Webservice with always in memory object with queue - web-services

I have a function to give recommendations to users. This function need to make a lot of calcs to start, but after start it use the already calculed matrix on memory. After this, any other calc that is made, "fills" the object in memory to continuous learning.
My intention is to use this function to website users, but the response need to come from the same "object" in memory and need to be sequential by request because it is not thread safe.
How is the best way to get this working? My first idea was use signalr so the user dont need to wait to response and a queue to send the requests to objects. But how the signalr can receive the response for this specific request?
The entire flow is:
User enter on a page.
A javascript will call a service with the user ID and actual page.
The server will queue the ID an page.
The service will be calculating the results for each request on queue and sending responses.
The server will "receive" the response and send back to client.
The main problem is that I dont see a way to the service receive the response to send back to client until it is complete, without need to be looping in queues.
Thanks!

If you are going to use SignalR, I would suggest using a hub method to accept these potentially long running requests from the client. By doing so it should be obvious "how the signalr can receive the response for this specific request".
You should be able to queue your calculations from inside your hub method where you will have access to the caller's connection id (via the Context.ConnectionId property).
If you can await the results of your queued operation inside of the hub method you queue from, you can then simply return the result from your hub method and SignalR will flow the result back to the calling JavaScript. You can also use Clients.Caller.... to send the result back.
If you go this route I suggest you use async/await instead of blocking request threads waiting for your long-running calculations to complete.
http://www.asp.net/signalr/overview/signalr-20/hubs-api/hubs-api-guide-server
If you can't process your calculation results from the same method you queued the calculation from, you still have options. Just be sure to queue the caller's connection id and a request id along with the calculation to be processed.
Then, you can process the results of all your calculations from outside of your hub using GlobalHost.ConnectionManager.GetHubContext:
private IHubContext _context = GlobalHost.ConnectionManager.GetHubContext<MyHub>()
// Call ProcessResults whenever results are ready to send back to the client
public void ProcessResults(string connectionId, uint requestId, MyResult result)
{
// Presumably there's JS code mapping request id's to results
// if you can have multiple ongoing requests per client
_context.Clients.Client(connectionId).receiveResult(requestId, result);
}
http://www.asp.net/signalr/overview/signalr-20/hubs-api/hubs-api-guide-server#callfromoutsidehub

Related

Continue request django rest framework

I have a request that lasts more than 3 minutes, I want the request to be sent and immediately give the answer 200 and after the end of the work - give the result
The workflow you've described is called asynchronous task execution.
The main idea is to remove time or resource consuming parts of work from the code that handles HTTP requests and deligate it to some kind of worker. The worker might be a diffrent thread or process or even a separate service that runs on a different server.
This makes your application more responsive, as the users gets the HTTP response much quicker. Also, with this approach you can display such UI-friendly things as progress bars and status marks for the task, create retrial policies if task failes etc.
Example workflow:
user makes HTTP request initiating the task
the server creates the task, adds it to the queue and returns the HTTP response with task_id immediately
the front-end code starts ajax polling to get the results of the task passing task_id
the server handles polling HTTP requests and gets status information for this task_id. It returns the info (whether results or "still waiting") with the HTTP response
the front-end displays spinner if server returns "still waiting" or the results if they are ready
The most popular way to do this in Django is using the celery disctributed task queue.
Suppose a request comes, you will have to verify it. Then send response and use a mechanism to complete the request in the background. You will have to be clear that the request can be completed. You can use pipelining, where you put every task into pipeline, Django-Celery is an option but don't use it unless required. Find easy way to resolve the issue

How to update progress bar while making a Django Rest api request?

My django rest app accepts request to scrape multiple pages for prices & compare them (which takes time ~5 seconds) then returns a list of the prices from each page as a json object.
I want to update the user with the current operation, for example if I scrape 3 pages I want to update the interface like this :
Searching 1/3
Searching 2/3
Searching 3/3
How can I do this?
I am using Angular 2 for my front end but this shouldn't make a big difference as it's a backend issue.
This isn't the only way, but this is how I do this in Django.
Things you'll need
Asynchronous worker procecess
This allows you to do work outside the context of the request-response cycle. The most common are either django-rq or Celery. I'd recommend django-rq for its simplicity, especially if all you're implementing is a progress indicator.
Caching layer (optional)
While you can use the database for persistence in this case, temporary cache key-value stores make more sense here as the progress information is ephemeral. The Memcached backend is built into Django, however I'd recommend switching to Redis as it's more fully featured, super fast, and since it's behind Django's caching abstraction, does not add complexity. (It's also a requirement for using the django-rq worker processes above)
Implementation
Overview
Basically, we're going to send a request to the server to start the async worker, and poll a different progress-indicator endpoint which gives the current status of that worker's progress until it's finished (or failed).
Server side
Refactor the function you'd like to track the progress of into an async task function (using the #job decorator in the case of django-rq)
The initial POST endpoint should first generate a random unique ID to identify the request (possibly with uuid). Then, pass the POST data along with this unique ID to the async function (in django-rq this would look something like function_name.delay(payload, unique_id)). Since this is an async call, the interpreter does not wait for the task to finish and moves on immediately. Return a HttpResponse with a JSON payload that includes the unique ID.
Back in the async function, we need to set the progress using cache. At the very top of the function, we should add a cache.set(unique_id, 0) to show that there is zero progress so far. Using your own math implementation, as the progress approaches 100% completion, change this value to be closer to 1. If for some reason the operation fails, you can set this to -1.
Create a new endpoint to be polled by the browser to check the progress. This looks for a unique_id query parameter and uses this to look up the progress with cache.get(unique_id). Return a JSON object back with the progress amount.
Client side
After sending the POST request for the action and receiving a response, that response should include the unique_id. Immediately start polling the progress endpoint at a regular interval, setting the unique_id as a query parameter. The interval could be something like 1 second using setInterval(), with logic to prevent sending a new request if there is still a pending request.
When the progress received equals to 1 (or -1 for failures), you know the process is finished and you can stop polling
That's it! It's a bit of work just to get progress indicators, but once you've done it once it's much easier to re-use the pattern in other projects.
Another way to do this which I have not explored is via Webhooks / Channels. In this way, polling is not required, and the server simply sends the messages to the client directly.

Auditing Jetty Client requests and responses

I have a requirement to count the jetty transactions and measure the time it took to process the request and get back the response using JMX for our monitoring system.
I am using Jetty 8.1.7 and I can’t seem to find a proper way to do this. I basically need to identify when request is sent (due to Jetty Async approach this is triggered from thread A) and when the response is complete (as the oncompleteResponse is done in another thread).
I usually use ThreadLocal for such state in other areas I need similar functionality, but obviously this won’t work here.
Any ideas how to overcome?
To use jetty's async requests you basically have to subclass ContentExchange and override its methods. So you can add an extra field to it which would contain a timestamp of when the request was sent, and use it later in your onResponseComplete() method to measure the processing time. If you need to know the time when your request was actually sent to the server instead of when it was created you can override the onRequestCommitted() and onRequestComplete() methods.

Dealing with a web api failure

If I have a web api service (Order Notification) that allows a third party client to call in (they must call in to us, not use pushing to them) periodically (every 10 minutes) and gets new orders it has not yet received, how do I deal with failures?
For example there are 10 new Orders the client has not received since they last called in. The client calls into our Order Notification service. We retrieve the orders we have not sent (10 in this case). We update these 10 Orders as sent and return the response to the client.
However the client did not receive the response (sometime happened after leaving us e.g. http time out or something else).
So now we have a problem where on our side we have marked the orders as sent but the client never received them.
Any thoughts on how to solve this?
Just an idea, can you assign the caller some sort of identifier and when the caller succeeds it replies back saying it has acknowledged the request? The server will never know if something failed on the client side unless the client reports it.
For example, when caller A calls in for the requests it may do something like this:
call -> http://server/requests
server replies back with some xml that contains the result set for this caller along with a unique identifier that it will track to know if that particular call had a response (you can time out this identifier after a reasonable period of time)
when the client gets the request it can call back again
call -> http://server/requestComplete?id=[generatedID]
and the server marks it successful.
Lots of API's require some sort of identification token so it would already lend itself well to this kind of send/ack messaging system.
If you have access to both sides of the system you could create a received request so once the client picking up the data has received it makes a request to the original host telling that it's received successfully.

Web Services design

Company A has async pooling based webservice for notifications. Company B checks for notifications. Every time when it reads new notifications A deletes them from the system. Thus subsequent read requests return only new notifications. There is also requirement for the client B to interrupt the connection if there is no response within 30 sec.
This causes one potential problem: Due to unexpected slowness it is possible for A get the request deleted a notification and send the response back while B is already interrupted the connection. Under this scenario notification gets lost. Now one can argue that the core problem lies within operation realm (the HTTP response must be delivered withing 20 sec ) still on practice it is not always feasible.
How to design B (the client) to avoid this problem?
One way I can see is to do not delete the notifications by A and make B be aware of its state, so that it knows starting from what ID it needs to process notifications, but that presumes that ID will be sequential. Which is controlled by A. Even if B defines its own sequence A still has to be altered to return it back.
Are there any other approaches?
Thanks!
Web services in general are unreliable enough that it's rarely a good idea to make a "read" request serve double-duty as a "delete" request, especially without the client's knowledge. There is just too much risk of a connection dropping or timing out. There is no way to get around this only by modifying the client, because it's the server that is at fault here - the way it's designed is fundamentally unsuited for a web service.
I think you're on the right track with the incrementing IDs idea. The client knows (or can be modified to know) which notifications it's received, so if it can supply the ID of the last message it's received when it polls for notifications, the server should be able to respond based on that ID.
It really seems like Company A's webservice should be synchronous instead of asynchronous. If that is not possible, it may be a good idea to send a "ACK"-like response to a new Company A webservice that indicates a specific notification was received (by Company B) and can be deleted.