fortran code do not cycle - fortran

i try to solve this simple three body problem with the following code:
Program Main
Implicit real*8 (A-H,O-Z)
real*8 ome,mu, rho, R
duepi=8*datan(1.d0)
ome=1
mu=0.001
T_per=duepi/ome
rho=0.1
R=1.0
N_step=100
c Open the file
OPEN(unit=11, file="prova1.txt")
c Nested do loops
do iy0=1,100
do iP0=1,100
c Calc value for 0
y0 = real(iy0)/100.
x0 = 0
c Calc value for py0
py0 = real(iP0)/100.
px0 = 0
x=x0
y=y0
px=px0
py=py0
dt=T_per/N_step
E0=H(x,y,px,py)
k_max=100*N_step
k=0
t=0
errh=0
c---------
c start integration loop
c--------
do k=1,k_max
call sym4(x,y,px,py,dt)
E= H(x,y,px,py)
errh=abs(E-E0)
t=k*dt
enddo
do k=1,k_max
call sym4(x,y,px,py,-dt)
E= H(x,y,px,py)
errh=abs(E-E0)
t=t-dt
enddo
write(11,*) y0, py0, errh
enddo ! iP0
enddo ! iy0
close(11)
end
subroutine sym1(x,y,px,py,dt)
Implicit real*8 (A-H,O-Z)
c
call f(x,y,fx,fy)
pxnew=px+dt*fx
pynew=py+dt*fy
xnew=x+dt*pxnew
ynew=y+dt
c
x=xnew
y=ynew
px=pxnew
py=pynew
end
subroutine sym1_B(x,y,px,py,dt)
Implicit real*8 (A-H,O-Z)
c
xnew=x+dt*px
ynew=y+dt
call f(xnew,ynew,fxnew,fynew)
pxnew=px+dt*fxnew
pynew=py+dt*fynew
c
x=xnew
y=ynew
px=pxnew
py=pynew
end
subroutine f(x,y,fx,fy)
Implicit real*8 (A-H,O-Z)
real*8 ome,mu,rho,R
fx = ((1-mu)*(rho+x))/((rho*rho+2*rho*x+y*y)**(1.5)) -
& (mu*(R+x))/((R**2-2*R*x+x*x+y*y)**(1.5))
fy = ((1-mu)*(rho+x))/((rho**2+x**2+2*rho*x+y**2)**(1.5))/
& + (mu*y)/((R**2-2*R*x+x**2+y**2)**(1.5))
return
end
real*8 function H(x,y,px,py)
Implicit real*8 (A-H,O-Z)
real*8 ome,mu,rho,R
c h=px*px/2.d0+ py +(1+eps*cos(ome*y))*x*x/2
c h=px*px/2.d0+ py -(1+eps*cos(ome*y))*cos(x)
r12 = sqrt( ( (x*cos(ome*y)-y*sin(ome*y))+rho*cos(ome*y) )**2
& + ( x*sin(ome*y)+y*cos(ome*y) + rho*sin(ome*y) )**2 )
r13 = sqrt( ( (x*cos(ome*y)-y*sin(ome*y))-R*cos(ome*y) )**2
& + ( x*sin(ome*y)+y*cos(ome*y) - R*sin(ome*y) )**2 )
h=(px**2+py**2)/2.d0 - (1-mu)/r12 - mu/r13 + py
return
end
subroutine sym2(x,y,px,py,dt)
Implicit real*8 (A-H,O-Z)
call f(x,y,fx,fy)
xnew= x+ px*dt + fx*dt**2/2.d0
ynew= y+ dt ! così è giusto
call f(xnew,ynew,fxnew,fynew)
pxnew= px+ dt*(fx+fxnew )/2.d0
pynew= py+ dt*(fy+fynew )/2.d0
x=xnew
y=ynew
px=pxnew
py=pynew
end
subroutine sym4(x,y,px,py,dt)
Implicit real*8 (A-H,O-Z)
sq2=2**(1.d0/3.d0)
alpha= 1.d0/(2-sq2)
beta= sq2/(2-sq2)
dt1= dt*alpha
dt2=-dt*beta
call sym2(x,y,px,py,dt1)
call sym2(x,y,px,py,dt2)
call sym2(x,y,px,py,dt1)
return
end
the code calls sympletic integrators and solve the 3body problem. But when i try to run it, there aren't compiling errors, the output.txt file show only the initial grid and not the errh this column give me only NaN, can someone help me?
Is maybe an initial condition errors (strange initial conditions for velocities or positions, omega is wrong ...)?

As stated already in the comments, your program has many code style problems (wrong intentation, ...) as well as not using best Fortran practises (e.g. implicit none). Your problem can be solved by trivial usage of a debugger.
An obvious problem is that you are using uninitialized variables in the functions:
subroutine f(x,y,fx,fy) : rho, mu, R in calculation of fx and fy, which produces NaN
function H() : ome, rho, mu, ...
and similarly on other places

Related

Dummy argument not agreeing with actual argument when passing function

I'm trying to implement Newton's method but I'm getting a confusing error message. In my code you'll see I called external with f1 and f2 which I assumes tells the computer to look for the function but it's treating them as variables based on the error message. I've read the stack overflow posts similar to my issue but none of the solutions seem to work. I've tried with and without the external but the issue still persists. Hoping someone could see what I'm missing.
implicit none
contains
subroutine solve(f1,f2,x0,n, EPSILON)
implicit none
real(kind = 2), external:: f1, f2
real (kind = 2), intent(in):: x0, EPSILON
real (kind = 2):: x
integer, intent(in):: n
integer:: iteration
x = x0
do while (abs(f1(x))>EPSILON)
iteration = iteration + 1
print*, iteration, x, f1(x)
x = x - (f1(x)/f2(x))
if (iteration >= n) then
print*, "No Convergence"
stop
end if
end do
print*, iteration, x
end subroutine solve
end module newton
Program Lab10
use newton
implicit none
integer, parameter :: n = 1000 ! maximum iteration
real(kind = 2), parameter :: EPSILON = 1.d-3
real(kind = 2):: x0, x
x0 = 3.0d0
call solve(f(x),fp(x),x0,n, EPSILON)
contains
real (kind = 2) function f(x) ! this is f(x)
implicit none
real (kind = 2), intent(in)::x
f = x**2.0d0-1.0d0
end function f
real (kind = 2) function fp(x) ! This is f'(x)
implicit none
real (kind = 2), intent(in)::x
fp = 2.0d0*x
end function fp
end program Lab10```
You seem to be passing function results to your subroutine and not the functions themselves. Remove (x) when calling solve() and the problem will be resolved. But more importantly, this code is a prime example of how to not program in Fortran. The attribute external is deprecated and you better provide an explicit interface. In addition, what is the meaning of kind = 2. Gfortran does not even comprehend it. Even if it comprehends the kind, it is not portable. Here is a correct portable modern implementation of the code,
module newton
use iso_fortran_env, only: RK => real64
implicit none
abstract interface
pure function f_proc(x) result(result)
import RK
real(RK), intent(in) :: x
real(RK) :: result
end function f_proc
end interface
contains
subroutine solve(f1,f2,x0,n, EPSILON)
procedure(f_proc) :: f1, f2
real(RK), intent(in) :: x0, EPSILON
integer, intent(in) :: n
real(RK) :: x
integer :: iteration
x = x0
do while (abs(f1(x))>EPSILON)
iteration = iteration + 1
print*, iteration, x, f1(x)
x = x - (f1(x)/f2(x))
if (iteration >= n) then
print*, "No Convergence"
stop
end if
end do
print*, iteration, x
end subroutine solve
end module newton
Program Lab10
use newton
integer, parameter :: n = 1000 ! maximum iteration
real(RK), parameter :: EPSILON = 1.e-3_RK
real(RK) :: x0, x
x0 = 3._RK
call solve(f,fp,x0,n, EPSILON)
contains
pure function f(x) result(result) ! this is f(x)
real (RK), intent(in) :: x
real (RK) :: result
result = x**2 - 1._RK
end function f
pure function fp(x) result(result) ! This is f'(x)
real (RK), intent(in) :: x
real (RK) :: result
result = 2 * x
end function fp
end program Lab10
If you expect to pass nonpure functions to the subroutine solve(), then remove the pure attribute. Note the use of real64 to declare 64-bit (double precision) real kind. Also notice how I have used _RK suffix to assign 64-bit precision to real constants. Also, notice I changed the exponents from real to integer as it is multiplication is more efficient than exponentiation computationally. I hope this answer serves more than merely the solution to Lab10.

Numerical integration of an array in 3d spherical polar

I want to integrate a 3d array over space in r, theta and phi (spherical polar). For 1d I use Simpson's 1/3rd rule but I am confused about that for 3d. Also, would you like to suggest any other method for integration or subroutine? I am using Fortran 95.
I have written the Fortran code for integration in 3d, I thought I should share with you.
The code for calculating integration of a function is 3 dimension is:
!This program uses Simpson's 1/3 method to calulate volume
integral in r,theta & phi.
program SimpsonInteg3d
implicit none
integer::i,j,k
integer, parameter :: N=10,M=360,L=180
integer, parameter:: rmin=0,rmax=N,phimin=0,phimax=M,&
thetamin=0,thetamax=L
double precision,&
dimension(rmin:rmax,thetamin:thetamax,phimin:phimax)::U
real*8, parameter :: pi = 4*atan(1.0),dr=1./N,&
dtheta=pi/(L),dphi=2*pi/M
real*8 :: r(rmin:rmax)=(/(i*dr,i=rmin,rmax)/),&
theta(thetamin:thetamax)=(/(j*dtheta,j=thetamin,thetamax)/),&
p(phimin:phimax)=(/(k*dphi,k=phimin,phimax)/)
real*8::intg
do i=rmin,rmax
do j=thetamin, thetamax
do k=phimin,phimax
!The function which has to be integrated.
U(i,j,k)=r(i)* (sin((p(k)))**2) *sin(theta(j))
enddo
enddo
enddo
call Integration(Intg,U,r,theta,p)
print*,"Integration of function U using simpson's 1/3=", Intg
end program
!===============================================================!
!Subroutine for calculating integral of a function in 3d.
subroutine Integration(Intg,U,r,theta,p)
implicit none
integer::i,j,k
integer, parameter :: N=10,M=360,L=180
integer, parameter ::rmin=0,rmax=N,&
phimin=0,phimax=M,thetamin=0,thetamax=L
double precision,&
dimension(rmin:rmax,thetamin:thetamax,phimin:phimax):: U
real*8::
r(rmin:rmax),theta(thetamin:thetamax),p(phimin:phimax),Intg,Ia
double precision,dimension(rmin:rmax)::Itheta
real*8, parameter :: pi = 4*atan(1.0),dr=1./N,&
dtheta=pi/(L),dphi=2*pi/M
Intg=0
Ia=0
do i=rmin+1,rmax-1
call Integtheta(Itheta,i,U,r,theta,p)
if(mod(i,2).eq.0) then
Ia = Ia + 2*Itheta(i)*r(i)**2
else
Ia = Ia + 4*Itheta(i)*r(i)**2
endif
end do
call Integtheta(Itheta,rmin,U,r,theta,p)
call Integtheta(Itheta,rmax,U,r,theta,p)
Intg=(dr/3)*(Itheta(rmin)+Itheta(rmax)+ Ia)
end subroutine Integration
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!Subroutine for calculating integral of U along theta and phi
subroutine Integtheta(Itheta,i,U,r,theta,p)
implicit none
integer::i,j,k
integer, parameter :: N=10,M=360,L=180
integer, parameter ::rmin=0,rmax=N,&
phimin=0,phimax=M,thetamin=0,thetamax=L
double precision,&
dimension(rmin:rmax,thetamin:thetamax,phimin:phimax)::U
real*8:: r(rmin:rmax),theta(thetamin:thetamax),p(phimin:phimax)
double precision,dimension(rmin:rmax)::Itheta,Itha
double precision,dimension(rmin:rmax,thetamin:thetamax)::Ip
real*8, parameter :: pi = 4*atan(1.0),dr=1./N,&
dtheta=pi/(L),dphi=2*pi/M
Itheta(i)=0
Itha(i)=0
do j=thetamin+1,thetamax-1
call Integphi(Ip,i,j,U,r,theta,p)
if(mod(j,2).eq.0) then
Itha(i) = Itha(i) + 2*Ip(i,j)*sin(theta(j))
else
Itha(i) = Itha(i) + 4*Ip(i,j)*sin(theta(j))
endif
end do
call Integphi(Ip,i,thetamin,U,r,theta,p)
call Integphi(Ip,i,thetamax,U,r,theta,p)
Itheta(i)=(dtheta/3)*(Ip(i,thetamin)+Ip(i,thetamax)+ Itha(i))
end subroutine Integtheta
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!Subroutine for calculating integral of U along phi
subroutine Integphi(Ip,i,j,U,r,theta,p)
implicit none
integer::i,j,k
integer, parameter :: N=10,M=360,L=180
integer, parameter ::rmin=0,rmax=N,&
phimin=0,phimax=M,thetamin=0,thetamax=L
double precision,&
dimension(rmin:rmax,thetamin:thetamax,phimin:phimax)::U
real*8:: r(rmin:rmax),theta(thetamin:thetamax),p(phimin:phimax)
double precision,dimension(rmin:rmax,thetamin:thetamax)::Ip,Ipa
real*8, parameter :: pi = 4*atan(1.0),dr=1./N,&
dtheta=pi/(L),dphi=2*pi/M
Ipa(i,j)=0
do k=phimin+1,phimax-1
if(mod(k,2).eq.0) then
Ipa(i,j) = Ipa(i,j) + 2*U(i,j,k)
else
Ipa(i,j)= Ipa(i,j) + 4*U(i,j,k)
endif
end do
Ip(i,j)=(dphi/3)*(U(i,j,phimin)+U(i,j,phimax)+ Ipa(i,j))
end subroutine Integphi
It calculates the integration of the function U along phi first and then uses the function Ip to calculate integral along theta. Then finally the function Itheta is used to calculate integration along r.

What is wrong with my sub-function definition of sinc?

implicit none
character*20 fflname,oflname
integer length_sgnl
real*8 pi, dt, m, n, theta
parameter ( length_sgnl=11900, dt=0.01d0, m=1, n=1, pi=3.1416
& ,theta=0.2 )
integer i
complex*16 cj, coeff ,sgnl(1 : length_sgnl)
real*8 t(1 : length_sgnl)
parameter ( cj = dcmplx(0, 1) )
real*8 time, real_sgnl, imag_sgnl
oflname="filtered.data"
fflname="artificial"
open(11, file = oflname)
do i=1, length_sgnl
read(11, *) time, real_sgnl, imag_sgnl
sgnl(i) = dcmplx(real_sgnl, imag_sgnl)
t(i) = (i*dt - m) / (2**n)
enddo
coeff = 0
do i=1, length_sgnl
coeff = coeff
& + sgnl(i) * sinc (t(i)) * exp (-cj*2*pi*t(i))
enddo
do i=1, length_sgnl
sgnl(i) = sgnl(i)
& - coeff * sinc (t(i)) * exp (-cj*2*pi*t(i))
& + coeff * sinc (t(i)) * exp (-cj*2*pi*t(i))
& * exp (cj*theta)
enddo
open(12, file = fflname)
do i=1, length_sgnl
write(12, *) i*dt, sgnl(i)
enddo
close(12)
real*8 function sinc (a)
real*8 :: sinc, a
if (abs(a) < 1.0d-6) then
sinc = 1
else
sinc = sin(pi*a) / (pi*a)
end if
end function
stop
end
At the last part of a sub-defined function sinc, I assume the problem is there but I am not sure what it is exactly. The gfortran noticed that I did not define sinc and a, and the "end function" should be "end program"?
I have tried to update your program into standards-compliant modern Fortran:
program sinctest
use :: iso_fortran_env
implicit none
! Declare parameters
integer, parameter :: length_sgnl=11900
real(real64), parameter :: pi=3.1416, dt=0.01, m=1, n=1, theta=0.2
complex(real64), parameter :: cj = cmplx(0, 1)
! Declare variables
character(len=20) :: fflname, oflname
complex(real64) :: coeff, sgnl(length_sgnl)
real(real64) :: time, real_sgnl, imag_sgnl, t(length_sgnl)
integer :: i, ofl, ffl
! Define filenames
oflname="filtered.data"
fflname="artificial"
! Read the input file
open(newunit = ofl, file = oflname)
do i=1, length_sgnl
read(ofl, *) time, real_sgnl, imag_sgnl
sgnl(i) = cmplx(real_sgnl, imag_sgnl, kind=real64)
t(i) = (i*dt - m) / (2**n)
end do
close(ofl)
! Process the input signal
coeff = 0
do i=1, length_sgnl
coeff = coeff &
+ sgnl(i) * sinc(t(i)) * exp(-cj*2*pi*t(i))
end do
do i=1, length_sgnl
sgnl(i) = sgnl(i) &
- coeff * sinc(t(i)) * exp(-cj*2*pi*t(i)) &
+ coeff * sinc(t(i)) * exp(-cj*2*pi*t(i)) &
* exp(cj*theta)
end do
! Save the output file
open(newunit = ffl, file = fflname)
do i=1, length_sgnl
write(ffl, *) i*dt, sgnl(i)
enddo
close(ffl)
contains
pure function sinc(a) result(r)
! This function calculates sinc(a)=sin(pi*a)/(pi*a).
real(real64), intent(in) :: a
real(real64) :: r
if (abs(a) < 1.0e-6) then
r = 1
else
r = sin(pi*a) / (pi*a)
end if
end function
end program
To compile it using e.g. GFortran:
gfortran -std=f2008 -ffree-form sinctest.f
These are the syntax errors that I fixed:
Added a contains section before defining your sinc-function;
Moved your continuation characters (&) from the beginning of a continued line to the end of the previous line;
These are not required changes, just merely style suggestions:
Used the intrinsic module iso_fortran_env to get the real64 variable, which lets you define variables as real(real64) instead of real*8, as the former is portable while the latter is not;
Merged the specification of the variable type (e.g. real) and parameter into a single lines;
Used the Fortran2008 newunit argument to open instead of hard-coding in unit numbers, as this saves you some headache if you write large programs and have a modern compiler;
Made sure that you close the input file as well;
Declared your sinc-function to be pure, as it has no side-effects;
Used the result notation for your sinc-function, so that you don't have to specify the type real*8 in front of the function name;
Rewrote the program in the form program...end program instead of ...stop end.
EDIT:
I also wanted to note that using modern Fortran, the math itself can be written considerably more consise using 'array notation' and 'elemental functions'. For instance, if you define your sinc-function:
elemental function sinc(a) result(r)
! This function calculates sinc(a)=sin(pi*a)/(pi*a).
real(real64), intent(in) :: a
real(real64) :: r
if (abs(a) < 1.0e-6) then
r = 1
else
r = sin(pi*a) / (pi*a)
end if
end function
Then the elemental keyword says that if you apply the sinc-function to an array, it should return a new array where the sinc-function has been evaluated for each element. So this piece of code:
coeff = 0
do i=1, length_sgnl
coeff = coeff &
+ sgnl(i) * sinc(t(i)) * exp(-cj*2*pi*t(i))
end do
Can then actually be written as a one-liner:
coeff = sum(sgnl * sinc(t) * exp(-2*pi*cj*t))
So I would highly recommend that you look into the modern array notation too :).
EDIT 2:
Tried to emphasize what changes are relevant to fixing errors, and what changes are just style suggestions (thanks Vladimir F).

Check bounds changes variables

I'm porting a program that I use in a chemistry classroom from Matlab (very forgiving) to Fortran (err, not so much). The problem I see is that if I include print statements in 1 subroutine, my code returns significantly different values than if I don't (the ones with the print statement included are correct).
After reading stack overflow, I removed the print statement, recompiled with gfortran and fcheck='bounds', and my program returned the correct results, and no errors during compile.
The subroutines stored in a module Basis_Subs, and called from the main program, which I've posted below. The problem appears in the 4 dimensional matrix Gabcd(nb,nb,nb,nb) which is constructed using the subroutine Build_Electron_Repulsion from the Basis_Subs module. That subroutine calculates the matrix elements of Gabcd, and uses 1 internal helper functions, Rntuv, and 1 internal subroutine Gprod_1D, both of which are also stored in the Basis_Subs module.
These functions/routines are used in another section of the program, and that portion of the program doesn't show any errors or funny array behavior. That leads me to think the problem must either be in Build_Electron_Repulsion, how I'm calling Build_Electron_Repulsion or how I'm calling the the helper functions from inside Build_Electron_Repulsion.
I've posted the main program, and the subroutines for Build_Electron_Repulsion, gprod_1D, and the function Rntuv. What I'm really wondering is if you have any tips on tracking down where the error might be.
I'm using a pico style editor and gfortran.
Main Program, Z.f08
program HF
use typedefs
use Basis_Subs
use SCF_Mod
implicit none
real(dp) :: output, start, finish
integer (kind=4) :: IFLAG , i, N, nb,j,k,l,natom
integer, allocatable, dimension(:) :: Z
real(dp), allocatable, dimension(:,:) :: AL, S,T, VAB, H0
real(dp), allocatable, dimension(:,:,:,:) :: Gabcd
real(dp), dimension(maxl) :: Ex=0
real(dp) :: Energy, Nuc
type(primitive) :: g1, Build_Primitive
type(Basis) :: b1
type(Basis), dimension(100) :: bases
character(LEN=20) :: fname
print *, 'Input the filename'
read (*,*), fname
open(unit=12, file=fname)
read(12,*) natom
allocate(Z(natom))
allocate(AL(natom,3))
read(12,*) Z
do i=1, natom
read(12,*) AL(i,1), AL(i,2), AL(i,3)
end do
print *, 'Atomic Coorinates = ', AL
print *, 'Z in the main routine = ', Z
call cpu_time(start)
%Calculate the energies that don't depend on electrons
call Nuclear_Repulsion(natom, Z, AL, Nuc)
N=Sum(Z)
%Build the atom specific basis set
call Build_Bases(Z, AL, nb, bases)
%Using nb, from Build_Basis, allocate matrices
allocate(S(nb,nb))
allocate(T(nb,nb))
allocate(VAB(nb,nb))
allocate(Gabcd(nb,nb,nb,nb))
call Build_Overlap(bases, nb, S)
call Build_Kinetic(bases, nb, T)
call Build_Nuclear_Attraction(Z, AL, bases, nb, VAB)
H0 = T+VAB
call Build_Electron_Repulsion(bases, nb, Gabcd)
call cpu_time(finish)
print *, 'Total time for Matrix Elements= ', finish - start
call SCF(N, nb, H0, S, Gabcd, Nuc, Energy)
end program HF
Build_Electron_Repulsion is located inside the module Basis_Subs:
subroutine Build_Electron_Repulsion(bases, nbases, Gabcd)
!!Calculate the 4 centered electron repulsion integrals. Loop over array of !!basis sets 1:nb 4 times. Each element of basis set is a defined type that !!includes and array of gaussian functions and contraction coefficients !!basis(a)%g(1:nga) and basis(a)%c(1:nga). For each gaussian in each basis set,
!!Calculate int(int(basis(a1)*basis(b1)*basis(c2)*basis(d2)*1/r12 dr1)dr2).
!!Uses helper function Rntuv listed below
implicit none
type(basis), dimension(100), intent(in) :: bases
integer, intent(in) :: nbases
real(dp), dimension(nbases, nbases,nbases,nbases), intent(out) :: Gabcd
integer :: a, b,c,d, nga, ngb, ngc, ngd, index, lx, ly, lz, llx, lly,llz
integer :: llxmax, llymax, llzmax, lxmax, lymax, lzmax, xmax, ymax, zmax
integer :: x, y, z
real(dp) :: p, q, midpoint, PX, PY, PZ, output
real(dp) :: pp, qq, midpoint2, PPX, PPY, PPZ, tmp
real(dp) :: alpha_a, alpha_b, alpha_c, alpha_d, alpha
real(dp) :: ax, ay, az, bx, by, bz, cx,cy,cz, dx,dy,dz
real(dp), dimension(maxl) ::EabX, EabY, EabZ, EcdX, EcdY, EcdZ
real(dp), dimension(2*maxl, 2*maxl, 2*maxl) :: R
R=0
Gabcd=0.0D0
print *, 'Calculating 4 centered integrals'
do a=1, nbases
do b=1, nbases
do c=1, nbases
do d=1, nbases
do nga = 1, bases(a)%n
do ngb = 1, bases(b)%n
alpha_a=bases(a)%g(nga)%alpha
alpha_b=bases(b)%g(ngb)%alpha
p=alpha_a + alpha_b
ax=bases(a)%g(nga)%x
ay=bases(a)%g(nga)%y
az=bases(a)%g(nga)%z
bx=bases(b)%g(ngb)%x
by=bases(b)%g(ngb)%y
bz=bases(b)%g(ngb)%z
PX=(alpha_a*ax + alpha_b*bx)/p
PY=(alpha_a*ay + alpha_b*by)/p
PZ=(alpha_a*az + alpha_b*bz)/p
call gprod_1D(ax, alpha_a, bases(a)%g(nga)%lx, bx, alpha_b, bases(b)%g(ngb)%lx, EabX)
call gprod_1D(ay, alpha_a, bases(a)%g(nga)%ly, by, alpha_b, bases(b)%g(ngb)%ly, EabY)
call gprod_1D(az, alpha_a, bases(a)%g(nga)%lz, bz, alpha_b, bases(b)%g(ngb)%lz, EabZ)
lxmax=bases(a)%g(nga)%lx + bases(b)%g(ngb)%lx
lymax=bases(a)%g(nga)%ly + bases(b)%g(ngb)%ly
lzmax=bases(a)%g(nga)%lz + bases(b)%g(ngb)%lz
do ngc= 1, bases(c)%n
do ngd = 1, bases(d)%n
alpha_c=bases(c)%g(ngc)%alpha
alpha_d=bases(d)%g(ngd)%alpha
pp=alpha_c + alpha_d
cx=bases(c)%g(ngc)%x
cy=bases(c)%g(ngc)%y
cz=bases(c)%g(ngc)%z
dx=bases(d)%g(ngd)%x
dx=bases(d)%g(ngd)%y
dz=bases(d)%g(ngd)%z
PPX=(alpha_c*cx + alpha_d*dx)/pp
PPY=(alpha_c*cy + alpha_d*dy)/pp
PPZ=(alpha_c*cz + alpha_d*dz)/pp
llxmax=bases(c)%g(ngc)%lx + bases(d)%g(ngd)%lx
llymax=bases(c)%g(ngc)%ly + bases(d)%g(ngd)%ly
llzmax=bases(c)%g(ngc)%lz + bases(d)%g(ngd)%lz
call gprod_1D(cx, alpha_c, bases(c)%g(ngc)%lx, dx, alpha_d, bases(d)%g(ngd)%lx, EcdX)
call gprod_1D(cy, alpha_c, bases(c)%g(ngc)%ly, dy, alpha_d, bases(d)%g(ngd)%ly, EcdY)
call gprod_1D(cz, alpha_c, bases(c)%g(ngc)%lz, dz, alpha_d, bases(d)%g(ngd)%lz, EcdZ)
alpha=p*pp/(p+pp)
tmp=0
xmax= lxmax + llxmax
ymax = lymax + llymax
zmax = lzmax + llzmax
do x = 0, xmax
do y =0, ymax
do z=0, zmax
R(x+1,y+1,z+1)=Rntuv(0,x,y,z,alpha, PX, PY, PZ, PPX, PPY, PPZ)
end do
end do
end do
!if (a ==1 .and. b==1 .and. c ==1 .and. d==1) then
! print *,' R = ', R(1,1,1)
!print *, xmax, ymax, zmax
!print *,a,b,c,d,nga,ngb,ngc,ngd, 'R = ', R(1,1,1)
!end if
! if (PZ ==PPZ) then
! ! print *, R(1,1,1)
! output = Rntuv(0,0,0,0,alpha, PX, PY, PZ, PPX, PPY, PPZ)
! print *, output
! print *, a,b,c,d , PY, PPY
!
! end if
do lx = 0, lxmax
do ly = 0, lymax
do lz = 0, lzmax
do llx= 0, llxmax
do lly= 0, llymax
do llz= 0, llzmax
tmp = tmp + EabX(lx+1)*EabY(ly+1)*EabZ(lz+1)*(-1.0D0)**(llx + lly + llz) * &
EcdX(llx+1)*EcdY(lly+1)*EcdZ(llz+1)*R(lx+ llx+1, ly+lly+1, lz+llz+1)
end do
end do
end do
end do
end do
end do
Gabcd(a,b,c,d) = Gabcd(a,b,c,d) + 2.0D0*pi**2.5D0/(p*pp*sqrt(p + pp))*tmp*bases(a)%g(nga)%N &
* bases(b)%g(ngb)%N * bases(c)%g(ngc)%N * bases(d)%g(ngd)%N * bases(a)%c(nga) &
* bases(b)%c(ngb) * bases(c)%c(ngc) * bases(d)%c(ngd)
end do
end do
end do
end do
end do
end do
end do
end do
end subroutine Build_Electron_Repulsion
real(dp) function Rntuv(n, tmax, umax, vmax, p, Px, Py, Pz, Ax, Ay, Az) result(out)
!Rntuv(n, t,u,v,p,P,A)Determine the helper integral Rntuv for the coulomb
!integral of order n, the t,u,v th Hermite polynomial with exponent p
!centered at [Px Py Pz] and charge centered at location [Ax Ay Az];
implicit none
integer, intent(in) :: n, tmax, umax, vmax
real(dp), intent(in) :: Px, Py, Pz, Ax, Ay, Az, p
real(dp) :: PA2, output
real(dp), dimension(n+tmax+umax+vmax+2, tmax+1, umax+1, vmax+1) :: R
integer :: nmax, t, u, v
integer :: i, IFLAG
R=0
nmax = n+ tmax + umax + vmax + 2
PA2 = (Px-Ax)**2.0D0 + (Py-Ay)**2.0D0 + (Pz-Az)**2.0D0
do i = 0, nmax-1
output=Boys(i, p*PA2)
R(i+1,1,1,1)= (-2*p)**(1.0D0*i)*Boys(i, p*PA2)
end do
do t=1, tmax
if (t==1) then
do i=1,nmax-1
R(i,2,1,1)=(Px - Ax)*R(i+1,1,1,1)
end do
else
do i=1,nmax-1
R(i,t+1,1,1)=(t-1)*R(i+1,t-1,1,1)+ (Px-Ax)*R(i+1,t,1,1)
end do
end if
end do
do u = 1,umax
if (u==1) then
do i = 1,nmax-1
R(i,tmax+1,2,1)=(Py-Ay)*R(i+1,tmax+1,1,1)
end do
else
do i = 1,nmax-1
R(i,tmax+1,u+1,1)=(u-1)*R(i+1,tmax+1,u-1,1) + (Py-Ay)*R(i+1,tmax+1,u,1)
end do
end if
end do
do v=1,vmax
if (v==1) then
do i = 1, nmax-1
R(i,tmax+1,umax+1,2)=(Pz-Az)*R(i+1,tmax+1,umax+1,1)
end do
else
do i = 1, nmax-1
R(i,tmax+1,umax+1,v+1)=(v-1)*R(i+1,tmax+1,umax+1,v-1) + (Pz-Az)*R(i+1,tmax+1,umax+1,v)
end do
end if
end do
out = R(n+1,tmax+1,umax+1,vmax+1)
end function Rntuv
subroutine gprod_1D(x1, alpha1, lx1, x2, alpha2, lx2, Ex)
real(dp), intent(in) :: x1, alpha1, x2, alpha2
integer, intent(in) :: lx1, lx2
integer :: tmax, i, j ,t, qint
real(dp) :: p, q, midpoint, weighted_middle, KAB
real(dp), dimension(maxl), intent(inout) :: Ex
real(dp), dimension(maxl, maxl, 2*maxl) ::coefficients
coefficients=0.0D0
tmax=lx1 + lx2
Ex=0
p=alpha1 + alpha2
q=alpha1*alpha2/p
midpoint = x1 - x2
weighted_middle=(alpha1*x1 + alpha2*x2)/p
KAB= e**(-q*midpoint**2.0D0)
coefficients(1,1,1) = KAB
i=0
j=0
do while (i < lx1)
do t= 0, i+j+1
if (t==0) then
coefficients(i+2,j+1,t+1)=(weighted_middle - x1)*coefficients(i+1,j+1,t+1) + (t+1)*coefficients(i+1,j+1,t+2)
else
coefficients(i+2,j+1,t+1)=1/(2*p)*coefficients(i+1,j+1,t) + (weighted_middle-x1)*coefficients(i+1,j+1,t+1) + &
(t+1)*coefficients(i+1,j+1,t+2)
end if
end do
i=i+1
end do
do while (j < lx2)
do t=0, i+j+1
if (t==0) then
coefficients(i+1,j+2,t+1) = (weighted_middle - x2)*coefficients(i+1,j+1,t+1) + (dble(t)+1.0d0)*coefficients(i+1,j+1,t+2)
else
coefficients(i+1,j+2,t+1)=1/(2*p)*coefficients(i+1,j+1,t) + (weighted_middle - x2)*coefficients(i+1,j+1,t+1) + &
(t+1)*coefficients(i+1,j+1,t+2)
end if
end do
j=j+1
end do
do qint=1, i+j+1
Ex(qint) = coefficients(i+1,j+1,qint)
end do
end subroutine gprod_1D

Shooting method in fortran (neutron star oscillation)

I have been writing a script in fortran 90 for solving the radial oscillation problem of a neutron star with the use of shooting method. But for unknown reason, my program never works out. Without the shooting method component, the program runs smoothly as it successfully constructed the star. But once the shooting comes in, everything dies.
PROGRAM ROSCILLATION2
USE eos_parameters
IMPLICIT NONE
INTEGER ::i, j, k, l
INTEGER, PARAMETER :: N_ode = 5
REAL, DIMENSION(N_ode) :: y
REAL(8) :: rho0_cgs, rho0, P0, r0, phi0, pi
REAL(8) :: r, rend, mass, P, phi, delta, xi, eta
REAL(8) :: step, omega, omegastep, tiny, rho_print, Radius, B, a2, s0, lamda, E0, E
EXTERNAL :: fcn
!!!! User input
rho0_cgs = 2.D+15 !central density in cgs unit
step = 1.D-4 ! step size dr
omegastep = 1.D-2 ! step size d(omega)
tiny = 1.D-8 ! small number P(R)/P(0) to define star surface
!!!!!!!!!
open(unit=15, file="data.dat", status="new")
pi = ACOS(-1.D0)
a2 =((((1.6022D-13)**4)*(6.674D-11)*((2.997D8)**-7)*((1.0546D-34)**-3)*(1.D6))**(0.5D0))*a2_MeV !convert to code unit (km^-1)
B = ((1.6022D-13)**4)*(6.674D-11)*((2.997D8)**-7)*((1.0546D-34)**-3)*(1.D6)*B_MeV !convert to code unit (km^-2)
s0 = (1.D0/3.D0) - (1/(6*pi**2))*a2*((1/(16*pi**2)*a2**2 + (pi**-2)*a4*(rho0 - B))**-0.5) !square of the spped of sound at r=0
lamda = -0.5D0*log(1-2*y(1)/r)
E0 = (r0**-2)*s0*exp(lamda + 3*phi0)
rho0 = rho0_cgs*6.67D-18 / 9.D0 !convert rho0 to code unit (km^-2)
!! Calculate central pressure P0
P0 = (1.D0/3.D0)*rho0 - (4.D0/3.D0)*B - (1.D0/(a4*(12.D0)*(pi**2)))*a2**2 - &
&(a2/((3.D0)*a4))*(((1.D0/(16.D0*pi**4))*a2**2+(1.D0/(pi**2))*a4*(rho0-B))**0.5D0)
!! initial value for metric function phi
phi0 = 0.1D0 ! arbitrary (needed to be adjusted later)
r0 = 1.D-30 ! integration starting point
!! Set initial conditions
!!!!!!!!!!!!!!!!!
!!Start integration loop
!!!!!!!!!!!!!!!!!
r = r0
y(1) = 0.D0
y(2) = P0
y(3) = phi0
y(4) = 1/(3*E0)
y(5) = 1
omega = 2*pi*1000/(2.997D5) !omega of 1kHz in code unit
DO l = 1, 1000
omega = omega + omegastep !shooting method part
DO i = 1, 1000000000
rend = r0 + REAL(i)*step
call oderk(r,rend,y,N_ode,fcn)
r = rend
mass = y(1)
P = y(2)
phi = y(3)
xi = y(4)
eta = y(5)
IF (P < tiny*P0) THEN
WRITE(*,*) "Central density (10^14 cgs) = ", rho0_cgs/1.D14
WRITE(*,*) " Mass (solar mass) = ", mass/1.477D0
WRITE(*,*) " Radius (km) = ", r
WRITE(*,*) " Compactness M/R ", mass/r
WRITE(15,*) (omega*2.997D5/(2*pi)), y(5)
GOTO 21
ENDIF
ENDDO
ENDDO
21 CONTINUE
END PROGRAM roscillation2
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
SUBROUTINE fcn(r,y,yprime)
USE eos_parameters
IMPLICIT NONE
REAL(8), DIMENSION(5) :: y, yprime
REAL(8) :: r, m, P, phi, rho, pi, B, a2, xi, eta, W, Q, E, s, lamda, omega
INTEGER :: j
pi = ACOS(-1.D0)
a2 =((((1.6022D-13)**4)*(6.674D-11)*((2.997D8)**-7)*((1.0546D-34)**-3)*(1.D6))**(0.5D0))*a2_MeV !convert to code unit (km^-1)
B = ((1.6022D-13)**4)*(6.674D-11)*((2.997D8)**-7)*((1.0546D-34)**-3)*(1.D6)*B_MeV !convert to code unit (km^-2)
m = y(1)
P = y(2)
phi = y(3)
xi = y(4)
eta = y(5)
rho = 3.D0*P + 4.D0*B +((3.D0)/(4.D0*a4*(pi**2)))*a2**2+(a2/a4)*&
&(((9.D0/((16.D0)*(pi**4)))*a2**2+((3.D0/(pi**2))*a4*(P+B)))**0.5D0)
s = (1.D0/3.D0) - (1/(6*pi**2))*a2*((1/(16*pi**2)*a2**2 + (pi**-2)*a4*(rho - B))**-0.5) !square of speed of sound
W = (r**-2)*(rho + P)*exp(3*lamda + phi)
E = (r**-2)*s*exp(lamda + 3*phi)
Q = (r**-2)*exp(lamda + 3*phi)*(rho + P)*((yprime(3)**2) + 4*(r**-1)*yprime(3)- 8*pi*P*exp(2*lamda))
yprime(1) = 4.D0*pi*rho*r**2
yprime(2) = - (rho + P)*(m + 4.D0*pi*P*r**3)/(r*(r-2.D0*m))
yprime(3) = (m + 4.D0*pi*P*r**3)/(r*(r-2.D0*m))
yprime(4) = y(5)/(3*E)
yprime(5) = -(W*omega**2 + Q)*y(4)
END SUBROUTINE fcn
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!
!! Runge-Kutta method (from Numerical Recipes)
!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
subroutine oderk(ri,re,y,n,derivs)
INTEGER, PARAMETER :: NMAX=16
REAL(8) :: ri, re, step
REAL(8), DIMENSION(NMAX) :: y, dydx, yout
EXTERNAL :: derivs,rk4
call derivs(ri,y,dydx)
step=re-ri
CALL rk4(y,dydx,n,ri,step,yout,derivs)
do i=1,n
y(i)=yout(i)
enddo
return
end subroutine oderk
SUBROUTINE RK4(Y,DYDX,N,X,H,YOUT,DERIVS)
INTEGER, PARAMETER :: NMAX=16
REAL(8) :: H,HH,XH,X,H6
REAL(8), DIMENSION(N) :: Y, DYDX, YOUT
REAL(8), DIMENSION(NMAX) :: YT, DYT, DYM
EXTERNAL :: derivs
HH=H*0.5D0
H6=H/6D0
XH=X+HH
DO I=1,N
YT(I)=Y(I)+HH*DYDX(I)
ENDDO
CALL DERIVS(XH,YT,DYT)
DO I=1,N
YT(I)=Y(I)+HH*DYT(I)
ENDDO
CALL DERIVS(XH,YT,DYM)
DO I=1,N
YT(I)=Y(I)+H*DYM(I)
DYM(I)=DYT(I)+DYM(I)
ENDDO
CALL DERIVS(X+H,YT,DYT)
DO I=1,N
YOUT(I)=Y(I)+H6*(DYDX(I)+DYT(I)+2*DYM(I))
ENDDO
END SUBROUTINE RK4
Any reply would be great i am just really depressed for the long debugging.
Your program is blowing up because of this line:
yprime(5) = -(W*omega**2 + Q)*y(4)
in subroutine fcn. In this subroutine, omega is completely independent of the one declared in your main program. This one is uninitialized and used in an expression, which will either contain random values or zero, if your compiler is nice enough (or told) to initialize variables.
If you want the variable omega from your main program to be the same variable you use in fcn then you need to pass that variable to fcn somehow. Due to the way you've architected this program, passing it would require modifying all of your procedures to pass omega so that it can be provided to all of your calls to DERIVS (which is the dummy argument you are associating with fcn).
An alternative would be to put omega into a module and use that module where you need access to omega, e.g. declare it in eos_parameters instead of declaring it in the scoping units of fcn and your main program.