this
happens, it simply creates a leaf node for the decision tree saying
to choose that class.
None of the features provide any information gain. In this case,
C4.5 creates a decision node higher up the tree using the expected
value of the class.
Instance of previously-unseen class encountered. Again, C4.5 creates
a decision node higher up the tree using the expected value.
You can find the information Gain and entropy in the Weka Api package. For that you need to start dubbing the java weka api and go through each step.
In general, if you don't worry about how algorithm works internally using high level mathematics. Try to calculate InformationGain and entropy and explain them in your research apart from decision trees, you have methods for both of these to calculate their value.
What is the formula?
Weka's J48 classifier is an implementation of the C4.5 algorithm.
I need to know how the weka calculates these numbers?
You can find implementation details in J48.java and in the weka.classifiers.trees.j48 package.
I am learning how to do data mining and I am using this data set from UCI's website.
http://archive.ics.uci.edu/ml/datasets/Forest+Fires
The problem I am encountering is how to deal with the area class. My understanding from the description is that I need to apply ln(x+1) to area using AddExpression.
Am I going in the correct direction with this? Or are there other filters I should investigate? Thank you.
I try to answer your question based on the little information you provide. And I haven't worked with the forest-fires data set, but by inspection I see that the classifier attribute "area" often has the value 0. Maybe you can't simply filter out these rows with Area = 0. Your dataset might become too small, or whatnot.
I think you are asked to perform regression of some attribute(s) against "log(area)" in order to linearize it. However,when you try to calculate the log of the Area, values such as log(0) are a problem. values between 0 and 1 might also be problematic.
So a common fix is to add 1 to the value of "Area". This introduces a systematic error, but it is small, and it removes all 0-values, and you can still derive useful models from your log(x+1)-transformed dataset.
And yes, in Weka you do this by "Preprocess"/ AddExpression(x+1). This creates a new attribute. Then you might remove the old area attribute.
Of course, in interpreting your model, you should be aware of the transformation. If you just want to find out what the significant independent attributes are in your linear regression model, I'd say the transformation does not matter. The data points are just shifted a little bit.