MATLAB sub2ind / ind2sub in OpenCV /C++ - c++

Are there any functions in OpenCV which are equal to MATLAB's sub2ind and ind2sub functions? I need both functions for my C++ app.
If OpenCV lacks of these functions, are there any C++ libs which provide equivalent functionality?

You can write them yourself:
int sub2ind(const int row,const int col,const int cols,const int rows)
{
return row*cols+col;
}
void ind2sub(const int sub,const int cols,const int rows,int &row,int &col)
{
row=sub/cols;
col=sub%cols;
}

Here is my code for 2D matrix.
I have tested it.
cv::Mat Utilities::Sub2Ind(int width, int height, cv::Mat X, cv::Mat Y)
{
/*sub2ind(size(a), rowsub, colsub)
sub2ind(size(a), 2 , 3 ) = 6
a = 1 2 3 ;
4 5 6
rowsub + colsub-1 * numberof rows in matrix*/
std::vector<int> index;
cv::transpose(Y,Y);
cv::MatConstIterator_<int> iterX = X.begin<int>(), it_endX = X.end<int>();
cv::MatConstIterator_<int> iterY = Y.begin<int>(), it_endY = Y.end<int>();
for (int j = 0; j < X.cols; ++j,++iterX)
{
//running on each col of y matrix
for (int i =0 ;i < Y.cols; ++i,++iterY )
{
int rowsub = *iterY;
int colsub = *iterX;
int res = rowsub + ((colsub-1)*height);
index.push_back(res);
}
int x = 5;
}
cv::Mat M(index) ;
return M;
}

Related

gaussian smoothing output misaligned

I am trying to perform gaussian smoothing on this image without using any opencv function (except displaying the image).
However, the output I got after convoluting the image with the gaussian kernel is as follow:
The output image seems to have misaligned and looks very weird. Any idea what is happening?
Generate gaussian kernel:
double gaussian(int x, int y,double sigma){
return (1/(2*M_PI*pow(sigma,2)))*exp(-1*(pow(x,2)+pow(y,2))/(2*pow(sigma,2)));
}
double generateFilter(vector<vector<double>> & kernel,int width,double sigma){
int value = 0;
double total =0;
if(width%2 == 1){
value = (width-1)/2;
}else{
value = width/2;
}
double smallest = gaussian(-1*value,-1*value,sigma);
for(int i = -1*value; i<=value; i++){
vector<double> temp;
for(int k = -1*value; k<=value; k++){
int gVal = round(gaussian(i,k,sigma)/smallest);
temp.push_back(gVal);
total += gVal;
}
kernel.push_back(temp);
}
cout<<total<<endl;
return total;
}
Convolution:
vector<vector<unsigned int>> convolution(vector<vector<unsigned int>> src, vector<vector<double>> kernel,double total){
int kCenterX = floor(kernel.size() / 2); //center of kernel
int kCenterY = kCenterX; //center of kernel
int kRows = kernel.size(); //height of kernel
int kCols = kRows; //width of kernel
int imgRows = src.size(); //height of input image
int imgCols = src[0].size(); //width of input image
vector<vector<unsigned int>> dst = vector<vector<unsigned int>> (imgRows, vector<unsigned int>(imgCols ,0));
for ( size_t row = 0; row < imgRows; row++ ) {
for ( size_t col = 0; col < imgCols; col++ ) {
float accumulation = 0;
float weightsum = 0;
for ( int i = -1*kCenterX; i <= 1*kCenterX; i++ ) {
for ( int j = -1*kCenterY; j <= 1*kCenterY; j++ ) {
int k = 0;
if((row+i)>=0 && (row+i)<imgRows && (col+j)>=0 && (col+j)<imgCols){
k = src[row+i][col+j];
weightsum += kernel[kCenterX+i][kCenterY+j];
}
accumulation += k * kernel[kCenterX +i][kCenterY+j];
}
}
dst[row][col] = round(accumulation/weightsum);
}
}
return dst;
}
Thank you.
The convolution function is basically correct, so the issue is with the input and output format.
Make sure you are reading the image as Grayscale (and not RGB):
cv::Mat I = cv::imread("img.png", cv::IMREAD_GRAYSCALE);
You are passing vector<vector<unsigned int>> argument to convolution.
I can't say if it's part of the problem or not, but it's recommended to pass argument of type cv::Mat (and return cv::Mat):
cv::Mat convolution(cv::Mat src, vector<vector<double>> kernel, double total)
I assume you can convert the input to and from vector<vector<unsigned int>>, but it's not necessary.
Here is a working code sample:
#include <vector>
#include <iostream>
#include "opencv2/opencv.hpp"
#include "opencv2/highgui.hpp"
using namespace std;
double gaussian(int x, int y, double sigma) {
return (1 / (2 * 3.141592653589793*pow(sigma, 2)))*exp(-1 * (pow(x, 2) + pow(y, 2)) / (2 * pow(sigma, 2)));
}
double generateFilter(vector<vector<double>> & kernel, int width, double sigma)
{
int value = 0;
double total = 0;
if (width % 2 == 1) {
value = (width - 1) / 2;
}
else {
value = width / 2;
}
double smallest = gaussian(-1 * value, -1 * value, sigma);
for (int i = -1 * value; i <= value; i++) {
vector<double> temp;
for (int k = -1 * value; k <= value; k++) {
int gVal = round(gaussian(i, k, sigma) / smallest);
temp.push_back(gVal);
total += gVal;
}
kernel.push_back(temp);
}
cout << total << endl;
return total;
}
//vector<vector<unsigned int>> convolution(vector<vector<unsigned int>> src, vector<vector<double>> kernel, double total) {
cv::Mat convolution(cv::Mat src, vector<vector<double>> kernel, double total) {
int kCenterX = floor(kernel.size() / 2); //center of kernel
int kCenterY = kCenterX; //center of kernel
int kRows = kernel.size(); //height of kernel
int kCols = kRows; //width of kernel
int imgRows = src.rows;//src.size(); //height of input image
int imgCols = src.cols;//src[0].size(); //width of input image
//vector<vector<unsigned int>> dst = vector<vector<unsigned int>> (imgRows, vector<unsigned int>(imgCols ,0));
cv::Mat dst = cv::Mat::zeros(src.size(), CV_8UC1); //Create destination matrix, and fill with zeros (dst is Grayscale image with byte per pixel).
for (size_t row = 0; row < imgRows; row++) {
for (size_t col = 0; col < imgCols; col++) {
double accumulation = 0;
double weightsum = 0;
for (int i = -1 * kCenterX; i <= 1 * kCenterX; i++) {
for (int j = -1 * kCenterY; j <= 1 * kCenterY; j++) {
int k = 0;
if ((row + i) >= 0 && (row + i) < imgRows && (col + j) >= 0 && (col + j) < imgCols) {
//k = src[row+i][col+j];
k = (int)src.at<uchar>(row + i, col + j); //Read pixel from row [row + i] and column [col + j]
weightsum += kernel[kCenterX + i][kCenterY + j];
}
accumulation += (double)k * kernel[kCenterX + i][kCenterY + j];
}
}
//dst[row][col] = round(accumulation/weightsum);
dst.at<uchar>(row, col) = (uchar)round(accumulation / weightsum); //Write pixel from to row [row] and column [col]
//dst.at<uchar>(row, col) = src.at<uchar>(row, col);
}
}
return dst;
}
int main()
{
vector<vector<double>> kernel;
double total = generateFilter(kernel, 11, 3.0);
//Read input image as Grayscale (one byte per pixel).
cv::Mat I = cv::imread("img.png", cv::IMREAD_GRAYSCALE);
cv::Mat J = convolution(I, kernel, total);
//Display input and output
cv::imshow("I", I);
cv::imshow("J", J);
cv::waitKey(0);
cv::destroyAllWindows();
return 0;
}
Result:

Saliency Map with openCV

I'm trying to use the code proposed here http://ivrlwww.epfl.ch/supplementary_material/RK_CVPR09/ for saliency detection on colored images. The code proposed is associated with a GUI developed in windows. In my case, I want to use it on Mac OsX with OpenCv library for reading the initial image and writing the saliency map result. Therefore I pick up the four main functions and modify the reading and writing block using OpenCV. I got the following results which are a bit different from what the authors have obtained:
Original Image
Author saliency map
Obtained saliency map
Here are the four functions. Is there something wrong that I did wrong ? I was careful to consider that in OpenCV, colors are described as B-G-R and not R-G-B.
#include <stdio.h>
#include <opencv2/opencv.hpp>
#include <iostream>
using namespace cv;
using namespace std;
void RGB2LAB2(
const vector<vector<uint> > &ubuff,
vector<double>& lvec,
vector<double>& avec,
vector<double>& bvec){
int sz = int(ubuff.size());
cout<<"sz "<<sz<<endl;
lvec.resize(sz);
avec.resize(sz);
bvec.resize(sz);
for( int j = 0; j < sz; j++ ){
int sR = ubuff[j][2];
int sG = ubuff[j][1];
int sB = ubuff[j][0];
//------------------------
// sRGB to XYZ conversion
// (D65 illuminant assumption)
//------------------------
double R = sR/255.0;
double G = sG/255.0;
double B = sB/255.0;
double r, g, b;
if(R <= 0.04045) r = R/12.92;
else r = pow((R+0.055)/1.055,2.4);
if(G <= 0.04045) g = G/12.92;
else g = pow((G+0.055)/1.055,2.4);
if(B <= 0.04045) b = B/12.92;
else b = pow((B+0.055)/1.055,2.4);
double X = r*0.4124564 + g*0.3575761 + b*0.1804375;
double Y = r*0.2126729 + g*0.7151522 + b*0.0721750;
double Z = r*0.0193339 + g*0.1191920 + b*0.9503041;
//------------------------
// XYZ to LAB conversion
//------------------------
double epsilon = 0.008856; //actual CIE standard
double kappa = 903.3; //actual CIE standard
double Xr = 0.950456; //reference white
double Yr = 1.0; //reference white
double Zr = 1.088754; //reference white
double xr = X/Xr;
double yr = Y/Yr;
double zr = Z/Zr;
double fx, fy, fz;
if(xr > epsilon) fx = pow(xr, 1.0/3.0);
else fx = (kappa*xr + 16.0)/116.0;
if(yr > epsilon) fy = pow(yr, 1.0/3.0);
else fy = (kappa*yr + 16.0)/116.0;
if(zr > epsilon) fz = pow(zr, 1.0/3.0);
else fz = (kappa*zr + 16.0)/116.0;
lvec[j] = 116.0*fy-16.0;
avec[j] = 500.0*(fx-fy);
bvec[j] = 200.0*(fy-fz);
}
}
void GaussianSmooth(
const vector<double>& inputImg,
const int& width,
const int& height,
const vector<double>& kernel,
vector<double>& smoothImg){
int center = int(kernel.size())/2;
int sz = width*height;
smoothImg.clear();
smoothImg.resize(sz);
vector<double> tempim(sz);
int rows = height;
int cols = width;
int index(0);
for( int r = 0; r < rows; r++ ){
for( int c = 0; c < cols; c++ ){
double kernelsum(0);
double sum(0);
for( int cc = (-center); cc <= center; cc++ ){
if(((c+cc) >= 0) && ((c+cc) < cols)){
sum += inputImg[r*cols+(c+cc)] * kernel[center+cc];
kernelsum += kernel[center+cc];
}
}
tempim[index] = sum/kernelsum;
index++;
}
}
int index = 0;
for( int r = 0; r < rows; r++ ){
for( int c = 0; c < cols; c++ ){
double kernelsum(0);
double sum(0);
for( int rr = (-center); rr <= center; rr++ ){
if(((r+rr) >= 0) && ((r+rr) < rows)){
sum += tempim[(r+rr)*cols+c] * kernel[center+rr];
kernelsum += kernel[center+rr];
}
}
smoothImg[index] = sum/kernelsum;
index++;
}
}
}
void GetSaliencyMap(
const vector<vector<uint> >&inputimg,
const int& width,
const int& height,
vector<double>& salmap,
const bool& normflag){
int sz = width*height;
salmap.clear();
salmap.resize(sz);
vector<double> lvec(0), avec(0), bvec(0);
RGB2LAB2(inputimg, lvec, avec, bvec);
double avgl(0), avga(0), avgb(0);
for( int i = 0; i < sz; i++ ){
avgl += lvec[i];
avga += avec[i];
avgb += bvec[i];
}
avgl /= sz;
avga /= sz;
avgb /= sz;
vector<double> slvec(0), savec(0), sbvec(0);
vector<double> kernel(0);
kernel.push_back(1.0);
kernel.push_back(2.0);
kernel.push_back(1.0);
GaussianSmooth(lvec, width, height, kernel, slvec);
GaussianSmooth(avec, width, height, kernel, savec);
GaussianSmooth(bvec, width, height, kernel, sbvec);
for( int i = 0; i < sz; i++ ){
salmap[i] = (slvec[i]-avgl)*(slvec[i]-avgl) +
(savec[i]-avga)*(savec[i]-avga) +
(sbvec[i]-avgb)*(sbvec[i]-avgb);
}
if( true == normflag ){
vector<double> normalized(0);
Normalize(salmap, width, height, normalized);
swap(salmap, normalized);
}
}
void Normalize(
const vector<double>& input,
const int& width,
const int& height,
vector<double>& output,
const int& normrange = 255){
double maxval(0);
double minval(DBL_MAX);
int i(0);
for( int y = 0; y < height; y++ ){
for( int x = 0; x < width; x++ ){
if( maxval < input[i] ) maxval = input[i];
if( minval > input[i] ) minval = input[i];
i++;
}
}
}
double range = maxval-minval;
if( 0 == range ) range = 1;
int i(0);
output.clear();
output.resize(width*height);
for( int y = 0; y < height; y++ ){
for( int x = 0; x < width; x++ ){
output[i] = ((normrange*(input[i]-minval))/range);
i++;
}
}
}
int main(){
Mat image;
image = imread( argv[1], 1 );
if ( !image.data ){
printf("No image data \n");
return -1;
}
std::vector<vector<uint>>array(image.cols*image.rows,vector<uint>
(3,0));
for(int y=0;y<image.rows;y++){
for(int x=0;x<image.cols;x++){
Vec3b color= image.at<Vec3b>(Point(x,y));
array[image.cols*y+x][0]=color[0]; array[image.cols*y+x]
[1]=color[1];array[image.cols*y+x][2]=color[2];
}
}
vector<double> salmap; bool normflag=true;
GetSaliencyMap(array, image.size().width, image.size().height, salmap,
normflag);
Mat output;
output = Mat( image.rows, image.cols,CV_8UC1);
int k=0;
for(int y=0;y<image.rows;y++){
for(int x=0;x<image.cols;x++){
output.at<uchar>(Point(x,y)) = int(salmap[k]);
k++;
}
}
imwrite("test_saliency_blackAndWhite.jpg", output );
return 0;
}

Why does my program not work when I use the "randomSelect" method to replace several lines of code

The scatter method takes the original image and scatter its pixels.
The program works well when I use several lines of code instead of the
method "randomSelect". The program seems to go into an infinite loop
and the image does not change when I use the method "randomSelect".
void scatter(GBufferedImage &img, Grid<int> original, int row, int col) {
int degree;
while (true) {
degree = getInteger("Enter degree of scatter [1-100]: ");
if (degree >=1 && degree <= 100) break;
}
Grid<int> newImg(row, col);
for (int i = 0; i < row; i++) {
for (int j = 0; j < col; j++) {
/* int newRow = -1;
int newCol = -1;
while (!original.inBounds(newRow, newCol)) {
newRow = randomInteger(max(i - degree, 0), min(i + degree,original.numRows()));
newCol = randomInteger(max(j - degree, 0), min(j + degree,original.numRows()));
}
newImg[i][j] = original[newRow][newCol]; */ // work properly
newImg[i][j] = randomSelect(original, i , j, degree); // do not work
}
}
img.fromGrid(newImg);
}
int randomSelect(Grid<int> original, int i, int j, int degree) { // do not work
int newRow = -1;
int newCol = -1;
while (!original.inBounds(newRow, newCol)) {
newRow = randomInteger(max(i - degree, 0), min(i + degree,original.numRows()));
newCol = randomInteger(max(j - degree, 0), min(j + degree,original.numRows()));
}
return original[newRow][newCol];
}
You should pass original as a reference:
int randomSelect(Grid<int>& original, int i, int j, int degree) { // will work

Displaying a 3 Dimensional Matrix in OpenCV C++

How can I flatten a 3D Matrix and display it in 2d?
Are there simple ways to display it in 3d?
Edit:
So far I simply tile the images in the 3rd dimension together like thus:
void Flatten3DArray(const cv::Mat& In, cv::Mat& Out2d)
{
CV_Assert(In.dims == 3);
int rows = In.size[0];
int cols = In.size[1];
int third = In.size[2];
int rowTiles = ceil(sqrt(third));
int colTiles = ceil(sqrt(third));
Out2d.create(rowTiles*rows, colTiles*cols, In.type());
Out2d = Scalar(0);
int thirdDimIdx = 0;
for (int i = 0; i < rowTiles; ++i)
{
for (int j = 0; j < colTiles; ++j, ++thirdDimIdx)
{
if (thirdDimIdx >= third)
{
break;
}
Mat roi(Out2d(cv::Rect(j*cols, i*rows, cols, rows)));
uint16_t *ind = (uint16_t*)In.data + thirdDimIdx * rows*cols; // sub-matrix pointer
cv::Mat subMatrix(2, In.size, In.type(), ind);
subMatrix.copyTo(roi);
}
}
}
Is there a better way to do this?

sub2Ind matlab to c++/opencv conversion

I'm trying to create this code in c++/ I'm using openCV but don't have to.
wi = size(Gr, 2);
he = size(Gr, 1);
cropFactor = 0.10;
[x, y] = meshgrid( round(cropFactor * wi):round( (1-cropFactor)*wi ), round(cropFactor * he):round((1-cropFactor)*he) );
xy = sub2ind(size(Gr), y(:), x(:));
here is what I have so far
int width = dst.cols;
int height = dst.rows;
double cropFactor = 0.10;
cv::Mat1i X,Y;
Utilities::Meshgrid(Utilities::MatlabRound(cropFactor * width), Utilities::MatlabRound((1 - cropFactor) * width), Utilities::MatlabRound(cropFactor * height), Utilities::MatlabRound((1-cropFactor) * height),X, Y);
Utilities::Sub2Ind(width, height, X, Y);
round() function
int Utilities::MatlabRound(double numberToRound)
{
return floor( numberToRound + 0.5);
}
this is my meshgrid() function it works as expected
void Utilities::Meshgrid(int startX, int endX, int startY, int endY, cv::Mat1i &X, cv::Mat1i & Y)
{
std::vector<int> vec_x, vec_y;
for (int i = startX; i <= endX; i++)
{
vec_x.push_back(i);
}
for (int i = startY; i <= endY; i++)
{
vec_y.push_back(i);
}
cv::Mat x = cv::Mat(vec_x);
cv::Mat y = cv::Mat(vec_y);
cv::repeat(x.reshape(1,1), y.total(), 1, X);
cv::repeat(y.reshape(1,1).t(), 1, x.total(), Y);
}
however i'm having trouble understanding what are subscripts and how to implement Sub2Ind function
Can you please explain?
update I have implemented sub2ind please see my answer
I have implemented sub2Ind for 2D matrix
it is tested and work fine
cv::Mat Utilities::Sub2Ind(int width, int height, cv::Mat X, cv::Mat Y)
{
/*sub2ind(size(a), rowsub, colsub)
sub2ind(size(a), 2 , 3 ) = 6
a = 1 2 3 ;
4 5 6
rowsub + colsub-1 * numberof rows in matrix*/
std::vector<int> index;
cv::transpose(Y,Y);
cv::MatConstIterator_<int> iterX = X.begin<int>(), it_endX = X.end<int>();
cv::MatConstIterator_<int> iterY = Y.begin<int>(), it_endY = Y.end<int>();
for (int j = 0; j < X.cols; ++j,++iterX)
{
//running on each col of y matrix
for (int i =0 ;i < Y.cols; ++i,++iterY )
{
int rowsub = *iterY;
int colsub = *iterX;
int res = rowsub + ((colsub-1)*height);
index.push_back(res);
}
int x = 5;
}
cv::Mat M(index) ;
return M;
}