I'm trying to rotate image with interpolation, but it's too slow for real time for big images.
the code something like:
for(int y=0;y<dst_h;++y)
{
for(int x=0;x<dst_w;++x)
{
//do inverse transform
fPoint pt(Transform(Point(x, y)));
//in coor of src
int x1= (int)floor(pt.x);
int y1= (int)floor(pt.y);
int x2= x1+1;
int y2= y1+1;
if((x1>=0&&x1<src_w&&y1>=0&&y1<src_h)&&(x2>=0&&x2<src_w&&y2>=0&&y2<src_h))
{
Mask[y][x]= 1; //show pixel
float dx1= pt.x-x1;
float dx2= 1-dx1;
float dy1= pt.y-y1;
float dy2= 1-dy1;
//bilinear
pd[x].blue= (dy2*(ps[y1*src_w+x1].blue*dx2+ps[y1*src_w+x2].blue*dx1)+
dy1*(ps[y2*src_w+x1].blue*dx2+ps[y2*src_w+x2].blue*dx1));
pd[x].green= (dy2*(ps[y1*src_w+x1].green*dx2+ps[y1*src_w+x2].green*dx1)+
dy1*(ps[y2*src_w+x1].green*dx2+ps[y2*src_w+x2].green*dx1));
pd[x].red= (dy2*(ps[y1*src_w+x1].red*dx2+ps[y1*src_w+x2].red*dx1)+
dy1*(ps[y2*src_w+x1].red*dx2+ps[y2*src_w+x2].red*dx1));
//nearest neighbour
//pd[x]= ps[((int)pt.y)*src_w+(int)pt.x];
}
else
Mask[y][x]= 0; //transparent pixel
}
pd+= dst_w;
}
How I can speed up this code, I try to parallelize this code but it seems there is no speed up because of memory access pattern (?).
The key is to do most of your computations as ints. The only thing that is necessary to do as a float is the weighting. See here for a good resource.
From that same resource:
int px = (int)x; // floor of x
int py = (int)y; // floor of y
const int stride = img->width;
const Pixel* p0 = img->data + px + py * stride; // pointer to first pixel
// load the four neighboring pixels
const Pixel& p1 = p0[0 + 0 * stride];
const Pixel& p2 = p0[1 + 0 * stride];
const Pixel& p3 = p0[0 + 1 * stride];
const Pixel& p4 = p0[1 + 1 * stride];
// Calculate the weights for each pixel
float fx = x - px;
float fy = y - py;
float fx1 = 1.0f - fx;
float fy1 = 1.0f - fy;
int w1 = fx1 * fy1 * 256.0f;
int w2 = fx * fy1 * 256.0f;
int w3 = fx1 * fy * 256.0f;
int w4 = fx * fy * 256.0f;
// Calculate the weighted sum of pixels (for each color channel)
int outr = p1.r * w1 + p2.r * w2 + p3.r * w3 + p4.r * w4;
int outg = p1.g * w1 + p2.g * w2 + p3.g * w3 + p4.g * w4;
int outb = p1.b * w1 + p2.b * w2 + p3.b * w3 + p4.b * w4;
int outa = p1.a * w1 + p2.a * w2 + p3.a * w3 + p4.a * w4;
wow you are doing a lot inside most inner loop like:
1.float to int conversions
can do all on floats ...
they are these days pretty fast
the conversion is what is killing you
also you are mixing float and ints together (if i see it right) which is the same ...
2.transform(x,y)
any unnecessary call makes heap trashing and slow things down
instead add 2 variables xx,yy and interpolate them insde your for loops
3.if ....
why to heck are you adding if ?
limit the for ranges before loop and not inside ...
the background can be filled with other fors before or later
Related
I am trying to draw a curve with B-spline. I did my research about what is B-spline and how can I use it in a program algorithm. After all that stuff, I finally find a code to make this right in Stack Overflow. I made some changes on this code and try to use in my program. It works but I have two problems with that.
Firstly the curve is in the right shape but not in the right position. It's like 20-40 pixel different than should to be.
Secondly in my function last part, I am dividing the two result of x and y to a number but it (divide number) seems like have to change for all the circumstances.
And finally, it's working for 6 coordinates as you can see.
How can I bind the number of coordinates to divide the number and fix the flip at the spline?
PS: I need to write that code with C
Here is my code's functions :
1-That's my B-spline calculate function:
void BSplineCurve(const Dot& point1,
const Dot& point2,
const Dot& point3,
const Dot& point4,
Dot& result,
const double t)
{
const double t2 = t * t;
const double t3 = t2 * t;
const double mt = 1.0 - t;
const double mt3 = mt * mt * mt;
const double bi3 = mt3;
const double bi2 = 3 * t3 - 6 * t2 + 4;
const double bi1 = -3 * t3 + 3 * t2 + 3 * t + 1;
const double bi = t3;
result.x = point1.x * bi3 + point2.x * bi2 + point3.x * bi1 + point4.x * bi;
result.x /= 4;
result.y = point1.y * bi3 + point2.y * bi2 + point3.y * bi1 + point4.y * bi;
result.y /= 4;
}
2- That's my Draw Function :
Dot points[6] = {ControlPoint1, ControlPoint2, ControlPoint3, ControlPoint4, ControlPoint5,
ControlPoint6};
for(double t = 5.9999;t > 2.0; t -= 0.001)
{
const int start = static_cast<int>(t)+1;
BSplineCurve(points[start -3 ],
points[start - 2],
points[start - 1],
points[start ],
DrawCurve,
start - t);
Draw1Dot(DrawCurve,points[0],distanceToEdges);}
3- And finally my Draw pixel function :
void Draw1Dot(Dot Koor, Dot mesafe, int ortala)
{
putpixel(mesafe.x + Koor.x + ortala, mesafe.y + Koor.y + ortala, 3);
}
Can you help me understand what I'm doing wrong?
After advice from krlzlx I have posted it as a new question.
From here:
3D Line Segment and Plane Intersection
I have a problem with this algorithm, I have implemented it like so:
template <class T>
class AnyCollision {
public:
std::pair<bool, T> operator()(Point3d &ray, Point3d &rayOrigin, Point3d &normal, Point3d &coord) const {
// get d value
float d = (normal.x * coord.x) + (normal.y * coord.y) + (normal.z * coord.z);
if (((normal.x * ray.x) + (normal.y * ray.y) + (normal.z * ray.z)) == 0) {
return std::make_pair(false, T());
}
// Compute the X value for the directed line ray intersecting the plane
float a = (d - ((normal.x * rayOrigin.x) + (normal.y * rayOrigin.y) + (normal.z * rayOrigin.z)) / ((normal.x * ray.x) + (normal.y * ray.y) + (normal.z * ray.z)));
// output contact point
float rayMagnitude = (sqrt(pow(ray.x, 2) + pow(ray.y, 2) + pow(ray.z, 2)));
Point3d rayNormalised((ray.x / rayMagnitude), (ray.y / rayMagnitude), (ray.z / rayMagnitude));
Point3d contact((rayOrigin.x + (rayNormalised.x * a)), (rayOrigin.y + (rayNormalised.y * a)), (rayOrigin.z + (rayNormalised.z * a))); //Make sure the ray vector is normalized
return std::make_pair(true, contact);
};
Point3d is defined as:
class Point3d {
public:
double x;
double y;
double z;
/**
* constructor
*
* 0 all elements
*/
Point3d() {
x = 0.0;
y = 0.0;
z = 0.0;
}
I am forced to use this structure, because in the larger system my component runs in it is defined like this and it cannot be changed.
My code compiles fine, but testing I get incorrect values for the point. The ratio of x, y, z is correct but the magnitude is wrong.
For example if:
rayOrigin.x = 0;
rayOrigin.y = 0;
rayOrigin.z = 0;
ray.x = 3;
ray.y = -5;
ray.z = 12;
normal.x = -3;
normal.y = 12;
normal.z = 0;
coord.x = 7;
coord.y = -5;
coord.z = 10;
I expect the point to be:
(0.63, 1.26, 1.89)
However, it is:
(3.52, -5.87, 14.09)
A magnitude of 5.09 too big.
And I also tested:
rayOrigin.x = 0;
rayOrigin.y = 0;
rayOrigin.z = 0;
ray.x = 2;
ray.y = 3;
ray.z = 3;
normal.x = 4;
normal.y = 1;
normal.z = 0;
p0.x = 2;
p0.y = 1;
p0.z = 5;
I expect the point to be:
(1.64, 2.45, 2.45)
However, it is:
(3.83761, 5.75642, 5.75642)
A magnitude of 2.34 too big?
Pseudocode (does not require vector normalization):
Diff = PlaneBaseCoordinate - RayOrigin
d = Normal.dot.Diff
e = Normal.dot.RayVector
if (e)
IntersectionPoint = RayOrigin + RayVector * d / e
otherwise
ray belongs to the plane or is parallel
Quick check:
Ray (0,0,0) (2,2,2) //to catch possible scale issues
Plane (0,1,0) (0,3,0) //plane y=1
Diff = (0,1,0)
d = 3
e = 6
IntersectionPoint = (0,0,0) + (2,2,2) * 3 / 6 = (1, 1, 1)
I have that piece of code that is responsible for lighting a pyramid.
float Geometric3D::calculateLight(int vert1, int vert2, int vert3) {
float ax = tabX[vert2] - tabX[vert1];
float ay = tabY[vert2] - tabY[vert1];
float az = tabZ[vert2] - tabZ[vert1];
float bx = tabX[vert3] - tabX[vert1];
float by = tabY[vert3] - tabY[vert1];
float bz = tabZ[vert3] - tabZ[vert1];
float Nx = (ay * bz) - (az * by);
float Ny = (az * bx) - (ax * bz);;
float Nz = (ax * by) - (ay * bx);;
float Lx = -300.0f;
float Ly = -300.0f;
float Lz = -1000.0f;
float lenN = sqrtf((Nx * Nx) + (Ny * Ny) + (Nz * Nz));
float lenL = sqrtf((Lx * Lx) + (Ly * Ly) + (Lz * Lz));
float res = ((Nx * Lx) + (Ny * Ly) + (Nz * Lz)) / (lenN * lenL);
if (res < 0.0f)
res = -res;
return res;
}
I cannot understand calculations at the end. Can someone explain me the maths that is behind them? I know that firstly program calculates two vectors of a plane to compute the normal of it (which goes for vector N). Vector L stand for lighting but what happens next? Why do we calculate length of normal and light then multiply it and divide by their sizes?
Here is the code for an oval drawing method I am working on. I am applying the Bresenham method to plot its co-ordinates, and taking advantage of the ellipse's symmetrical properties to draw the same pixel in four different places.
void cRenderClass::plotEllipse(int xCentre, int yCentre, int width, int height, float angle, float xScale, float yScale)
{
if ((height == width) && (abs(xScale - yScale) < 0.005))
plotCircle(xCentre, yCentre, width, xScale);
std::vector<std::vector <float>> rotate;
if (angle > 360.0f)
{
angle -= 180.0f;
}
rotate = maths.rotateMatrix(angle, 'z');
//rotate[0][0] = cos(angle)
//rotate[0][1] = sin(angle)
float theta = atan2(-height*rotate[0][1], width*rotate[0][0]);
if (angle > 90.0f && angle < 180.0f)
{
theta += PI;
}
//add scalation in at a later date
float xShear = (width * (cos(theta) * rotate[0][0])) - (height * (sin(theta) * rotate[0][1]));
float yShear = (width * (cos(theta) * rotate[0][1])) + (height * (sin(theta) * rotate[0][0]));
float widthAxis = abs(sqrt(((rotate[0][0] * width) * (rotate[0][0] * width)) + ((rotate[0][1] * height) * (rotate[0][1] * height))));
float heightAxis = (width * height) / widthAxis;
int aSquared = widthAxis * widthAxis;
int fourASquared = 4*aSquared;
int bSquared = heightAxis * heightAxis;
int fourBSquared = 4*bSquared;
x0 = 0;
y0 = heightAxis;
int sigma = (bSquared * 2) + (aSquared * (1 - (2 * heightAxis)));
while ((bSquared * x0) <= (aSquared * y0))
{
drawPixel(xCentre + x0, yCentre + ((floor((x0 * yShear) / xShear)) + y0));
drawPixel(xCentre - x0, yCentre + ((floor((x0 * yShear) / xShear)) + y0));
drawPixel(xCentre + x0, yCentre + ((floor((x0 * yShear) / xShear)) - y0));
drawPixel(xCentre - x0, yCentre + ((floor((x0 * yShear) / xShear)) - y0));
if (sigma >= 0)
{
sigma += (fourASquared * (1 - y0));
y0--;
}
sigma += (bSquared * ((4 * x0) + 6));
x0++;
}
x0 = widthAxis;
y0 = 0;
sigma = (aSquared * 2) + (bSquared * (1 - (2 * widthAxis)));
while ((aSquared * y0) <= (bSquared * x0))
{
drawPixel(xCentre + x0, yCentre + ((floor((x0 * yShear) / xShear)) + y0));
drawPixel(xCentre - x0, yCentre + ((floor((x0 * yShear) / xShear)) + y0));
drawPixel(xCentre + x0, yCentre + ((floor((x0 * yShear) / xShear)) - y0));
drawPixel(xCentre - x0, yCentre + ((floor((x0 * yShear) / xShear)) - y0));
if (sigma >= 0)
{
sigma += (fourBSquared * (1 - x0));
x0--;
}
sigma += (aSquared * (4 * y0) + 6);
y0++;
}
//the above algorithm hasn't been quite completed
//there are still a few things I want to enquire Andy about
//before I move on
//this other algorithm definitely works
//however
//it is computationally expensive
//and the line drawing isn't as refined as the first one
//only use this as a last resort
/* std::vector<std::vector <float>> rotate;
rotate = maths.rotateMatrix(angle, 'z');
float s = rotate[0][1];
float c = rotate[0][0];
float ratio = (float)height / (float)width;
float px, py, xNew, yNew;
for (int theta = 0; theta <= 360; theta++)
{
px = (xCentre + (cos(maths.degToRad(theta)) * (width / 2))) - xCentre;
py = (yCentre - (ratio * (sin(maths.degToRad(theta)) * (width / 2)))) - yCentre;
x0 = (px * c) - (py * s);
y0 = (px * s) + (py * c);
drawPixel(x0 + xCentre, y0 + yCentre);
}*/
}
Here's the problem. When testing the rotation matrix on my oval drawing function, I expect it to draw an ellipse at a slant from its original horizontal position as signified by 'angle'. Instead, it makes a heart shape. This is sweet, but not the result I want.
I have managed to get the other algorithm (as seen in the bottom part of that code sample) working successfully, but it takes more time to compute, and doesn't draw lines quite as nicely. I only plan to use that if I can't get this Bresenham one working.
Can anyone help?
I'm having problems with the correct mapping of a sphere. I used a world-map to show where it goes wrong. North America appears on the front from top to bottom, while South America is on the other side upside down and continents like Asia are not even on the map.
(source: troll.ws)
The code below is the sphere-object
class Shape {
public void drawSphere(double radius, int slices, int stacks) {
gl.glEnable(GL_TEXTURE_2D);
head.bind(gl); //Method that binds the world-map (for testing) texture.
gl.glBegin(GL_QUADS);
double stack = (2 * PI) / stacks;
double slice = (2 * PI) / slices;
for (double theta = 0; theta < 2 * PI; theta += stack) {
for (double phi = 0; phi < 2 * PI; phi += slice) {
Vector p1 = getPoints(phi, theta, radius);
Vector p2 = getPoints(phi + slice, theta, radius);
Vector p3 = getPoints(phi + slice, theta + stack, radius);
Vector p4 = getPoints(phi, theta + stack, radius);
double s0 = theta / (2 * PI);
double s1 = (theta + stack) / (2 * PI);
double t0 = phi / (2 * PI);
double t1 = (phi + slice) / (2 * PI);
vectorToNormal(norm(p1));
gl.glTexCoord2d(s0, t0);
vectorToVertex(p1);
vectorToNormal(norm(p2));
gl.glTexCoord2d(s0, t1);
vectorToVertex(p2);
vectorToNormal(norm(p3));
gl.glTexCoord2d(s1, t1 );
vectorToVertex(p3);
vectorToNormal(norm(p4));
gl.glTexCoord2d(s1, t0);
vectorToVertex(p4);
}
}
gl.glEnd();
gl.glDisable(GL_TEXTURE_2D);
}
Vector getPoints(double phi, double theta, double radius) {
double x = radius * cos(theta) * sin(phi);
double y = radius * sin(theta) * sin(phi);
double z = radius * cos(phi);
return new Vector(x, y, z);
}
How can I fix it? I tried swapping some coordinates and other things, but that made it even messier for me.
Also, there seem to be some artifacts when on the spere when I bind the texture to it. Is that fixable?
Both your loops are going from 0 to 2*PI. One of them should only be a half circle. You've doubled up the sphere, resulting in the dodgy mapping and the strange artefacts.
Thanks to JasonD, this fixed it.
for (double theta = 0; theta < 2 * PI; theta += stack) {
for (double phi = 0; phi < 1 * PI; phi += slice) {
Vector p1 = getPoints(phi, theta, radius);
Vector p2 = getPoints(phi + slice, theta, radius);
Vector p3 = getPoints(phi + slice, theta + stack, radius);
Vector p4 = getPoints(phi, theta + stack, radius);
double s0 = theta / (2 * PI);
double s1 = (theta + stack) / (2 * PI);
double t0 = phi / (1 * PI);
double t1 = (phi + slice) / (1 * PI);