Alternatives to boost::scoped_ptr in C++ 11 - c++

We've just upgraded our compiler to VC++ 2013 which has support for C++ 11. Previously we've been using shared_ptr and scoped_ptr classes from Boost, but since that is all we've been using from Boost, we're looking to remove that dependency.
As far as I can tell, std::shared_ptrs are a drop-in replacement for boost::shared_ptrs, so that's (hopefully) easy.
However, what is the best replacement for Boost scoped_ptrs (if there is one)? Would it be unique_ptr?
(To be honest, even though I wrote the code, it was about 10 years ago, and I've forgotten what the purpose of using scoped_ptrs was... Maybe I was just "playing" with Boost, but as far as I can see a plain pointer would probably do in the cases I've examined).

Yes, scoped_ptr can and should be replaced with unique_ptr. They represent the same idea (unique ownership), but unique_ptr does it better, and allows transfer of ownership via move semantics. (scoped_ptr didn't because it wasn't possible in C++98)

Related

Why there is no no-synchronous smart pointer in C++? [duplicate]

This is a bit of a two part question, all about the atomicity of std::shared_ptr:
1.
As far as I can tell, std::shared_ptr is the only smart pointer in <memory> that's atomic. I'm wondering if there is a non-atomic version of std::shared_ptr available (I can't see anything in <memory>, so I'm also open to suggestions outside of the standard, like those in Boost). I know boost::shared_ptr is also atomic (if BOOST_SP_DISABLE_THREADS isn't defined), but maybe there's another alternative? I'm looking for something that has the same semantics as std::shared_ptr, but without the atomicity.
2. I understand why std::shared_ptr is atomic; it's kinda nice. However, it's not nice for every situation, and C++ has historically had the mantra of "only pay for what you use." If I'm not using multiple threads, or if I am using multiple threads but am not sharing pointer ownership across threads, an atomic smart pointer is overkill. My second question is why wasn't a non-atomic version of std::shared_ptr provided in C++11? (assuming there is a why) (if the answer is simply "a non-atomic version was simply never considered" or "no one ever asked for a non-atomic version" that's fine!).
With question #2, I'm wondering if someone ever proposed a non-atomic version of shared_ptr (either to Boost or the standards committee) (not to replace the atomic version of shared_ptr, but to coexist with it) and it was shot down for a specific reason.
1. I'm wondering if there is a non-atomic version of std::shared_ptr available
Not provided by the standard. There may well be one provided by a "3rd party" library. Indeed, prior to C++11, and prior to Boost, it seemed like everyone wrote their own reference counted smart pointer (including myself).
2. My second question is why wasn't a non-atomic version of std::shared_ptr provided in C++11?
This question was discussed at the Rapperswil meeting in 2010. The subject was introduced by a National Body Comment #20 by Switzerland. There were strong arguments on both sides of the debate, including those you provide in your question. However, at the end of the discussion, the vote was overwhelmingly (but not unanimous) against adding an unsynchronized (non-atomic) version of shared_ptr.
Arguments against included:
Code written with the unsynchronized shared_ptr may end up being used in threaded code down the road, ending up causing difficult to debug problems with no warning.
Having one "universal" shared_ptr that is the "one way" to traffic in reference counting has benefits: From the original proposal:
Has the same object type regardless of features used, greatly facilitating interoperability between libraries, including third-party libraries.
The cost of the atomics, while not zero, is not overwhelming. The cost is mitigated by the use of move construction and move assignment which do not need to use atomic operations. Such operations are commonly used in vector<shared_ptr<T>> erase and insert.
Nothing prohibits people from writing their own non-atomic reference-counted smart pointer if that's really what they want to do.
The final word from the LWG in Rapperswil that day was:
Reject CH 20. No consensus to make a change at this time.
Howard's answered the question well already, and Nicol made some good points about the benefits of having a single standard shared pointer type, rather than lots of incompatible ones.
While I completely agree with the committee's decision, I do think there is some benefit to using an unsynchronized shared_ptr-like type in special cases, so I've investigated the topic a few times.
If I'm not using multiple threads, or if I am using multiple threads but am not sharing pointer ownership across threads, an atomic smart pointer is overkill.
With GCC when your program doesn't use multiple threads shared_ptr doesn't use atomic ops for the refcount. This is done by updating the reference counts via wrapper functions that detect whether the program is multithreaded (on GNU/Linux this is done by checking a special variable in Glibc that says if the program is single-threaded[1]) and dispatch to atomic or non-atomic operations accordingly.
I realised many years ago that because GCC's shared_ptr<T> is implemented in terms of a __shared_ptr<T, _LockPolicy> base class, it's possible to use the base class with the single-threaded locking policy even in multithreaded code, by explicitly using __shared_ptr<T, __gnu_cxx::_S_single>. You can use an alias template like this to define a shared pointer type that is not thread-safe, but is slightly faster[2]:
template<typename T>
using shared_ptr_unsynchronized = std::__shared_ptr<T, __gnu_cxx::_S_single>;
This type would not be interoperable with std::shared_ptr<T> and would only be safe to use when it is guaranteed that the shared_ptr_unsynchronized objects would never be shared between threads without additional user-provided synchronization.
This is of course completely non-portable, but sometimes that's OK. With the right preprocessor hacks your code would still work fine with other implementations if shared_ptr_unsynchronized<T> is an alias for shared_ptr<T>, it would just be a little faster with GCC.
[1] Before Glibc 2.33 added that variable, the wrapper functions would detect whether the program links to libpthread.so as an imperfect method of checking for single-threaded vs multi-threaded.
[2] Unfortunately because that wasn't an intended use case it didn't quite work optimally before GCC 4.9, and some operations still used the wrapper functions and so dispatched to atomic operations even though you've explicitly requested the `_S_single` policy. See point (2) at http://gcc.gnu.org/ml/libstdc++/2007-10/msg00180.html for more details and a patch to GCC to allow the non-atomic implementation to be used even in multithreaded apps. I sat on that patch for years but I finally committed it for GCC 4.9.
My second question is why wasn't a non-atomic version of std::shared_ptr provided in C++11? (assuming there is a why).
One could just as easily ask why there isn't an intrusive pointer, or any number of other possible variations of shared pointers one could have.
The design of shared_ptr, handed down from Boost, has been to create a minimum standard lingua-franca of smart pointers. That, generally speaking, you can just pull this down off the wall and use it. It's something that would be used generally, across a wide variety of applications. You can put it in an interface, and odds are good people will be willing to use it.
Threading is only going to get more prevalent in the future. Indeed, as time passes, threading will generally be one of the primary means to achieve performance. Requiring the basic smart pointer to do the bare minimum needed to support threading facilitates this reality.
Dumping a half-dozen smart pointers with minor variations between them into the standard, or even worse a policy-based smart pointer, would have been terrible. Everyone would pick the pointer they like best and forswear all others. Nobody would be able to communicate with anyone else. It'd be like the current situations with C++ strings, where everyone has their own type. Only far worse, because interoperation with strings is a lot easier than interoperation between smart pointer classes.
Boost, and by extension the committee, picked a specific smart pointer to use. It provided a good balance of features and was widely and commonly used in practice.
std::vector has some inefficiencies compared to naked arrays in some corner cases too. It has some limitations; some uses really want to have a hard limit on the size of a vector, without using a throwing allocator. However, the committee didn't design vector to be everything for everyone. It was designed to be a good default for most applications. Those for whom it can't work can just write an alternative that suites their needs.
Just as you can for a smart pointer if shared_ptr's atomicity is a burden. Then again, one might also consider not copying them around so much.
Boost provides a shared_ptr that's non-atomic. It's called local_shared_ptr, and can be found in the smart pointers library of boost.
I am preparing a talk on shared_ptr at work. I have been using a modified boost shared_ptr with avoid separate malloc (like what make_shared can do) and a template param for lock policy like shared_ptr_unsynchronized mentioned above. I am using the program from
http://flyingfrogblog.blogspot.hk/2011/01/boosts-sharedptr-up-to-10-slower-than.html
as a test, after cleaning up the unnecessary shared_ptr copies. The program uses the main thread only and the test argument is shown. The test env is a notebook running linuxmint 14. Here is the time taken in seconds:
test run setup boost(1.49) std with make_shared modified boost
mt-unsafe(11) 11.9 9/11.5(-pthread on) 8.4
atomic(11) 13.6 12.4 13.0
mt-unsafe(12) 113.5 85.8/108.9(-pthread on) 81.5
atomic(12) 126.0 109.1 123.6
Only the 'std' version uses -std=cxx11, and the -pthread likely switches lock_policy in g++ __shared_ptr class.
From these numbers, I see the impact of atomic instructions on code optimization. The test case does not use any C++ containers, but vector<shared_ptr<some_small_POD>> is likely to suffer if the object doesn't need the thread protection. Boost suffers less probably because the additional malloc is limiting the amount of inlining and code optimizaton.
I have yet to find a machine with enough cores to stress test the scalability of atomic instructions, but using std::shared_ptr only when necessary is probably better.

Is there a non-atomic equivalent of std::shared_ptr? And why isn't there one in <memory>?

This is a bit of a two part question, all about the atomicity of std::shared_ptr:
1.
As far as I can tell, std::shared_ptr is the only smart pointer in <memory> that's atomic. I'm wondering if there is a non-atomic version of std::shared_ptr available (I can't see anything in <memory>, so I'm also open to suggestions outside of the standard, like those in Boost). I know boost::shared_ptr is also atomic (if BOOST_SP_DISABLE_THREADS isn't defined), but maybe there's another alternative? I'm looking for something that has the same semantics as std::shared_ptr, but without the atomicity.
2. I understand why std::shared_ptr is atomic; it's kinda nice. However, it's not nice for every situation, and C++ has historically had the mantra of "only pay for what you use." If I'm not using multiple threads, or if I am using multiple threads but am not sharing pointer ownership across threads, an atomic smart pointer is overkill. My second question is why wasn't a non-atomic version of std::shared_ptr provided in C++11? (assuming there is a why) (if the answer is simply "a non-atomic version was simply never considered" or "no one ever asked for a non-atomic version" that's fine!).
With question #2, I'm wondering if someone ever proposed a non-atomic version of shared_ptr (either to Boost or the standards committee) (not to replace the atomic version of shared_ptr, but to coexist with it) and it was shot down for a specific reason.
1. I'm wondering if there is a non-atomic version of std::shared_ptr available
Not provided by the standard. There may well be one provided by a "3rd party" library. Indeed, prior to C++11, and prior to Boost, it seemed like everyone wrote their own reference counted smart pointer (including myself).
2. My second question is why wasn't a non-atomic version of std::shared_ptr provided in C++11?
This question was discussed at the Rapperswil meeting in 2010. The subject was introduced by a National Body Comment #20 by Switzerland. There were strong arguments on both sides of the debate, including those you provide in your question. However, at the end of the discussion, the vote was overwhelmingly (but not unanimous) against adding an unsynchronized (non-atomic) version of shared_ptr.
Arguments against included:
Code written with the unsynchronized shared_ptr may end up being used in threaded code down the road, ending up causing difficult to debug problems with no warning.
Having one "universal" shared_ptr that is the "one way" to traffic in reference counting has benefits: From the original proposal:
Has the same object type regardless of features used, greatly facilitating interoperability between libraries, including third-party libraries.
The cost of the atomics, while not zero, is not overwhelming. The cost is mitigated by the use of move construction and move assignment which do not need to use atomic operations. Such operations are commonly used in vector<shared_ptr<T>> erase and insert.
Nothing prohibits people from writing their own non-atomic reference-counted smart pointer if that's really what they want to do.
The final word from the LWG in Rapperswil that day was:
Reject CH 20. No consensus to make a change at this time.
Howard's answered the question well already, and Nicol made some good points about the benefits of having a single standard shared pointer type, rather than lots of incompatible ones.
While I completely agree with the committee's decision, I do think there is some benefit to using an unsynchronized shared_ptr-like type in special cases, so I've investigated the topic a few times.
If I'm not using multiple threads, or if I am using multiple threads but am not sharing pointer ownership across threads, an atomic smart pointer is overkill.
With GCC when your program doesn't use multiple threads shared_ptr doesn't use atomic ops for the refcount. This is done by updating the reference counts via wrapper functions that detect whether the program is multithreaded (on GNU/Linux this is done by checking a special variable in Glibc that says if the program is single-threaded[1]) and dispatch to atomic or non-atomic operations accordingly.
I realised many years ago that because GCC's shared_ptr<T> is implemented in terms of a __shared_ptr<T, _LockPolicy> base class, it's possible to use the base class with the single-threaded locking policy even in multithreaded code, by explicitly using __shared_ptr<T, __gnu_cxx::_S_single>. You can use an alias template like this to define a shared pointer type that is not thread-safe, but is slightly faster[2]:
template<typename T>
using shared_ptr_unsynchronized = std::__shared_ptr<T, __gnu_cxx::_S_single>;
This type would not be interoperable with std::shared_ptr<T> and would only be safe to use when it is guaranteed that the shared_ptr_unsynchronized objects would never be shared between threads without additional user-provided synchronization.
This is of course completely non-portable, but sometimes that's OK. With the right preprocessor hacks your code would still work fine with other implementations if shared_ptr_unsynchronized<T> is an alias for shared_ptr<T>, it would just be a little faster with GCC.
[1] Before Glibc 2.33 added that variable, the wrapper functions would detect whether the program links to libpthread.so as an imperfect method of checking for single-threaded vs multi-threaded.
[2] Unfortunately because that wasn't an intended use case it didn't quite work optimally before GCC 4.9, and some operations still used the wrapper functions and so dispatched to atomic operations even though you've explicitly requested the `_S_single` policy. See point (2) at http://gcc.gnu.org/ml/libstdc++/2007-10/msg00180.html for more details and a patch to GCC to allow the non-atomic implementation to be used even in multithreaded apps. I sat on that patch for years but I finally committed it for GCC 4.9.
My second question is why wasn't a non-atomic version of std::shared_ptr provided in C++11? (assuming there is a why).
One could just as easily ask why there isn't an intrusive pointer, or any number of other possible variations of shared pointers one could have.
The design of shared_ptr, handed down from Boost, has been to create a minimum standard lingua-franca of smart pointers. That, generally speaking, you can just pull this down off the wall and use it. It's something that would be used generally, across a wide variety of applications. You can put it in an interface, and odds are good people will be willing to use it.
Threading is only going to get more prevalent in the future. Indeed, as time passes, threading will generally be one of the primary means to achieve performance. Requiring the basic smart pointer to do the bare minimum needed to support threading facilitates this reality.
Dumping a half-dozen smart pointers with minor variations between them into the standard, or even worse a policy-based smart pointer, would have been terrible. Everyone would pick the pointer they like best and forswear all others. Nobody would be able to communicate with anyone else. It'd be like the current situations with C++ strings, where everyone has their own type. Only far worse, because interoperation with strings is a lot easier than interoperation between smart pointer classes.
Boost, and by extension the committee, picked a specific smart pointer to use. It provided a good balance of features and was widely and commonly used in practice.
std::vector has some inefficiencies compared to naked arrays in some corner cases too. It has some limitations; some uses really want to have a hard limit on the size of a vector, without using a throwing allocator. However, the committee didn't design vector to be everything for everyone. It was designed to be a good default for most applications. Those for whom it can't work can just write an alternative that suites their needs.
Just as you can for a smart pointer if shared_ptr's atomicity is a burden. Then again, one might also consider not copying them around so much.
Boost provides a shared_ptr that's non-atomic. It's called local_shared_ptr, and can be found in the smart pointers library of boost.
I am preparing a talk on shared_ptr at work. I have been using a modified boost shared_ptr with avoid separate malloc (like what make_shared can do) and a template param for lock policy like shared_ptr_unsynchronized mentioned above. I am using the program from
http://flyingfrogblog.blogspot.hk/2011/01/boosts-sharedptr-up-to-10-slower-than.html
as a test, after cleaning up the unnecessary shared_ptr copies. The program uses the main thread only and the test argument is shown. The test env is a notebook running linuxmint 14. Here is the time taken in seconds:
test run setup boost(1.49) std with make_shared modified boost
mt-unsafe(11) 11.9 9/11.5(-pthread on) 8.4
atomic(11) 13.6 12.4 13.0
mt-unsafe(12) 113.5 85.8/108.9(-pthread on) 81.5
atomic(12) 126.0 109.1 123.6
Only the 'std' version uses -std=cxx11, and the -pthread likely switches lock_policy in g++ __shared_ptr class.
From these numbers, I see the impact of atomic instructions on code optimization. The test case does not use any C++ containers, but vector<shared_ptr<some_small_POD>> is likely to suffer if the object doesn't need the thread protection. Boost suffers less probably because the additional malloc is limiting the amount of inlining and code optimizaton.
I have yet to find a machine with enough cores to stress test the scalability of atomic instructions, but using std::shared_ptr only when necessary is probably better.

Are shared_ptr and the reference counting in iOS the same idea?

I'm not very experienced with either C++ or iOS, so I'm just curious if iOS the reference counting works basically alike in boost shared pointers and in NSObject?
From what I gather here, using ARC is very similar to using std::shared_ptr ("strong" pointers) and std::weak_ptr ("weak" pointers).
Abuse the former, and avoid the latter. Anyway, prefer std::unique_ptr if you can.
(Also, I am somewhat astonished that you had to release pointers manually when programming for iOS. In the 21st century.)
I'm not very experienced with C++ so I may be not completely correct about shared_ptr, but for me they doesn't seem alike. In Obj-C there're two options. Manual memory management - you manually increment and decrement reference counts for your objects, no magic occurs here. And new ARC which is mostly compile-time feature, while shared_ptr is just runtime implementation.

Differences between VS2010's std::shared_ptr and boost::shared_ptr

What are the differences between VS2010's std::shared_ptr and boost::shared_ptr?
Are the implementations almost the same? Or are there significant differences?
What is the most efficient/optimized?
Thanks.
VS2010's shared_ptr is implementation conforming (or, at least, trying to conform) C++11 standard.
boost::shared_ptr on the other hand, was developed way earlier, and as part of boost rather than C++ standard library. I believe both are efficient enough for production use, but using boost forces you to... use boost ;). Which in some cases is quite unacceptable.

Should I switch from using boost::shared_ptr to std::shared_ptr?

I would like to enable support for C++0x in GCC with -std=c++0x. I don't absolutely necessarily need any of the currently supported C++11 features in GCC 4.5 (and soon 4.6), but I would like to start getting used to them. For example, in a few places where I use iterators, an auto type would be useful.
But again, I don't need any of the currently supported features. The goal here is to encourage me to incorporate the features of the new standard into my programming "vocabulary".
From what you know of the C++11 support, is it a good idea to enable it in GCC, and then embrace it by, for example, switching from using boost::shared_ptr to std::shared_ptr exclusively as the two don't mix?
PS: I'm aware of this good question which compares the different flavors of shared_ptr but I'm asking a higher level advice on which to use before the standard is finalized. Another way of putting that is, when a compiler like GCC says it supports an "experimental feature", does that mean I am likely to encounter weird errors during compilation that will be major time sinks and a source of cryptic questions on StackOverflow?
Edit: I decided to switch back from std::shared_ptr because I just don't trust its support in GCC 4.5 as shown by example in this question.
There are a couple of reasons to switch over to std::shared_ptr:
You remove a dependency on Boost.
Debuggers. Depending on your compiler and debugger, the debugger may be "smart" about std::shared_ptr and show the pointed to object directly, where it wouldn't for say, boost's implementation. At least in Visual Studio, std::shared_ptr looks like a plain pointer in the debugger, while boost::shared_ptr exposes a bunch of boost's innards.
Other new features defined in your linked question.
You get an implementation which is almost guaranteed to be move-semantics enabled, which might save a few refcount modifications. (Theoretically -- I've not tested this myself) As of 2014-07-22 at least, boost::shared_ptr understands move semantics.
std::shared_ptr correctly uses delete [] on array types, while boost::shared_ptr causes undefined behavior in such cases (you must use shared_array or a custom deleter) (Actually I stand corrected. See this -- the specialization for this is for unique_ptr only, not shared_ptr.)
And one major glaring reason not to:
You'd be limiting yourself to C++11 compiler and standard library implementations.
Finally, you don't really have to choose. (And if you're targeting a specific compiler series (e.g. MSVC and GCC), you could easily extend this to use std::tr1::shared_ptr when available. Unfortunately there doesn't seem to be a standard way to detect TR1 support)
#if __cplusplus > 199711L
#include <memory>
namespace MyProject
{
using std::shared_ptr;
}
#else
#include <boost/shared_ptr.hpp>
namespace MyProject
{
using boost::shared_ptr;
}
#endif
I suppose it depends how much you use boost. I personally only use it very sparingly (in fact the random number library, in a single project). I've recently started using -std=c++0x for my other projects, and I use the new std:: library features like shared_ptr in them. I like my projects to have the minimum of dependencies, so I'd rather be dependent on the compiler's standard library implementation than on boost.
But I don't think there is a one-size-fits-all answer to this question.
You should always use std::shared_ptr wherever possible, if it's available, instead of boost. This is basically because all new interfaces which use shared_ptr will use the Standard shared ptr.
It's probably not a bad idea to start getting into the habit of using std::shared_ptr when allowed by the compiler. Since the interface is the same as boost's shared_ptr you can always switch back if you needed to.
If you are just building on the one platform that is fine (make the switch)
(Note: You do have unit tests to validate backward compatibility don't you?)
If you compile on multiple platforms is where it becomes a little more awkward as you need to validate that the features on g++ 4.5 are available on all the platforms you use (ie building for MAC/Linux the default Mac g++ compiler is still a couple of version's behind the default compilers on Linux).
Another reason to switch over to std::shared_ptr:
it supports std::unique_ptr, i.e. has constructor.
boost::shared_ptr doesn't.
Aside from implementation consistency, boost::shared_ptr currently retains at least two niche advantages over std::shared_ptr:
The availability of boost::make_shared_noinit. It's particularly useful in conjunction with arrays, avoiding both the cost of zero-initialization and the overhead of separate allocation. (FWIW, it's also a proposed addition to the standard.)
Boost.Python makes special use of boost::shared_ptr's support for type-erased custom deleters, but doesn't yet do the same for std::shared_ptr.
I found std::shared_ptr to be faster than boost::shared_ptr. I did a test, you can review the code and see the pie chart results comparing boost, Qt, and std shared pointers.
https://www.osletek.com...