Hello I am learning the OCaml language and working on an assignment.
infinite precision natural numbers can be represented as lists of ints between 0 and 9
Write a function that takes an integer and represents it with a list of integers between 0 and 9 where the head
of the list holds the least significant digit and the very last element of the list represents the most significant digit.
If the input is negative return None. We provide you with some use cases:
For example:
toDec 1234 = Some [4; 3; 2; 1]
toDec 0 = Some []
toDec -1234 = None
I have written below code for it.
let rec toDec i =
(
if i < 10 then i::[]
else toDec ((i mod 10)::acc) (i/10) in toDec [] i;
);;
I am getting syntax error on line 4. Since I am new to this language, not able to get what's wrong. Can somebody please help on this.
The in keyword must go with a let. You could use a local function aux, as follows:
let toDec i =
let rec aux acc i =
if i < 10 then i::[]
else aux ((i mod 10)::acc) (i/10)
in
aux [] i
This doesn't do what you want but syntax and types are valid and I'm sure you can fix the rest.
Vicky, you forgot to define acc and also forgot to put else if statement.
Update your code as below,
let rec toDec ?acc:(acc=[]) i =
if i < 0 then None
else if i = 0 then Some acc
else toDec ~acc:((i mod 10)::acc) (i / 10)
I have this code in VBA (looping through the array a() of type double):
bm = 0 'tot
b = 0 'prev
For i = 24 To 0 Step -1
BP = b 'prevprev = prev
b = bm 'prev = tot
bm = T * b - BP + a(i) 'tot = a(i) + T * prev - prevprev
Next
p = Exp(-xa * xa) * (bm - BP) / 4 '* (tot - prevprev)/4
I'm putting this in F#. Clearly I could use an array and mutable variables to recreate the VBA. And maybe this is an example of the right time to use mutable that I've seen hinted at. But why not try to do it the most idiomatic way?
I could write a little recursive function to replicate the loop. But it kind of feels like littering to hang out a little sub-loop that has no meaning on its own as a standalone, named function.
I want to do it with List functions. I have a couple ideas, but I'm not there yet. Anyone get this in a snap??
The two vague ideas I have are: 1. I could make two more lists by chopping off one (and two) elements and adding zero-value element(s). And combine those lists. 2. I'm wondering if a list function like map can take trailing terms in the list as arguments. 3. As a general question, I wonder if this might be a case where an experienced person would say that this problem screams for mutable values (and if so does that dampen my enthusiasm for getting on the functional boat).
To give more intuition for the code: The full function that this is excerpted from is a numerical approximation for the cumulative normal distribution. I haven't looked up the math behind this one. "xa" is the absolute value of the main function argument "x" which is the number of standard deviations from zero. Without working through the proof, I don't think there's much more to say than: it's just a formula. (Oh and maybe I should change the variable names--xa and bm etc are pretty wretched. I did put suggestions as comments.)
It's just standard recursion. You make your exit condition and your recur condition.
let rec calc i prevPrev prev total =
if i = 0 then // exit condition; do your final calc
exp(-xa * xa) * (total - prevPrev) / 4.
else // recur condition, call again
let newPrevPrev = prev
let newPrev = total
let newTotal = (T * newPrev - newPrevPrev + a i)
calc (i-1) newPrevPrev newPrev newTotal
calc 24 initPrevPrev initPrev initTotal
or shorter...
let rec calc i prevPrev prev total =
if i = 0 then
exp(-xa * xa) * (total - prevPrev) / 4.
else
calc (i-1) prev total (T * total - prev + a i)
Here's my try at pulling the loop out as a recursive function. I'm not thrilled about the housekeeping to have this stand alone, but I think the syntax is neat. Aside from an error in the last line, that is, where the asterisk in (c * a.Tail.Head) gets the red squiggly for float list not matching type float (but I thought .Head necessarily returned float not list):
let rec RecurseIt (a: float list) c =
match a with
| []-> 0.0
| head::[]-> a.Head
| head::tail::[]-> a.Head + (c * a.Tail) + (RecurseIt a.Tail c)
| head::tail-> a.Head + (c * a.Tail.Head) - a.Tail.Tail.Head + (RecurseIt a.Tail c)
Now I'll try list functions. It seems like I'm going to have to iterate by element rather than finding a one-fell-swoop slick approach.
Also I note in this recursive function that all my recursive calls are in tail position I think--except for the last one which will come one line earlier. I wonder if this creates a stack overflow risk (ie, prevents the compiler from treating the recursion as a loop (if that's the right description), or if I'm still safe because the algo will run as a loop plus just one level of recursion).
EDIT:
Here's how I tried to return a list instead of the sum of the list (so that I could use the 3rd to last element and also sum the elements), but I'm way off with this syntax and still hacking away at it:
let rec RecurseIt (a: float list) c =
match a with
| []-> []
| head::[]-> [a.Head]
| head::tail::[]-> [a.Head + (c * a.Tail)] :: (RecurseIt a.Tail c)
| head::tail-> [a.Head + (c * a.Tail.Head) - a.Tail.Tail.Head] :: (RecurseIt a.Tail c)
Here's my try at a list function. I think the problem felt more complicated than it was due to confusing myself. I just had some nonsense with List.iteri here. Hopefully this is closer to making sense. I hoped some List. function would be neat. Didn't manage. For loop not so idiomatic I think. :
for i in 0 .. a.Length - 1 do
b::
a.Item(i) +
if i > 0 then
T * b.Item(i-1) -
if i > 1 then
b.Item(i-2)
else
0
else
0
Which language is smart so that it could understand variable a = 0 , 20, ..., 300 ? so you could easily create arrays with it giving step start var last var (or, better no last variable (a la infinite array)) and not only for numbers (but even complex numbers and custom structures like Sedenion's which you would probably define on your own as a class or whatever...)
Point is, find a language or algorithm usable in a language that can cach the law of how array of variables you've given (or params of that variables) change. And compose using that law a structure from which you would be able to get any variable(s).
To everyone - examples you provide are very helpful for all beginners out there. And at the same time are the basic knowledge required to build such 'Smart Array' class. So thank you wary much for your enthusiastic help.
As JeffSahol noticed
all possible rules might include some
that require evaluation of some/all
existing members to generate the nth
member.
So it is a hard Question. And I think language that would do it 'Naturally' would be great to play\work with, hopefully not only for mathematicians.
Haskell:
Prelude> let a=[0,20..300]
Prelude> a
[0,20,40,60,80,100,120,140,160,180,200,220,240,260,280,300]
btw: infinite lists are possible, too:
Prelude> let a=[0,20..]
Prelude> take 20 a
[0,20,40,60,80,100,120,140,160,180,200,220,240,260,280,300,320,340,360,380]
Excel:
Write 0 in A1
Write 20 in A2
Select A1:2
Drag the corner downwards
MatLab:
a = [0:20:300]
F#:
> let a = [|0..20..300|];;
val a : int [] =
[|0; 20; 40; 60; 80; 100; 120; 140; 160; 180; 200; 220; 240; 260; 280; 300|]
With complex numbers:
let c1 = Complex.Create( 0.0, 0.0)
let c2 = Complex.Create(10.0, 10.0)
let a = [|c1..c2|]
val a : Complex [] =
[|0r+0i; 1r+0i; 2r+0i; 3r+0i; 4r+0i; 5r+0i; 6r+0i; 7r+0i; 8r+0i; 9r+0i; 10r+0i|]
As you can see it increments only the real part.
If the step is a complex number too, it will increment the real part AND the imaginary part, till the last var real part has been reached:
let step = Complex.Create(2.0, 1.0)
let a = [|c1..step..c2|]
val a: Complex [] =
[|0r+0i; 2r+1i; 4r+2i; 6r+3i; 8r+4i; 10r+5i|]
Note that if this behavior doesn't match your needs you still can overload (..) and (.. ..) operators. E.g. you want that it increments the imaginary part instead of the real part:
let (..) (c1:Complex) (c2:Complex) =
seq {
for i in 0..int(c2.i-c1.i) do
yield Complex.Create(c1.r, c1.i + float i)
}
let a = [|c1..c2|]
val a : Complex [] =
[|0r+0i; 0r+1i; 0r+2i; 0r+3i; 0r+4i; 0r+5i; 0r+6i; 0r+7i; 0r+8i; 0r+9i; 0r+10i|]
And PHP:
$a = range(1,300,20);
Wait...
Python:
print range(0, 320, 20)
gives
[0, 20, 40, 60, 80, 100, 120, 140, 160, 180, 200, 220, 240, 260, 280, 300]
Props to the comments (I knew there was a more succinct way :P)
Scala:
scala> val a = 0 to 100 by 20
a: scala.collection.immutable.Range = Range(0, 20, 40, 60, 80, 100)
scala> a foreach println
0
20
40
60
80
100
Infinite Lists:
scala> val b = Stream from 1
b: scala.collection.immutable.Stream[Int] = Stream(1, ?)
scala> b take 5 foreach println
1
2
3
4
5
In python you have
a = xrange(start, stop, step)
(or simply range in python 3)
This gives you an iterator from start to stop. It can be infinite since it is built lazily.
>>> a = xrange(0, 300, 20)
>>> for item in a: print item
...
0
20
40
60
80
100
120
140
160
180
200
220
240
260
280
And C++ too [use FC++ library]:
// List is different from STL list
List<int> integers = enumFrom(1); // Lazy list of all numbers starting from 1
// filter and ptr_to_fun definitions provided by FC++
// The idea is to _filter_ prime numbers in this case
// prime is user provided routine that checks if a number is prime
// So the end result is a list of infinite primes :)
List<int> filtered_nums = filter( ptr_to_fun(&prime), integers );
FC++ lazy list implementation: http://www.cc.gatech.edu/~yannis/fc++/New/new_list_implementation.html
More details: http://www.cc.gatech.edu/~yannis/fc++/
Arpan
Groovy,
assert [ 1, *3..5, 7, *9..<12 ] == [1,3,4,5,7,9,10,11]
The SWYM language, which appears to no longer be online, could infer arithmetic and geometric progressions from a few example items and generate an appropriate list.
I believe the syntax in perl6 is start ... *+increment_value, end
You should instead use math.
- (int) infiniteList: (int)x
{
return (x*20);
}
The "smart" arrays use this format since I seriously doubt Haskel could let you do this:
a[1] = 15
after defining a.
C# for example does implement Enumerable.Range(int start, int count), PHP offers the function range(mixed low, mixed high, number step), ... There are programming languages that are "smart" enough.
Beside that, an infinite array is pretty much useless - it's not infinite at all but all-memory-consuming.
You cannot do this enumerating simply with complex numbers as there is no direct successor or predecessor for a given number. Edit: This does not mean that you cannot compare complex numbers or create an array with a specified step!
I may be misunderstanding the question, but the answers that specify way to code the specific example you gave (counting by 20's) don't really meet the requirement that the array "cache" an arbitrary rule for generating array members...it seems that almost any complete solution would require a custom collection class that allows generation of the members with a delegated function/method, especially since all possible rules might include some that require evaluation of some/all existing members to generate the nth member.
Just about any program language can give you this sequence. The question is what syntax you want to use to express it. For example, in C# you can write:
Enumerable.Range(0, 300).Where(x => (x % 20) == 0)
or
for (int i = 0; i < 300; i += 20) yield return i;
or encapsulated in a class:
new ArithmaticSequence(0, 301, 20);
or in a method in a static class:
Enumerable2.ArithmaticSequence(0, 301, 20);
So, what is your criteria?
Assembly:
Assuming edi contains the address of the desired array:
xor eax, eax
loop_location:
mov [edi], eax
add edi, #4
add eax, #20
cmp eax, #300
jl loop_location
MATLAB
it is not a Programming language itself but its a tool but still u can use it like a programming language.
It is built for such Mathematics operations to easily arrays are a breeze there :)
a = 0:1:20;
creates an array from 0 to 20 with an increment of 1.
instead of the number 1 you can also provide any value/operation for the increment
Php always does things much simpler, and sometimes dangerously simple too :)
Well… Java is the only language I've ever seriously used that couldn't do that (although I believe using a Vector instead of an Array allowed that).