How to move an object to a std::async()? - c++

I need move an object to a async-function to let the other function manage my resources. But it seems very difficult.
For example, I want to send a fstream to an async-function.
void asv(std::ofstream s)
{
//do something.
}
I want to:
std::ofstream s("afs");
std::async(asv,std::move(s));
It can't be compiled.
But
std::ofstream s("afs");
asv(std::move(s));
can be compiled.
How could I do that?

That is the proper way to do it. (There is literally nothing to add to the answer)
If you are testing it with something like Coliru, note that you won't see any output from, say
void asv(std::string s){
std::cout << s << std::endl;
}
because without specifying launch policy (std::launch::async or std::launch::deferred), std::launch::deferred is used and thus the async call is lazy evaluated. (It waits with evaluation until first call to nontimed wait on the returned future.)
This assumes that you want a future, not a real thread. If you want real thread, std::thread is what you want.
---edit---
After a bit of searching I found out that libstdc++ hasn't implemented swap and move for file streams (search for 27.9). So, if you are using GCC or Clang with libstdc++, the answer is that you cannot do what you are asking for, even though it is fully compliant with standard.
Also it seems that Visual Studio has a completely different bug, that however also prevents this use case. For more details and possible workaround refer to this SO question and answer. Basically, while it has implemented move constructors, std::async constructor copies instead of decays the arguments.

Related

Is there a way to raise a compile time error when calling a given function several times in C++?

Is there a way in C++ to design a function / add some "attributes" to it in such a way that calling it several times in the code would raise a compile time error?
To give a bit of background / motivation: I was programming on Mbed-OS and I did a couple of mistakes that look like:
rtos::Thread thread;
[lots of code]
thread.start(persistent_function_1);
[lots of code in a setup function]
thread.start(persistent_function_2);
This had the (logical) consequence that the persistent_function_1, which should have been allowed to execute for the lifetime of the program, only got to execute until the thread was re-purposed to run persistent_function_2. It took me a long time to find this bug, and I was wondering if I can do something to my thread.start function to make sure I get a compiler error if I make this sort of mistake again.
I don't think there is a way to coerce the C++ language directly to detect double invocation of start() at compile time (put differently, I don't think #user4581301's suggestion would work): to statically assert a property you'd need to somehow change the entity. I'm sure you could write a custom checker using clang but I guess that isn't what you are after. It would, obviously, be possible to have a run-time assertion which reports that an already start()ed thread is started again. Again, that doesn't seem to be what you are after.
The "obvious" solution is no to have "[lots of code]" in a function to start with. In fact, std::thread entirely side-steps that issue by enforcing that there is no code between the object declaration and its start: the std::thread is started upon construction. The setup with "[lots of code]" between the object declaration and the start would be something like
my::thread thread([&]{
[lots of code]
return persistent_function_1;
}());
The caveat is that you'd need to set up your various variables sort of out of order. That is, the preferred approach would be to declare the thread object at the site where it is actually started:
[lots of code]
my::thread thread(persistent_function_1);
In both of these cases my::thread would be a trivial wrapper around rtos::thread which doesn't expose a separate start() method. As I don't know why rtos::thread separates construction and start() and a plausible reason could be the ability to set up various thread parameters, it may be reasonable to actually use two separate arguments to my::thread's constructor:
A function taking a my::thread::properties entity as parameter which allows the necessary manipulations of the thread object.
The function to be started.
That is, something like
my::thread thread([](my::thread::properties& properties) {
[lots of code manipulating the properties]
},
persistent_function_1);
This way, it remains possible to manipulate the thread but you can't possible start() a thread twice.
One option is to wrap the thread in a new manager object, with the rough shape of
class thread_manager {
rtos::Thread thread;
const std::function<...> execution_function;
/* .
.
. */
public:
thread_manager(rtos::Thread _thread, std::function<...> function, ...)
: thread { _thread }
, execution_function { function }
, ...
void start();
}
and disallowing any other usage of threading (which can be justified on the basis of encapsulation, although as pointed out in comments, yahoos are always a risk).
There is no current mechanism for detecting an expression that appears twice. But you can torture the compiler to get something close
namespace
{
template<int>
struct once
{
once() {}
friend void redefine() {}
};
}
#define ONCE(expr) (once<__COUNTER__>{}, (expr))
If ONCE ever appear twice in the same TU, the compiler will complain about redefining redefine.
ONCE(thread.start(persistent_function_1)); // ok
ONCE(thread.start(persistent_function_2)); // error

C++ link time resource "allocation" without defines

I'm currently working on a C++ class for an ESP32. I want to implement resource allocation of the resources like: IO-Pins, available RMT channels and so on.
My idea is to do this with some kind of resource handler which checks this at compile time, but I have no good idea nor did I find anything about something like this yet.
To clarify my problem lets have an example of what I mean.
Microcontroller X has IO pins 1-5, each of these can be used by exactly one component.
Components don't know anything from each other an take the pin they should use as a ctor argument.
Now I want to have a class/method/... that checks if the pin, a component needs, is already allocated at compile time.
CompA a(5); //works well: 5 is not in use
CompB b(3); //same as before, without the next line it should compile
CompC c(5); //Pin 5 is already in use: does not compile!
Im not sure yet how to do so. My best guess (as I can't use defines here: users should be able to use it only by giving a parameter or template argument) is, that it might work with a template function, but I did not find any way of checking which other parameters have been passed to a template method/class yet.
Edit1: Parts of the program may be either autogenerated or user defined in a manner, they do not know about other pin usages. The allocation thus is a "security" feature which should disallow erroneous code. This should also forbid it, if the register functions are in different code pathes (even if they might exclude each other)
Edit2: I got a response, that compile time is wrong here as components might be compiled separated from another. So the only way to do so seems like a linker error.
A silly C-style method: you could desperately use __COUNTER__ as the constructor's argument. This dynamic macro increases itself after each appearance, starting with 0.
I hope there's a better solution.

Getting address of string in stringstream object

Is it possible to get the pointer to the string stored in string stream object . Basically i want to copy the string from that location into another buffer ..
I found that i can get the length from below code
myStringStreamObj.seekg(0, ios::end);
lengthForStringInmyStringStreamObj = myStringStreamObj.tellg();
I know i can always domyStringStreamObj.str().c_str(). However my profiler tells me this code is taking time and i want to avoid it . hence i need some good alternative to get pointer to that string.
My profiler also tells me that another part of code where is do myStringStreamObj.str(std::string()) is slow too . Can some one guide me on this too .
Please , I cant avoid stringstream as its part of a big code which i cant change / dont have permission to change .
The answer is "no". The only documented API to obtain the formatted string contents is the str() method.
Of course, there's always a small possibility that whatever the compiler or platform you're using might have its own specific non-standard and/or non-documented methods for accessing the internals of a stringstream object; which might be faster. Because your question did not specify any particular compiler or implementation, I must conclude that you are looking for a portable, standards-compliant answer; so the answer in that case is a pretty much a "no".
I would actually be surprised if any particular compiler or platform, even some who might have a "reputation" for poisonings language standards <cough>, would offer any alternatives. I would expect that all implementations would prefer to keep the internal stringstream moving gears private, so that they can be tweaked and fiddled with, in future releases, without breaking binary ABI compatibility.
The only other possibility you might want to investigate is to obtain the contents of the stringstream using its iterators. This is, of course, an entirely different mechanism for pulling out what's in a stringstream; and is not as straightforward as just calling one method that hands you the string, on a silver platter; so it's likely to involve a fairly significant rewrite of your code that works with the returned string. But it is possible that iterating over what's in the stringstream might turn out to be faster since, presumably, there will not be any need for the implementation to allocate a new std::string instance just for str()'s benefit, and jamming everything inside it.
Whether or not iterating will be faster in your case depends on how your implementation's stringstream works, and how efficient the compiler is. The only way to find out is to go ahead and do it, then profile the results.
I can not provide a portable, standards compliant method.
Although you can't get the internal buffer you can provide your own.
According to the standard setting the internal buffer of a std::stringbuf object has implementation defined behaviour.
cplusplus.com: std::stringbuf::setbuf()
As it happens in my implementation of GCC 4.8.2 the behaviour is to use the external buffer you provide instead if its internal std::string.
So you can do this:
int main()
{
std::ostringstream oss;
char buf[1024]; // this is where the data ends up when you write to oss
oss.rdbuf()->pubsetbuf(buf, sizeof(buf));
oss << "Testing" << 1 << 2 << 3.2 << '\0';
std::cout << buf; // see the data
}
But I strongly advise that you only do stuff like this as a (very) temporary measure while you sort out something more efficient that is portable according to the standard.
Having said all that I looked at how my implementation implements std::stringstream::str() and it basically returns its internal std::string so you get direct access and with optimization turned on the function calls should be completely optimized away. So this should be the preferred method.

Parsing C++ to make some changes in the code

I would like to write a small tool that takes a C++ program (a single .cpp file), finds the "main" function and adds 2 function calls to it, one in the beginning and one in the end.
How can this be done? Can I use g++'s parsing mechanism (or any other parser)?
If you want to make it solid, use clang's libraries.
As suggested by some commenters, let me put forward my idea as an answer:
So basically, the idea is:
... original .cpp file ...
#include <yourHeader>
namespace {
SpecialClass specialClassInstance;
}
Where SpecialClass is something like:
class SpecialClass {
public:
SpecialClass() {
firstFunction();
}
~SpecialClass() {
secondFunction();
}
}
This way, you don't need to parse the C++ file. Since you are declaring a global, its constructor will run before main starts and its destructor will run after main returns.
The downside is that you don't get to know the relative order of when your global is constructed compared to others. So if you need to guarantee that firstFunction is called
before any other constructor elsewhere in the entire program, you're out of luck.
I've heard the GCC parser is both hard to use and even harder to get at without invoking the whole toolchain. I would try the clang C/C++ parser (libparse), and the tutorials linked in this question.
Adding a function at the beginning of main() and at the end of main() is a bad idea. What if someone calls return in the middle?.
A better idea is to instantiate a class at the beginning of main() and let that class destructor do the call function you want called at the end. This would ensure that that function always get called.
If you have control of your main program, you can hack a script to do this, and that's by far the easiet way. Simply make sure the insertion points are obvious (odd comments, required placement of tokens, you choose) and unique (including outlawing general coding practices if you have to, to ensure the uniqueness you need is real). Then a dumb string hacking tool to read the source, find the unique markers, and insert your desired calls will work fine.
If the souce of the main program comes from others sources, and you don't have control, then to do this well you need a full C++ program transformation engine. You don't want to build this yourself, as just the C++ parser is an enormous effort to get right. Others here have mentioned Clang and GCC as answers.
An alternative is our DMS Software Reengineering Toolkit with its C++ front end. DMS, using its C++ front end, can parse code (for a variety of C++ dialects), builds ASTs, carry out full name/type resolution to determine the meaning/definition/use of all symbols. It provides procedural and source-to-source transformations to enable changes to the AST, and can regenerate compilable source code complete with original comments.

Finding C++ static initialization order problems

We've run into some problems with the static initialization order fiasco, and I'm looking for ways to comb through a whole lot of code to find possible occurrences. Any suggestions on how to do this efficiently?
Edit: I'm getting some good answers on how to SOLVE the static initialization order problem, but that's not really my question. I'd like to know how to FIND objects that are subject to this problem. Evan's answer seems to be the best so far in this regard; I don't think we can use valgrind, but we may have memory analysis tools that could perform a similar function. That would catch problems only where the initialization order is wrong for a given build, and the order can change with each build. Perhaps there's a static analysis tool that would catch this. Our platform is IBM XLC/C++ compiler running on AIX.
Solving order of initialization:
First off, this is just a temporary work-around because you have global variables that you are trying to get rid of but just have not had time yet (you are going to get rid of them eventually aren't you? :-)
class A
{
public:
// Get the global instance abc
static A& getInstance_abc() // return a reference
{
static A instance_abc;
return instance_abc;
}
};
This will guarantee that it is initialised on first use and destroyed when the application terminates.
Multi-Threaded Problem:
C++11 does guarantee that this is thread-safe:
ยง6.7 [stmt.dcl] p4
If control enters the declaration concurrently while the variable is being initialized, the concurrent execution shall wait for completion of the initialization.
However, C++03 does not officially guarantee that the construction of static function objects is thread safe. So technically the getInstance_XXX() method must be guarded with a critical section. On the bright side, gcc has an explicit patch as part of the compiler that guarantees that each static function object will only be initialized once even in the presence of threads.
Please note: Do not use the double checked locking pattern to try and avoid the cost of the locking. This will not work in C++03.
Creation Problems:
On creation, there are no problems because we guarantee that it is created before it can be used.
Destruction Problems:
There is a potential problem of accessing the object after it has been destroyed. This only happens if you access the object from the destructor of another global variable (by global, I am referring to any non-local static variable).
The solution is to make sure that you force the order of destruction.
Remember the order of destruction is the exact inverse of the order of construction. So if you access the object in your destructor, you must guarantee that the object has not been destroyed. To do this, you must just guarantee that the object is fully constructed before the calling object is constructed.
class B
{
public:
static B& getInstance_Bglob;
{
static B instance_Bglob;
return instance_Bglob;;
}
~B()
{
A::getInstance_abc().doSomthing();
// The object abc is accessed from the destructor.
// Potential problem.
// You must guarantee that abc is destroyed after this object.
// To guarantee this you must make sure it is constructed first.
// To do this just access the object from the constructor.
}
B()
{
A::getInstance_abc();
// abc is now fully constructed.
// This means it was constructed before this object.
// This means it will be destroyed after this object.
// This means it is safe to use from the destructor.
}
};
I just wrote a bit of code to track down this problem. We have a good size code base (1000+ files) that was working fine on Windows/VC++ 2005, but crashing on startup on Solaris/gcc.
I wrote the following .h file:
#ifndef FIASCO_H
#define FIASCO_H
/////////////////////////////////////////////////////////////////////////////////////////////////////
// [WS 2010-07-30] Detect the infamous "Static initialization order fiasco"
// email warrenstevens --> [initials]#[firstnamelastname].com
// read --> http://www.parashift.com/c++-faq-lite/ctors.html#faq-10.12 if you haven't suffered
// To enable this feature --> define E-N-A-B-L-E-_-F-I-A-S-C-O-_-F-I-N-D-E-R, rebuild, and run
#define ENABLE_FIASCO_FINDER
/////////////////////////////////////////////////////////////////////////////////////////////////////
#ifdef ENABLE_FIASCO_FINDER
#include <iostream>
#include <fstream>
inline bool WriteFiasco(const std::string& fileName)
{
static int counter = 0;
++counter;
std::ofstream file;
file.open("FiascoFinder.txt", std::ios::out | std::ios::app);
file << "Starting to initialize file - number: [" << counter << "] filename: [" << fileName.c_str() << "]" << std::endl;
file.flush();
file.close();
return true;
}
// [WS 2010-07-30] If you get a name collision on the following line, your usage is likely incorrect
#define FIASCO_FINDER static const bool g_psuedoUniqueName = WriteFiasco(__FILE__);
#else // ENABLE_FIASCO_FINDER
// do nothing
#define FIASCO_FINDER
#endif // ENABLE_FIASCO_FINDER
#endif //FIASCO_H
and within every .cpp file in the solution, I added this:
#include "PreCompiledHeader.h" // (which #include's the above file)
FIASCO_FINDER
#include "RegularIncludeOne.h"
#include "RegularIncludeTwo.h"
When you run your application, you will get an output file like so:
Starting to initialize file - number: [1] filename: [p:\\OneFile.cpp]
Starting to initialize file - number: [2] filename: [p:\\SecondFile.cpp]
Starting to initialize file - number: [3] filename: [p:\\ThirdFile.cpp]
If you experience a crash, the culprit should be in the last .cpp file listed. And at the very least, this will give you a good place to set breakpoints, as this code should be the absolute first of your code to execute (after which you can step through your code and see all of the globals that are being initialized).
Notes:
It's important that you put the "FIASCO_FINDER" macro as close to the top of your file as possible. If you put it below some other #includes you run the risk of it crashing before identifying the file that you're in.
If you're using Visual Studio, and pre-compiled headers, adding this extra macro line to all of your .cpp files can be done quickly using the Find-and-replace dialog to replace your existing #include "precompiledheader.h" with the same text plus the FIASCO_FINDER line (if you check off "regular expressions, you can use "\n" to insert multi-line replacement text)
Depending on your compiler, you can place a breakpoint at the constructor initialization code. In Visual C++, this is the _initterm function, which is given a start and end pointer of a list of the functions to call.
Then step into each function to get the file and function name (assuming you've compiled with debugging info on). Once you have the names, step out of the function (back up to _initterm) and continue until _initterm exits.
That gives you all the static initializers, not just the ones in your code - it's the easiest way to get an exhaustive list. You can filter out the ones you have no control over (such as those in third-party libraries).
The theory holds for other compilers but the name of the function and the capability of the debugger may change.
perhaps use valgrind to find usage of uninitialized memory. The nicest solution to the "static initialization order fiasco" is to use a static function which returns an instance of the object like this:
class A {
public:
static X &getStatic() { static X my_static; return my_static; }
};
This way you access your static object is by calling getStatic, this will guarantee it is initialized on first use.
If you need to worry about order of de-initialization, return a new'd object instead of a statically allocated object.
EDIT: removed the redundant static object, i dunno why but i mixed and matched two methods of having a static together in my original example.
There is code that essentially "initializes" C++ that is generated by the compiler. An easy way to find this code / the call stack at the time is to create a static object with something that dereferences NULL in the constructor - break in the debugger and explore a bit. The MSVC compiler sets up a table of function pointers that is iterated over for static initialization. You should be able to access this table and determine all static initialization taking place in your program.
We've run into some problems with the
static initialization order fiasco,
and I'm looking for ways to comb
through a whole lot of code to find
possible occurrences. Any suggestions
on how to do this efficiently?
It's not a trivial problem but at least it can done following fairly simple steps if you have an easy-to-parse intermediate-format representation of your code.
1) Find all the globals that have non-trivial constructors and put them in a list.
2) For each of these non-trivially-constructed objects, generate the entire potential-function-tree called by their constructors.
3) Walk through the non-trivially-constructor function tree and if the code references any other non-trivially constructed globals (which are quite handily in the list you generated in step one), you have a potential early-static-initialization-order issue.
4) Repeat steps 2 & 3 until you have exhausted the list generated in step 1.
Note: you may be able to optimize this by only visiting the potential-function-tree once per object class rather than once per global instance if you have multiple globals of a single class.
Replace all the global objects with global functions that return a reference to an object declared static in the function. This isn't thread-safe, so if your app is multi-threaded you might need some tricks like pthread_once or a global lock. This will ensure that everything is initialized before it is used.
Now, either your program works (hurrah!) or else it sits in an infinite loop because you have a circular dependency (redesign needed), or else you move on to the next bug.
The first thing you need to do is make a list of all static objects that have non-trivial constructors.
Given that, you either need to plug through them one at a time, or simply replace them all with singleton-pattern objects.
The singleton pattern comes in for a lot of criticism, but the lazy "as-required" construction is a fairly easy way to fix the majority of the problems now and in the future.
old...
MyObject myObject
new...
MyObject &myObject()
{
static MyObject myActualObject;
return myActualObject;
}
Of course, if your application is multi-threaded, this can cause you more problems than you had in the first place...
Gimpel Software (www.gimpel.com) claims that their PC-Lint/FlexeLint static analysis tools will detect such problems.
I have had good experience with their tools, but not with this specific issue so I can't vouch for how much they would help.
Some of these answers are now out of date. For the sake of people coming from search engines, like myself:
On Linux and elsewhere, finding instances of this problem is possible through Google's AddressSanitizer.
AddressSanitizer is a part of LLVM starting with version 3.1 and a
part of GCC starting with version 4.8
You would then do something like the following:
$ g++ -fsanitize=address -g staticA.C staticB.C staticC.C -o static
$ ASAN_OPTIONS=check_initialization_order=true:strict_init_order=true ./static
=================================================================
==32208==ERROR: AddressSanitizer: initialization-order-fiasco on address ... at ...
#0 0x400f96 in firstClass::getValue() staticC.C:13
#1 0x400de1 in secondClass::secondClass() staticB.C:7
...
See here for more details:
https://github.com/google/sanitizers/wiki/AddressSanitizerInitializationOrderFiasco
Other answers are correct, I just wanted to add that the object's getter should be implemented in a .cpp file and it should not be static. If you implement it in a header file, the object will be created in each library / framework you call it from....
If your project is in Visual Studio (I've tried this with VC++ Express 2005, and with Visual Studio 2008 Pro):
Open Class View (Main menu->View->Class View)
Expand each project in your solution and Click on "Global Functions and Variables"
This should give you a decent list of all of the globals that are subject to the fiasco.
In the end, a better approach is to try to remove these objects from your project (easier said than done, sometimes).