Use reference argument in recursive function in C++ - c++

In a recursive function in C++, one of its argument is reference type. I just want to know what will happen during the recursive call of the function.
Without reference type, I believe every time the function is called recursively, a new variable will be created in the stack. So with the reference, every time what has been created in stack now is some kind of pointer pointing to the address of the original variable where it is declared,right?
So by using reference in such scenario, I believe sometimes we can save some memory.

Yes, you've got the right idea. Note, of course, that you only save memory if the parameter type is larger than a pointer. A reference to an integer (or maybe even a double) won't save any memory on the stack.

Usually parameter values change during recursion. You can't simply share those across all levels.
Furthermore, when a function is not inlined (and recursion interferes with inlining), passing an argument by reference costs as much space as a pointer.

Related

Does it matter (performance wise) if we pass integer or Boolean variables by reference? [duplicate]

This question already has answers here:
Closed 10 years ago.
Possible Duplicate:
Is it better to pass by value or by reference for basic datatypes?
Reasons to not pass simple types by reference?
I did some testing where I had two scenarios, each with two identical functions- one passing the parameter by reference and the other by value. The scenario with strings showed a massive performance increase (because a copy of string is made, calling a constructor) whereas the test with long didn't show any performance increase when passing the value by reference. In fact, sometimes the performance was worse.
Is this expected with primitive types? Is there no point passing them by reference?
I was expecting a copy of a primitive type is made when not using by reference and therefore expected a small performance-boost.
You get the best performance from passing primitive types by value. This is because:
primitives are blitable, so the cost of the copy depends on the size
primitives are small, only double and long long are bigger than a reference in most environments
pass-by-value avoids aliasing, allowing the optimizer to really do its thing
This last point is often overlooked but can make a considerable difference.
Yes, that's the expected behavior. When you're passing parameters by reference, you're actually passing an address of the variable (like with pointer). Usually address is a 4 or 8-byte integer, so unless your primitive type is larger than that, you won't gain any performance improvement (and even if it's larger, you probably won't)
Modern compilers are pretty clever, so if the function isn't "hidden" (that is, part of something the compiler can't see at the time of producing the code), it may well make no difference at all. HOwever, if it the compiler follows your instructions, passing simple types as reference does potentially make a big difference. Particularly if the value is updated many times in the code.
I saw some code where I worked, which did something like this:
void SomeClass::FindLength(int &len)
{
listEntry* list = theList; // theList is a member variable.
len = 0;
while (list)
{
len++;
list = list->next;
}
}
By alterning the code to do:
void SomeClass::FindLength(int &len)
{
listEntry* list = theList; // theList is a member variable.
int tempLen = 0;
while (list)
{
tempLen++;
list = list->next;
}
len = tempLen;
}
the whole code ran some 30% faster, and called from a lot of places (and I think there was some if-condition in the middle, so we couldn't just keep track of the length). And since it was part of an API function, it wasn't possible to change the function signature.
The reason it was slower using the reference is that the compiler would write to the reference value EVERY time it was updated, which was a load from memory to register, increment register and a store register to memory. With the tempLen solution, the compiler could use a register, which is much faster.
In c++ reference is just convinient way to use pointers. When you use pointer you adding additional indirection. Copying primitive types as cheap as copying pointer.
That is why primitive types passed by reference a bit slower
Because you used c tag, I guess you are speaking about pointers (not explicit references from C++).
With pointers, you have two memory access: the pointer and the pointed value. So there is no particular gain of performances. Moreover, the compiler can do more optimisations with values: there is no aliasing problems, for example.
Is this expected with primitive types?
I'd say absolutely. They don't have constructors, so that doesn't need to be called.
Is there no point passing them by reference?
There is: when you want to have output parameters, then, in C++, passing by reference is considered better pracitce than passing a pointer.
I was expecting a copy of a primitive type is made when not using by reference and therefore expected a small performance-boost.
Well, since passing by reference is usually implemented using pointers, then the compiler has to emit code that pushes something onto the stack, either the value, or a pointer to the value - and it really does not matter which one is done.
When you pass a value by reference the function must dereference it to obtain the value, and each time you modify the value a dereference must occur too since you are writing it in a memory location. I guess compilers are able to understand when something won't be stored back in its reference location so that the value is modified just on registers and stored back just when needed but I'm not sure how powerful this is.
So there is an indirect step that is not present while passing parameters by value, which can cause worse performance but it's really foggy since compiler optimizations come into place. Think about the fact that you are passing a pointer, every time you need the value you must fetch the pointer from the stack and then fetch the value pointed (so there are two accesses), while with a normal parameter you have just one (fetching the value).
In any case, a reference is used for purposes that are surely different from performance, like modifying the passed parameter locally.

How to set pointer to something if it's null and I can't deference it? [duplicate]

In what circumstances should I prefer pass-by-reference? Pass-by-value?
There are four main cases where you should use pass-by-reference over pass-by-value:
If you are calling a function that needs to modify its arguments, use pass-by-reference or pass-by-pointer. Otherwise, you’ll get a copy of the argument.
If you're calling a function that needs to take a large object as a parameter, pass it by const reference to avoid making an unnecessary copy of that object and taking a large efficiency hit.
If you're writing a copy or move constructor which by definition must take a reference, use pass by reference.
If you're writing a function that wants to operate on a polymorphic class, use pass by reference or pass by pointer to avoid slicing.
There are several considerations, including:
Performance
Passing by value copies the data, so passing large data structures by value can inhibit performance. Passing by reference passes only a reference (basically the address) to the data. For large data structures, this can greatly improve performance. For smaller data structures (like an int), passing by reference can inhibit performance.
Modifications
Passing by value copies the data so if the target code modifies that copy, it will not affect the original. Passing by reference passes only the address of the data, so modifications made against that reference will be "visible" to the calling code.
Yes.
Pass by value for things like native types that are small enough that passing them directly is efficient. Otherwise use pass by (const) reference.
The hard part is writing a template that could apply to either (in which case, you usually want to use pass by reference -- the potential penalty for passing a large object by value is much worse than the potential penalty for passing by reference when passing by value would have been preferred).
Edit: this, of course, is assuming a situation where the required semantics would allow either one -- obviously if you're working with something like polymorphic objects, there's no real "preference" involved, because you must use a pointer or reference to get correct behavior.
As others already have replied to your question sufficiently well, I would like to add an important point:
If the class does not have public copy-constructor, then you don't have choice to pass by value; you have to pass by reference (or you can pass pointer).
The following program would not compile:
class A
{
public:
A(){}
private:
A(const A&) {}
};
//source of error : pass by value
void f(A ) {}
int main() {
A a;
f(a);
return 0;
}
Error:
prog.cpp: In function ‘int main()’:
prog.cpp:10: error: ‘A::A(const A&)’ is private
prog.cpp:18: error: within this context
prog.cpp:18: error: initializing argument 1 of ‘void f(A)’
See yourself at ideone : http://www.ideone.com/b2WLi
But once you make function f pass by reference, then it compiles fine : http://www.ideone.com/i6XXB
here's the simple rule:
pass by reference when the value is large.
the other answers are amazing. Just trying to make this simplest.
You have tagged your question with both C and C++.
Therefore, I suggest that you consider using pass by reference in C++ which supports this feature and that you do not consider using it in C which does not support this feature.
pass by reference can be called only in below conditions:
Pass-by-references is more efficient than pass-by-value, because it does not copy the arguments. The formal parameter is an alias for the argument. When the called function read or write the formal parameter, it is actually read or write the argument itself.
The difference between pass-by-reference and pass-by-value is that modifications made to arguments passed in by reference in the called function have effect in the calling function, whereas modifications made to arguments passed in by value in the called function can not affect the calling function.
Use pass-by-reference if you want to modify the argument value in the calling function. Otherwise, use pass-by-value to pass arguments.
The difference between pass-by-reference and pass-by-pointer is
that pointers can be NULL or reassigned whereas references cannot.
Use pass-by-pointer if NULL is a valid parameter value or if you want to reassign the pointer.
Otherwise, use constant or non-constant references to pass arguments.
While pointers are references, "reference" in c++ usually refers to the practice of tagging a parameter of SomeType&.
Which you should never do. The only place it is appropriate is as a magic syntax required to implement the various pre-defined operators. Otherwise:
You should never pass out parameters by reference - pass by pointer, otherwise you make code reviews all but impossible. Pass by reference makes it impossible to tell by examining a call which parameters can be expected to be changed.
You should never pass in parameter by reference either. Again, this means you are performing a meta optimization. You should always just pass-by-value, otherwise you are guilty of peeking inside an object, examining its implementation and deciding that pass-by-reference is preferred for some reason.
Any c++ class should implement all the copy and assignment constructors and overloads necessary to be passed around by value. Otherwise it has not done its job, of abstracting the programmer from the implementation details of the class.

Eliminate pointer resolution on call of function pointer

I have a really strange question (I know, these types of optimizations are whacky and 99% of the time useless, but this is just an interesting case):
Suppose we have a struct with 1 method and 1 function pointer, that is assigned at RT. Considering when the functions are identical, the call to function pointer will require an additional pointer resolution and thus little-bit slower (where a method call is just a static offset).
Can we somehow eliminate this pointer resolution? (given that our dynamically assigned function pointer will never change afterwards)
The only solution I've thought of was to declare this "function pointer" as a static array of bytes, copy the code there, set memory to be executable and call it. That way the call also be identical to a "method" call.
Are there any other ways to achieve this strange run-time "linking"? (if you can call it this way :))

Where is stored in memory the reference to current object?

I have a simple question. I know that after compile a program when I call a function a call stack is generated with the arguments, space for local vars, return point and the registers that i'm charged.
But in object-oriented language like c++, where the compiler stores the reference to the current object? object->instanceMethod() will store the object pointer like an argument in the call stack?
I know the question is generalist and thanks for the answer
It's implementation-defined but in practice you will find that most (all?) C++ compilers generate code which passes the this pointer as a hidden first argument to the function, so you can access it without explicitely specifiying it in the method signature.
In C++, when a member function is called the pointer to the instance on which it will operate (i.e. what will be this inside the function) is implicitly passed alongside the other function arguments/parameters. Actually, different systems use different conventions, so some number of such parameters could be packed into registers and never placed on the stack (this tends to be faster), but your conception is basically sound.

C++: How do I decide if to pass params by ref or by value?

With C++ how do i decide if i should pass an argument by value or by reference/pointer? (tell me the answer for both 32 and 64bits) Lets take A. Is 2 32bit values more less or equal work as a pointer to a 32bit value?
B to me seems like i always should pass by value. C i think i should pass by value but someone told me (however i haven't seen proof) that processors don't handle values not their bitsize and so it is more work. So if i were passing them around would it be more work to pass by value thus byref is faster? Finally i threw in an enum. I think enums should always be by value
Note: When i say by ref i mean a const reference or pointer (can't forget the const...)
struct A { int a, b; }
struct B { int a; }
struct C { char a, b; }
enum D { a,b,c }
void fn(T a);
Now tell me the answer if i were pushing the parameters many times and the code doesn't use a tail call? (lets say the values isnt used until 4 or so calls deep)
Forget the stack size. You should pass by reference if you want to change it, otherwise you should pass by value.
Preventing the sort of bugs introduced by allowing functions to change your data unexpectedly is far more important than a few bytes of wasted stack space.
If stack space becomes a problem, stop using so many levels (such as replacing a recursive solution with an iterative one) or expand your stack. Four levels of recursion isn't usually that onerous, unless your structures are massive or you're operating in the embedded world.
If performance becomes a problem, find a faster algorithm :-) If that's not possible, then you can look at passing by reference, but you need to understand that it's breaking the contract between caller and callee. If you can live with that, that's okay. I generally can't :-)
The intent of the value/reference dichotomy is to control what happens to the thing you pass as a parameter at the language level, not to fiddle with the way an implementation of the language works.
I pass all parameters by reference for consistency, including builtins (of course, const is used where possible).
I did test this in performance critical domains -- worst case loss compared to builtins was marginal. Reference can be quite a bit faster, for non-builtins, and when the calls are deep (as a generalization). This was important for me as I was doing quite a bit of deep TMP, where function bodies were tiny.
You might consider breaking that convention if you're counting instructions, the hardware is register-starved (e.g. embedded), or if the function is not a good candidate for inlining.
Unfortunately, the question you ask is more complex than it appears -- the answer may vary greatly by your platform, ABI, calling conventions, register counts, etc.
A lot depends on your requirement but best practice is to pass by reference as it reduces the memory foot print.
If you pass large objects by value, a copy of it is made in memory andthe copy constructor is called for making a copy of this.
So it will take more machine cycles and also, if you pass by value, changes are not reflected in the original object.
So try passing them by reference.
Hope this has been helpful to you.
Regards, Ken
First, reference and pointers aren't the same.
Pass by pointer
Pass parameters by pointers if any/some of these apply:
The passed element could be null.
The resource is allocated inside the called function and the caller is responsible should be responsible for freeing such a resource. Remember in this case to provide a free() function for that resource.
The value is of a variable type, like for example void*. When it's type is determined at runtime or depending on the usage pattern (or hiding implementation - i.e Win32 HANDLE), such as a thread procedure argument. (Here favor c++ templates and std::function, and use pointers for this purpose only if your environment does not permit otherwise.
Pass by reference
Pass parameters by reference if any/some of these apply:
Most of the time. (prefer passing by const reference)
If you want the modifications to the passed arguments to be visible to the caller. (unless const reference is used).
If the passed argument is never null.
If you know what is the passed argument type and you have control over function's signature.
Pass by copy
Pass a copy if any/some of these apply:
Generally try to avoid this.
If you want to operate on a copy of the passed argument. i.e you know that the called function would create a copy anyway.
With primitive types smaller than the system's pointer size - as it makes no performance/memory difference compared to a const ref.
This is tricky - when you know that the type implements a move constructor (such as std::string in C++11). It then looks as if you're passing by copy.
Any of these three lists can go more longer, but these are - I would say - the basic rules of thumb.
Your complete question is a bit unclear to me, but I can answer when you would use passing by value or by reference.
When passing by value, you have a complete copy of the parameter into the call stack. It's like you're making a local variable in the function call initialized with whatever you passed into it.
When passing by reference, you... well, pass by reference. The main difference is that you can modify the external object.
There is the benefit of reducing memory load for large objects passing by reference. For basic data types (32-bit or 64-bit integers, for example), the performance is negligible.
Generally, if you're going to work in C/C++ you should learn to use pointers. Passing objects as parameters will almost always be passed via a pointer (vs reference). The few instances you absolutely must use references is in the copy constructor. You'll want to use it in the operators as well, but it's not required.
Copying objects by value is usually a bad idea - more CPU to do the constructor function; more memory for the actual object. Use const to prevent the function modifying the object. The function signature should tell the caller what might happen to the referenced object.
Things like int, char, pointers are usually passed by value.
As to the structures you outlined, passing by value will not really matter. You need to do profiling to find out, but on the grand scheme of a program you be better off looking elsewhere for increasing performance in terms of CPU and/or memory.
I would consider whether you want value or reference semantics before you go worrying about optimizations. Generally you would pass by reference if you want the method you are calling to be able to modify the parameter. You can pass a pointer in this case, like you would in C, but idiomatic C++ tends to use references.
There is no rule that says that small types or enums should always be passed by value. There is plenty of code that passes int& parameters, because they rely on the semantics of passing by reference. Also, you should keep in mind that for any relatively small data type, you won't notice a difference in speed between passing by reference and by value.
That said, if you have a very large structure, you probably don't want to make lots of copies of it. This is where const references are handy. Do keep in mind though that const in C++ is not strictly enforced (even if it's considered bad practice, you can always const_cast it away). There is no reason to pass a const int& over an int, although there is a reason to pass a const ClassWithManyMembers& over a ClassWithManyMembers.
All of the structs that you listed I would say are fine to pass by value if you are intending them to be treated as values. Consider that if you call a function that takes one parameter of type struct Rectangle{int x, y, w, h}, this is the same as passing those 4 parameters independently, which is really not a big deal. Generally you should be more worried about the work that the copy constructor has to do - for example, passing a vector by value is probably not such a good idea, because it will have to dynamically allocate memory and iterate through a list whose size you don't know, and invoke many more copy constructors.
While you should keep all this in mind, a good general rule is: if you want refence semantics, pass by refence. Otherwise, pass intrinsics by value, and other things by const reference.
Also, C++11 introduced r-value references which complicate things even further. But that's a different topic.
These are the rules that I use:
for native types:
by value when they are input arguments
by non-const reference when they are mandatory output arguments
for structs or classes:
by const reference when they are input arguments
by non-const reference when they are output arguments
for arrays:
by const pointer when they are input arguments (const applies to the data, not the pointer here, i.e. const TYPE *)
by pointer when they are output arguments (const applies to the data, not the pointer)
I've found that there are very few times that require making an exception to the above rules. The one exception that comes to mind is for a struct or class argument that is optional, in which case a reference would not work. In that case I use a const pointer (input) or a non-const pointer (output), so that you can also pass 0.
If you want a copy, then pass by value. If you want to change it and you want those changes to be seen outside the function, then pass by reference. If you want speed and don't want to change it, pass by const reference.