OpenGL why are uniform variables needed (instead of just constants) - opengl

"Global variables and Interface Blocks can be declared with the uniform​ qualifier. This means that the value does not change between multiple executions of a shader during the rendering of a primitive (ie: during a glDraw* call). These values are set by the user from the OpenGL API.
They are constant, but not compile-time constant (so not const​)."
http://www.opengl.org/wiki/Type_Qualifier_(GLSL)#Storage_qualifier
I guess I'm asking why the uniform variables cannot just be constant at compile time as well.

Because they are not constant!
They are constant for every rendering call, but you can set a new value for each one.
For example you could set a uniform to contain a color value, set it to pink and draw your 3d model and it will contain a constant value every time it calls the fragment shader for that drawing operation. But then you can draw something else using the same shader with that uniform set to "green"

Related

Is it legal to bind gl_InstanceID as uniform location?

I have a GLSL shader that makes use of the gl_InstanceID input variable which is set by a glDrawArraysInstanced all. I want this shader to work with a drawcall that doesn't set gl_InstanceID. Here, I want to set gl_InstanceID manually uniform style.
Is it legal / defined behavior to bind glInstanceID as a uniform for these cases?
GLint const instanceIdx = glGetUniformLocation(pid, "gl_InstanceID");
If you're trying to manually provide a value for gl_InstanceID, getting its location as a uniform isn't going to work for several reasons but mainly because it's not a uniform. It is a built-in vertex shader input variable, which is different from a vertex attribute (which is user provided, not built-in).
The value of gl_InstanceID will be zero for any draw call that doesn't use instancing. If you want it to be non-zero for such calls, that's not possible. gl_BaseInstance from GLSL 4.60/ARB_shader_draw_parameters will track the base instance value from BaseInstance draw calls. So you could use that to effectively set the instance index.
But without that, there's nothing you can do.

OpenGL Texture Usage

So recently I started reading through OpenGL wiki articles. This is how I picture OpenGL texturing described from here. Though, several points are not clear yet.
Will following statements be true, false or depends?
Binding two textures to same texture unit is impossible.
Binding two samplers to same texture unit is impossible.
Binding one texture to two different texture units is impossible.
Binding one sampler to two different texture units is impossible.
It is application's responsibility to be clear about what sampler type is passed to what uniform variable.
It is shader program's responsibility to make sure to take sampler as correct type of uniform variable.
number of texture units are large enough. Let each mesh loaded to application occupy as much texture unit as it please.
Some Sampler parameters are duplicate of texture parameters. They will override texture parameter setting.
Some Sampler parameters are duplicate of sampler description in shader program. Shader program's description will override samplers parameters.
I'm going through your statements in the following. Sometimes I will argue with quotes from the OpenGL 4.5 core profile specification. None of that is specific to GL 4.5, I just chose it because that is the most recent version.
1. Binding two textures to same texture unit is
impossible.
If I'd say "false", it would be probably misleading. The exact statement would be "Binding two textures to the same target of the same texture unit is impossible." Technically, you can say, bind a 2D texture and a 3D texture to the same unit. But you cannot use both in the same draw call. Note that this is a dynamic error condition which depends on what values you set the sampler uniforms to. Quote from section 7.10 "Samplers" of the GL spec:
It is not allowed to have variables of different sampler types
pointing to the same texture image unit within a program object. This
situation can only be detected at the next rendering command issued
which triggers shader invocations, and an INVALID_OPERATION error will
then be generated.
So the GL will detect this error condition as soon as you actually try to draw something (or otherwise trigger shader invocations) with that shaders while you configured it such that two sampler uniforms reference different targets of the same unit. But it is not an error before. If you temporarily set both uniforms to the same value but do not try to draw in that state, no error is ever generated.
2. Binding two samplers to same texture unit is impossible.
You probably mean Sampler Objects (as opposed to just "sampler" types in GLSL), so this is true.
3. Binding one texture to two different texture units is impossible.
False. You can bind the same texture object to as many units as there are available. However, that is quite a useless operation. Back in the days of the fixed-function pipeline, there were some corner cases where this was of limited use. For example, I've saw someone binding the same texture twice and use register combiners to multiply both together, because he needed some square operation. However, with shaders, you can sample the texture once and do anything you want with the result, so there is really no use case left for this.
4. Binding one sampler to two different texture units is impossible.
False. A single sampler object can be referenced by multiple texture units. You can just create a sampler object for each sampling state you need, no need to create redundant ones.
5. It is application's responsibility to be clear about what sampler type is passed to what uniform variable.
6. It is shader program's responsibility to make sure to take sampler as correct type of uniform variable.
I'm not really sure what exaclty you are asking here. The sampler variable in your shader selectes the texture target and must also match the internal data fromat of the texture object you want to use (i.e. for isampler or usampler, you'll need unnormalized integer texture formats otherwise results are undefined).
But I don't know what "what sampler type is passed to what uniform variable" is supposed to mean here. As far as the GL client side is concerned, the opaque sampler uniforms are just something which can be set to the index of the texture unit which is to be used, and that is done as an integer via glUniform1i or the like. There is no "sampler type" passed to a uniform variable.
7. number of texture units are large enough. Let each mesh loaded to application occupy as much texture unit as it please.
Not in the general case. The required GL_MAX_TEXTURE_IMAGE_UNITS (which defines how many different texture units a fragment shader can access) by the GL 4.5 spec is just 16. (There are separate limits per shder stage, so there is GL_MAX_VERTEX_TEXTURE_IMAGE_UNITS, GL_MAX_GEOMETRY_TEXTURE_IMAGE_UNITS and so on. They are all required to be at least 16 in the current spec.)
Usually, you have to switch textures inbetween draw calls. The usage of array textures and texture atlasses might allow one to further reduce the number of necessary state switches (and, ultimately, draw calls).
Very modern GPUs also support GL_ARB_bindless_texture, which completely bypasses the "texture unit" layer of indirection and allows the shader to directly reference a texture object by some opaque handle (which basically boils down to referencing some virtual GPU memory address under the hood). However, that feature is not yet part of the OpenGL standard.
8. Some Sampler parameters are duplicate of texture parameters. They will override texture parameter setting.
Yes. Traditionally, there were no separate sampler objects in the GL. Instead, the sampler states like filtering or wrap modes were part of the texture object itself. But modern hardware does not operate this way, so the sampler objects API has been introduced as the GL_ARB_sampler_objects extension (nowadays, a core feature of GL). If a sampler object is bound to a texture unit, its settings will override the sampler state present in the texture object.
9. Some Sampler parameters are duplicate of sampler description in shader program. Shader program's description will override samplers parameters.
I'm not sure what you mean by that. What "sampler descripitons" does a shader program define? There is only the declaration of the uniform and possibly the initialization via layout(binding=...). However, that is just the initial value. The client can update that any time by setting the uniform to another value, so that is not really "overriding" anything. But I'm not sure if you mean that.

How Many Shader Programs Do I Really Need?

Let's say I have a shader set up to use 3 textures, and that I need to render some polygon that needs all the same shader attributes except that it requires only 1 texture. I have noticed on my own graphics card that I can simply call glDisableVertexAttrib() to disable the other two textures, and that doing so apparently causes the disabled texture data received by the fragment shader to be all white (1.0f). In other words, if I have a fragment shader instruction (pseudo-code)...
final_red = tex0.red * tex1.red * tex2.red
...the operation produces the desired final value regardless whether I have 1, 2, or 3 textures enabled. From this comes a number of questions:
Is it legit to disable expected textures like this, or is it a coincidence that my particular graphics card has this apparent mathematical safeguard?
Is the "best practice" to create a separate shader program that only expects a single texture for single texture rendering?
If either approach is valid, is there a benefit to creating a second shader program? I'm thinking it would be cost less time to make 2 glDisableVertexAttrib() calls than to make a glUseProgram() + 5-6 glGetUniform() calls, but maybe #4 addresses that issue.
When changing the active shader program with glUseProgram() do I need to call glGetUniform... functions every time to re-establish the location of each uniform in the program, or is the location of each expected to be consistent until the shader program is deallocated?
Disabling vertex attributes would not really disable your textures, it would just give you undefined texture coordinates. That might produce an affect similar to disabling a certain texture, but to do this properly you should use a uniform or possibly subroutines (if you have dozens of variations of the same shader).
As far as time taken to disable a vertex array state, that's probably going to be slower than changing a uniform value. Setting uniform values don't really affect the render pipeline state, they're just small changes to memory. Likewise, constantly swapping the current GLSL program does things like invalidate shader cache, so that's also significantly more expensive than setting a uniform value.
If you're on a modern GL implementation (GL 4.1+ or one that implements GL_ARB_separate_shader_objects) you can even set uniform values without binding a GLSL program at all, simply by calling glProgramUniform* (...)
I am most concerned with the fact that you think you need to call glGetUniformLocation (...) each time you set a uniform's value. The only time the location of a uniform in a GLSL program changes is when you link it. Assuming you don't constantly re-link your GLSL program, you only need to query those locations once and store them persistently.

OpenGL How Many VAOs

I am writing an OpenGL3+ application and have some confusion about the use of VAOs. Right now I just have one VAO, a normalised quad set around the origin. This single VAO contains 3 VBOs; one for positions, one for surface normals, and one GL_ELEMENT_ARRAY_BUFFER for indexing (so I can store just 4 vertices, rather than 6).
I have set up some helper methods to draw objects to the scene, such as drawCube() which takes position and rotation values and follows the procedure;
Bind the quad VAO.
Per cube face:
Create a model matrix that represents this face.
Upload the model matrix to the uniform mat4 model vertex shader variable.
Call glDrawElements() to draw the quad into the position for this face.
I have just set about the task of adding per-cube colors and realised that I can't add my color VBO to the single VAO as it will change with each cube, and this doesn't feel right.
I have just read the question; OpenGL VAO best practices, which tells me that my approach is wrong, and that I should use more VAOs to save the work of setting the whole scene up every time.
How many VAOs should be used? Clearly my approach of having 1 is not optimal, should there be a VAO for every static surface in the scene? What about ones that move?
I am writing to a uniform variable for each vertex, is that correct? I read that uniform shader variables should not change mid-frame, if I am able to write different values to my uniform variable, how do uniforms differ from simple in variables in a vertex shader?
Clearly my approach of having 1 is not optimal, should there be a VAO for every static surface in the scene?
Absolutely not. Switching VAOs is costly. If you allocate one VAO per object in your scene, you need to switch the VAO before rendering such objects. Scale that up to a few hundred or thousand objects currently visible and you get just as much VAO changes. The questions is, if you have multiple objects which share a common memory layout, i.e. sizes/types/normalization/strides of elements are the same, why would you want to define multiple VAOs that all store the same information? You control the offset where you want to start pulling vertex attributes from directly with a corresponding draw call.
For non-indexed geometry this is trivial, since you provide a first (or an array of offsets in the multi-draw case) argument to gl[Multi]DrawArrays*() which defines the offset into the associated ARRAY_BUFFER's data store.
For indexed geometry, and if you store indices for multiple objects in a single ELEMENT_ARRAY_BUFFER, you can use gl[Multi]DrawElementsBaseVertex to provide a constant offset for indices or manually offset your indices by adding a constant offset before uploading them to the buffer object.
Being able to provide offsets into a buffer store also implies that you can store multiple distinct objects in a single ARRAY_BUFFER and corresponding indices in a single ELEMENT_ARRAY_BUFFER. However, how large buffer objects should be depends on your hardware and vendors differ in their recommendations.
I am writing to a uniform variable for each vertex, is that correct? I read that uniform shader variables should not change mid-frame, if I am able to write different values to my uniform variable, how do uniforms differ from simple in variables in a vertex shader?
First of all, a uniforms and shader input/output variables declared as in/out differ in various instances:
input/output variables define an interface between shader stages, i.e. output variables in one shader stage are backed by a corresponding and equally named input variable in the following stage. A uniform is available in all stages if declared with the same name and is constant until changed by the application.
input variables inside a vertex shader are filled from an ARRAY_BUFFER. Uniforms inside a uniform block are backed a UNIFORM_BUFFER.
input variables can also be written directly using the glVertexAttrib*() family of functions. single uniforms are written using the glUniform*() family of functions.
the values of uniforms are program state. the values of input variables are not.
The semantic difference should also be obvious: uniforms, as their name suggests, are usually constant among a set of primitives, whereas input variables usually change per vertex or fragment (due to interpolation).
EDIT: To clarify and to factor in Nicol Bolas' remark: Uniforms cannot be changed by the application for a set of vertices submitted by a single draw call, neither can vertex attributes by calling glVertexAttrib*(). Vertex shader inputs backed by a buffer objects will change either once per vertex or at some specific rate set by glVertexAttribDivisor.
EDIT2: To clarify how a VAO can theoretically store multiple layouts, you can simply define multiple arrays with different indices but equal semantics. For instance,
glVertexAttribPointer(0, 4, ....);
and
glVertexAttribPointer(1, 3, ....);
could define two arrays with indices 0 and 1, component sized 3 and 4 and both refer to position attributes of vertices. However, depending on what you want to render, you can bind a hypothetical vertex shader input
// if you have GL_ARB_explicit_attrib_location or GL3.3 available, use explicit
// locations
/*layout(location = 0)*/ in vec4 Position;
or
/*layout(location = 1)*/ in vec3 Position;
to either index 0 or 1 explicitly or glBindAttribLocation() and still use the same VAO. AFAIK, the spec says nothing about what happens if an attribute is enabled but not sourced by the current shader but I suspect implementation to simply ignore the attribute in that case.
Whether you source the data for said attributes from the same or a different buffer object is another question but of course possible.
Personally I tend to use one VBO and VAO per layout, i.e. if my data is made up of an equal number of attributes with the same properties, I put them into a single VBO and a single VAO.
In general: You can experiment with this stuff a lot. Do it!

Is it possible to set GLSL variables in between operations?

I am aiming at the following case:
bind shader
set uniform variable
..draw box..
set uniform variable to different value
..draw another box, with the new variable applied in the vertex shader..
Is it possible to set GLSL variables in between operations?
Yes, you can freely set uniforms after compilation and mix the settings with draw calls.