Clojure: Implementing the comp function - clojure

4Clojure Problem 58 is stated as:
Write a function which allows you to create function compositions. The parameter list should take a variable number of functions, and create a function applies them from right-to-left.
(= [3 2 1] ((__ rest reverse) [1 2 3 4]))
(= 5 ((__ (partial + 3) second) [1 2 3 4]))
(= true ((__ zero? #(mod % 8) +) 3 5 7 9))
(= "HELLO" ((__ #(.toUpperCase %) #(apply str %) take) 5 "hello world"))
Here __ should be replaced by the solution.
In this problem the function comp should not be employed.
A solution I found is:
(fn [& xs]
(fn [& ys]
(reduce #(%2 %1)
(apply (last xs) ys) (rest (reverse xs)))))
It works. But I don't really understand how the reduce works here. How does it represent (apply f_1 (apply f_2 ...(apply f_n-1 (apply f_n args))...)?

Let's try modifying that solution in 3 stages. Stay with each for a while and see if you get it. Stop if and when you do lest I confuse you more.
First, let's have more descriptive names
(defn my-comp [& fns]
(fn [& args]
(reduce (fn [result-so-far next-fn] (next-fn result-so-far))
(apply (last fns) args) (rest (reverse fns)))))
then factor up some
(defn my-comp [& fns]
(fn [& args]
(let [ordered-fns (reverse fns)
first-result (apply (first ordered-fns) args)
remaining-fns (rest ordered-fns)]
(reduce
(fn [result-so-far next-fn] (next-fn result-so-far))
first-result
remaining-fns))))
next replace reduce with a loop which does the same
(defn my-comp [& fns]
(fn [& args]
(let [ordered-fns (reverse fns)
first-result (apply (first ordered-fns) args)]
(loop [result-so-far first-result, remaining-fns (rest ordered-fns)]
(if (empty? remaining-fns)
result-so-far
(let [next-fn (first remaining-fns)]
(recur (next-fn result-so-far), (rest remaining-fns))))))))

My solution was:
(fn [& fs]
(reduce (fn [f g]
#(f (apply g %&))) fs))
Lets try that for:
((
(fn [& fs]
(reduce (fn [f g]
#(f (apply g %&))) fs))
#(.toUpperCase %)
#(apply str %)
take)
5 "hello world"))
fs is a list of the functions:
#(.toUpperCase %)
#(apply str %)
take
The first time through the reduce, we set
f <--- #(.toUpperCase %)
g <--- #(apply str %)
We create an anonymous function, and assign this to the reduce function's accumulator.
#(f (apply g %&)) <---- uppercase the result of apply str
Next time through the reduce, we set
f <--- uppercase the result of apply str
g <--- take
Again we create a new anonymous function, and assign this to the reduce function's accumulator.
#(f (apply g %&)) <---- uppercase composed with apply str composed with take
fs is now empty, so this anonymous function is returned from reduce.
This function is passed 5 and "hello world"
The anonymous function then:
Does take 5 "hello world" to become (\h \e \l \l \o)
Does apply str to become "hello"
Does toUppercase to become "HELLO"

Here's an elegent (in my opinion) definition of comp:
(defn comp [& fs]
(reduce (fn [result f]
(fn [& args]
(result (apply f args))))
identity
fs))
The nested anonymous functions might make it hard to read at first, so let's try to address that by pulling them out and giving them a name.
(defn chain [f g]
(fn [& args]
(f (apply g args))))
This function chain is just like comp except that it only accepts two arguments.
((chain inc inc) 1) ;=> 3
((chain rest reverse) [1 2 3 4]) ;=> (3 2 1)
((chain inc inc inc) 1) ;=> ArityException
The definition of comp atop chain is very simple and helps isolate what reduce is bringing to the show.
(defn comp [& fs]
(reduce chain identity fs))
It chains together the first two functions, the result of which is a function. It then chains that function with the next, and so on.
So using your last example:
((comp #(.toUpperCase %) #(apply str %) take) 5 "hello world") ;=> "HELLO"
The equivalent only using chain (no reduce) is:
((chain identity
(chain (chain #(.toUpperCase %)
#(apply str %))
take))
5 "hello world")
;=> "HELLO"
At a fundamental level, reduce is about iteration. Here's what an implementation in an imperative style might look like (ignoring the possibility of multiple arities, as Clojure's version supports):
def reduce(f, init, seq):
result = init
for item in seq:
result = f(result, item)
return result
It's just capturing the pattern of iterating over a sequence and accumulating a result. I think reduce has a sort of mystique around it which can actually make it much harder to understand than it needs to be, but if you just break it down you'll definitely get it (and probably be surprised how often you find it useful).

Here is my solution:
(defn my-comp
([] identity)
([f] f)
([f & r]
(fn [& args]
(f (apply (apply my-comp r) args)))))
I like A. Webb's solution better, though it does not behave exactly like comp because it does not return identity when called without any arguments. Simply adding a zero-arity body would fix that issue though.

Consider this example:
(def c (comp f1 ... fn-1 fn))
(c p1 p2 ... pm)
When c is called:
first comp's rightmost parameter fn is applied to the p* parameters ;
then fn-1 is applied to the result of the previous step ;
(...)
then f1 is applied to the result of the previous step, and its result is returned
Your sample solution does exactly the same.
first the rightmost parameter (last xs) is applied to the ys parameters:
(apply (last xs) ys)
the remaining parameters are reversed to be fed to reduce:
(rest (reverse xs))
reduce takes the provided initial result and list of functions and iteratively applies the functions to the result:
(reduce #(%2 %1) ..init.. ..functions..)

Related

Make (map f c1 c2) map (count c1) times, even if c2 has less elements

When doing
(map f [0 1 2] [:0 :1])
f will get called twice, with the arguments being
0 :0
1 :1
Is there a simple yet efficient way, i.e. without producing more intermediate sequences etc., to make f get called for every value of the first collection, with the following arguments?
0 :0
1 :1
2 nil
Edit Addressing question by #fl00r in the comments.
The actual use case that triggered this question needed map to always work exactly (count first-coll) times, regardless if the second (or third, or ...) collection was longer.
It's a bit late in the game now and somewhat unfair after having accepted an answer, but if a good answer gets added that only does what I specifically asked for - mapping (count first-coll) times - I would accept that.
You could do:
(map f [0 1 2] (concat [:0 :1] (repeat nil)))
Basically, pad the second coll with an infinite sequence of nils. map stops when it reaches the end of the first collection.
An (eager) loop/recur form that walks to end of longest:
(loop [c1 [0 1 2] c2 [:0 :1] o []]
(if (or (seq c1) (seq c2))
(recur (rest c1) (rest c2) (conj o (f (first c1) (first c2))))
o))
Or you could write a lazy version of map that did something similar.
A general lazy version, as suggested by Alex Miller's answer, is
(defn map-all [f & colls]
(lazy-seq
(when-not (not-any? seq colls)
(cons
(apply f (map first colls))
(apply map-all f (map rest colls))))))
For example,
(map-all vector [0 1 2] [:0 :1])
;([0 :0] [1 :1] [2 nil])
You would probably want to specialise map-all for one and two collections.
just for fun
this could easily be done with common lisp's do macro. We could implement it in clojure and do this (and much more fun things) with it:
(defmacro cl-do [clauses [end-check result] & body]
(let [clauses (map #(if (coll? %) % (list %)) clauses)
bindings (mapcat (juxt first second) clauses)
nexts (map #(nth % 2 (first %)) clauses)]
`(loop [~#bindings]
(if ~end-check
~result
(do
~#body
(recur ~#nexts))))))
and then just use it for mapping (notice it can operate on more than 2 colls):
(defn map-all [f & colls]
(cl-do ((colls colls (map next colls))
(res [] (conj res (apply f (map first colls)))))
((every? empty? colls) res)))
in repl:
user> (map-all vector [1 2 3] [:a :s] '[z x c v])
;;=> [[1 :a z] [2 :s x] [3 nil c] [nil nil v]]

Conditional threading through expressions

I was trying to do something like below,
val = initValue;
if (test1(val)) { val = fn1(val); }
if (test2(val)) { val = fn2(val); }
return val;
The only way I found within clojure core was using cond->. I was hoping I should be able to do this
(cond-> initValue
test1 fn1
test2 fn2)
However, the condition in cond-> is not a function. It doesn't seem to allow me to pass the result of fn1 to test2.
What's the idiomatic way to do this?
Okay. Well you have a data dependency between the function results and your predicates, so the "nicest" thing I came up using only clojure.core is to compose as-> and cond->
(as-> initValue data
(cond-> data (test1 data) (f1 data))
(cond-> data (test2 data) (f2 data)))
Another approach would be my own update-when helper...
(defn ->when-update
"Function of a value, a predicate, an updater and optional
varargs. If the predicate is true of the value, returns (apply f x
args), otherwise returns x.
Example:
(-> 1 (->when-update #(<= 0 %) inc))"
[x pred f & args]
(if (pred x)
(apply f x args)
x))
which lets us write
(-> initValue
(->when-update test1 f1)
(->when-update test2 f2))
Will this do?
(defmacro cond-chain [init & stuff]
(let [pairs (partition 2 stuff)
step-form (fn [[test func]]
`((fn [x#] (if (~test x#) (~func x#) x#))))]
(list* '->> init (map step-form pairs))))
For example,
(cond-chain 7, even? inc, odd? #(* 2 %))
;14
(cond-chain 7, odd? inc, odd? #(* 2 %))
;8
(cond-chain 7, zero? inc, even? #(* 2 %))
;7
As you can see, it constructs a form that conditionally applies each of a series of functions.
Or, without resorting to macros:
(defn cond-chain [init & stuff]
(let [pairs (partition 2 stuff)]
(reduce (fn [acc [test func]] (if (test acc) (func acc) acc)) init pairs)))

working with variadic arguments

I am playing around and trying to create my own reductions implementation, so far I have this which works with this test data:
((fn [func & args]
(reduce (fn [acc item]
(conj acc (func (last acc) item))
)[(first args)] (first (rest args)))) * 2 [3 4 5]
What I don't like is how I am separating the args.
(first args) is what I would expect, i.e. 2 but (rest args) is ([3 4 5]) and so I am getting the remainder like this (first (rest args)) which I do not like.
Am I missing some trick that makes it easier to work with variadic arguments?
Variadic arguments are just about getting an unspecified number of arguments in a list, so all list/destructuring operations can be applied here.
For example:
(let [[fst & rst] a-list]
; fst is the first element
; rst is the rest
)
This is more readable than:
(let [fst (first a-list)
rst (rest a-list)]
; ...
)
You can go further to get the first and second elements of a list (assuming it has >1 elements) in one line:
(let [fst snd & rst]
; ...
)
I originally misread your question and thought you were trying to reimplement the reduce function. Here is a sample implementation I wrote for this answer which does’t use first or rest:
(defn myreduce
;; here we accept the form with no initial value
;; like in (myreduce * [2 3 4 5]), which is equivalent
;; to (myreduce * 2 [3 4 5]). Notice how we use destructuring
;; to get the first/rest of the list passed as a second
;; argument
([op [fst & rst]] (myreduce op fst rst))
;; we take an operator (function), accumulator and list of elements
([op acc els]
;; no elements? give the accumulator back
(if (empty? els)
acc
;; all the function's logic is in here
;; we're destructuring els to get its first (el) and rest (els)
(let [[el & els] els]
;; then apply again the function on the same operator,
;; using (op acc el) as the new accumulator, and the
;; rest of the previous elements list as the new
;; elements list
(recur op (op acc el) els)))))
I hope it helps you see how to work with list destructuring, which is probably what you want in your function. Here is a relevant blog post on this subject.
Tidying up your function.
As #bfontaine commented, you can use (second args) instead of (first (rest args)):
(defn reductions [func & args]
(reduce
(fn [acc item] (conj acc (func (last acc) item)))
[(first args)]
(second args)))
This uses
func
(first args)
(second args)
... but ignores the rest of args.
So we can use destructuring to name the first and second elements of args - init and coll seem suitable - giving
(defn reductions [func & [init coll & _]]
(reduce
(fn [acc item] (conj acc (func (last acc) item)))
[init]
coll))
... where _ is the conventional name for the ignored argument, in this case a sequence.
We can get rid of it, simplifying to
(defn reductions [func & [init coll]] ... )
... and then to
(defn reductions [func init coll] ... )
... - a straightforward function of three arguments.
Dealing with the underlying problems.
Your function has two problems:
slowness
lack of laziness.
Slowness
The flashing red light in this function is the use of last in
(fn [acc item] (conj acc (func (last acc) item)))
This scans the whole of acc every time it is called, even if acc is a vector. So this reductions takes time proportional to the square of the length of coll: hopelessly slow for long sequences.
A simple fix is to replace (last acc) by (acc (dec (count acc))), which takes effectively constant time.
Lack of laziness
We still can't lazily use what the function produces. For example, it would be nice to encapsulate the sequence of factorials like this:
(def factorials (reductions * 1N (next (range)))))
With your reductions, this definition never returns.
You have to entirely recast your function to make it lazy. Let's modify the standard -lazy -reductions to employ destructuring:
(defn reductions [f init coll]
(cons
init
(lazy-seq
(when-let [[x & xs] (seq coll)]
(reductions f (f init x) xs)))))
Now we can define
(def factorials (reductions * 1N (next (range))))
Then, for example,
(take 10 factorials)
;(1N 1N 2N 6N 24N 120N 720N 5040N 40320N 362880N)
Another approach is to derive the sequence from itself, like a railway locomotive laying the track it travels on:
(defn reductions [f init coll]
(let [answer (lazy-seq (reductions f init coll))]
(cons init (map f answer coll))))
But this contains a hidden recursion (hidden from me, at least):
(nth (reductions * 1N (next (range))) 10000)
;StackOverflowError ...

misunderstanding of variable arguments type

I am trying to solve a clojure problem where I implement my own comp function.
I have the following expression that works how I expect:
(reduce #(apply %2 [%1]) [1 2 3 4] [rest reverse])
This gives an output of
(4 3 2)
I have tried abstracting this into a function like this:
(((fn [& funcs]
(fn [& args]
(reduce #(apply %2 [%1]) args funcs)
)) rest reverse) [1 2 3 4])
But I get the following error when I run it:
CompilerException java.lang.ClassCastException: clojure.lang.ArraySeq
cannot be cast to java.lang.Number,
compiling:(/Users/paulcowan/projects/scratch/src/scratch/core.clj:1:1)
To me the only difference that I can see is how that funcs and args are different types than the vectors that I created in the first example.
Why does reduce and apply behave differently in the second example?
Simply:
(defn my-comp [& fns]
(fn [x] (reduce #(%2 %1) x fns)))
giving
((my-comp rest reverse) [1 2 3 4])
;(4 3 2)
As it should, my-comp returns an identity function for an empty argument list.
But it expects all functions, including the first applied,
to take a single argument.
To get round (2), adapt it as follows:
(defn my-comp [& fns]
(if (empty? fns)
identity
(let [[f & fs] fns]
(fn [& args] (reduce #(%2 %1) (apply f args) fs)))))
Apart from (1), this merely rephrases Mark's answer.
For fun ...
We could define my-comp in terms of the standard comp:
(defn my-comp [& fns] (apply comp (reverse fns)))
But it probably makes more sense the other way round, since comp has to reverse its argument list in general:
(defn comp [& fns] (apply my-comp (reverse fns)))
We could even define an argument reverser
(defn rev-args [f] (fn [& args] (apply f (reverse args))))
... which turns a function into one that does the same thing to a reversed argument list.
Then
(def comp (rev-args my-comp))
or vice-versa:
(def my-comp (rev-args comp))
First of all, I don't get any error messages (nor correct result):
user> (((fn [& funcs]
(fn [& args]
(reduce #(apply %2 [%1]) args funcs))) rest reverse) [1 2 3 4])
;; => ()
Difference between the two examples is that in the first one you pass value [1 2 3 4] into reduce, while in the second one you pass [[1 2 3 4]] (because args is meant to keep all arguments of the function as one vector.
This will work:
user> (((fn [& funcs]
(fn [args]
(reduce #(apply %2 [%1]) args funcs))) rest reverse) [1 2 3 4])
;; => (4 3 2)
However, to get a function for functional composition that will be able to take any number of arguments, you should write something like this:
user> (defn my-comp [& fncs]
(fn [& args]
(reduce #(%2 %1) ; you can omit apply here, as %2 is already function
; and %1 is always one value, as noisesmith noticed
(apply (first fncs) args)
(rest fncs))))
;; => #'user/my-comp
user> (def my-fnc (my-comp rest reverse))
;; => #'user/my-fnc
user> (my-fnc [1 2 3 4])
;; => (4 3 2)
It will work fine, because only first function should have ability to take many arguments, as others will be applied to value returned by previously called function.

Piping data through arbitrary functions in Clojure

I know that the -> form can be used to pass the results of one function result to another:
(f1 (f2 (f3 x)))
(-> x f3 f2 f1) ; equivalent to the line above
(taken from the excellent Clojure tutorial at ociweb)
However this form requires that you know the functions you want to use at design time. I'd like to do the same thing, but at run time with a list of arbitrary functions.
I've written this looping function that does it, but I have a feeling there's a better way:
(defn pipe [initialData, functions]
(loop [
frontFunc (first functions)
restFuncs (rest functions)
data initialData ]
(if frontFunc
(recur (first restFuncs) (rest restFuncs) (frontFunc data) )
data )
) )
What's the best way to go about this?
I must admit I'm really new to clojure and I might be missing the point here completely, but can't this just be done using comp and apply?
user> (defn fn1 [x] (+ 2 x))
user> (defn fn2 [x] (/ x 3))
user> (defn fn3 [x] (* 1.2 x))
user> (defn pipe [initial-data my-functions] ((apply comp my-functions) initial-data))
user> (pipe 2 [fn1 fn2 fn3])
2.8
You can do this with a plain old reduce:
(defn pipe [x fs] (reduce (fn [acc f] (f acc)) x fs))
That can be shortened to:
(defn pipe [x fs] (reduce #(%2 %1) x fs))
Used like this:
user> (pipe [1 2 3] [#(conj % 77) rest reverse (partial map inc) vec])
[78 4 3]
If functions is a sequence of functions, you can reduce it using comp to get a composed function. At a REPL:
user> (def functions (list #(* % 5) #(+ % 1) #(/ % 3)))
#'user/my-list
user> ((reduce comp functions) 9)
20
apply also works in this case because comp takes a variable number of arguments:
user> (def functions (list #(* % 5) #(+ % 1) #(/ % 3)))
#'user/my-list
user> ((apply comp functions) 9)
20