Iterating through a C++ vector with wrap-around - c++

I have an assignment to iterate through a vector and erase every third number. If it hits the end of the vector, it should continue counting again from the first entry, until only one number remains. The user inputs how many numbers should be in the vector.
I'm having trouble getting used to the difference between vectors and arrays - just last week we had a problem that involved wrapping around an array, which was solved with mod, but I quickly figured out this wouldn't work for vectors.
Here was my idea so far: Iterate through and delete every third entry until the size of the vector is 1.
while (vector.size > 1) {
for(std::vector<int>::iterator i = suitors.begin(); i <= suitors.end(); i++) {
// here, add a case for if it hits the end, start over
if (i = suitors.end()) {
i = suitors.begin();
}
suitors.erase(suitors.at(i) + 2);
}
The problem I'm having is figuring out how to have it start over, as spits out an error when I try to use i in this way.
Any advice or tips to get me on the right path here? I'm beginning to see how versatile vectors are, but they just aren't clicking yet. I'm also not sure if there is a better way to stop it from iterating besides the while loop.

I'd use remove_if to move items in the vector to the end whenever an index variable that is incremented each time reaches 3.
#include <iostream>
#include <vector>
#include <algorithm>
int main()
{
std::vector<int> v{1,2,3,4,5,6};
unsigned index = 0; // this is the index variable used to remove elements
auto end = v.end(); // point to the current end of the vector
// keep looping until there is only 1 element in the vector
while(std::distance(v.begin(), end) > 1) {
// remove_if will call the predicate for each element
// the predicate simply increments the index each time, and when it reaches
// 3 indicates that element should be removed
// remove_if will move items to the end of the vector and return an
// iterator to the end of the new range, so we'll update the end variable
// with the result
end = std::remove_if(v.begin(), end, [&index](int) {
if(++index == 3) {
// reset the index and indicate this element should be removed
return (index = 0), true;
}
return false;
});
for(auto iter = v.begin(); iter != end; ++iter) {
std::cout << *iter << ' ';
}
std::cout << '\n';
}
// erase all the elements we've removed so far
v.erase(end, v.end());
}
Output:
1 2 4 5
1 2 5
1 5
1
Live demo

The outer while loop I'm assuming means to go as long as the vector has more than one element, but this should be included in the for, not another loop
The syntactic issue is in the if:
if (i = suitors.end())
// ^ should be ==
otherwise you're just assigning end to your iterator
for(std::vector<int>::iterator i = suitors.begin(); suitors.size() > 1; ++i) {
// ^ loop condition changed
if (i == suitors.end()) {
i = suitors.begin();
}
suitors.erase(suitors.at(i) + 2);
}
modifying a container as you iterate through it is dangerous though..

Related

Removing first three elements of 2d array C++

So here's my problem.. I have a 2d array of 2 char strings.
9D 5C 6S 9D KS 4S 9D
9S
If 3 found I need to delete the first 3 based on the first char.
card
My problem is I segfault almost anything i do...
pool is the 2d vector
selection = "9S";
while(col != GameBoard::pool.size() ){
while(GameBoard::pool[col][0].at(0) == selection.at(0) || cardsRem!=0){
if(GameBoard::pool[col].size() == 1){
GameBoard::pool.erase(GameBoard::pool.begin() + col);
cardsRem--;
}
else{
GameBoard::pool[col].pop_back();
cardsRem--;
}
}
if(GameBoard::pool[col][0].at(0) != selection.at(0)){
col++;
}
}
I've tried a series of for loops etc, and no luck! Any thoughts would save my sanity!
So I've tried to pull out a code segment to replicate it. But I can't...
If I run my whole program in a loop it will eventually throw a segfault. If I run that exact code in the same circumstance it doesn't... I'm trying to figure out what I'm missing. I'll get back in if I figure out exactly where my issue is..
So in the end the issue is not my code itself, i've got memory leaks or something somewhere that are adding up to eventually crash my program... That tends to be in the same method each time I guess.
The safer and most efficient way to erase some elements from a container is to apply the erase-remove idiom.
For instance, your snippet can be rewritten as the following (which is testable here):
using card_t = std::string;
std::vector<std::vector<card_t>> decks = {
{"9D", "5C", "6S", "9D", "KS", "4S", "9D"},
{"9S"}
};
card_t selection{"9S"};
// Predicate specifing which cards should be removed
auto has_same_rank = [rank = selection.at(0)] (card_t const& card) {
return card.at(0) == rank;
};
auto & deck = decks.at(0);
// 'std::remove_if' removes all the elements satisfying the predicate from the range
// by moving the elements that are not to be removed at the beginning of the range
// and returns a past-the-end iterator for the new end of the range.
// 'std::vector::erase' removes from the vector the elements from the iterator
// returned by 'std::remove_if' up to the end iterator. Note that it invalidates
// iterators and references at or after the point of the erase, including the
// end() iterator (it's the most common cause of errors in code like OP's).
deck.erase(std::remove_if(deck.begin(), deck.end(), has_same_rank),
deck.end());
So for anyone else in the future who comes across this...
The problem is I was deleting an element in the array in a loop, with the conditional stop was it's size. The size is set before hand, and while it was accounted for in the code it still left open the possibility for while(array.size() ) which would be locked in at 8 in the loop be treated as 6 in the code.
The solution was to save the location in the vector to delete and then delete them outside of the loop. I imagine there is a better, more technical answer to this, but it works as intended now!
for (double col = 0; col < size; ++col)
{
if(GameBoard::pool[col][0].at(0) == selection.at(0)){
while(GameBoard::pool[col][0].at(0) == selection.at(0) && cardsRem !=0){
if( GameBoard::pool[col].size() > 1 ){
GameBoard::pool[col].pop_back();
cardsRem--;
}
if(GameBoard::pool[col].size() <2){
toDel.insert ( toDel.begin() , col );
//GameBoard::pool.erase(GameBoard::pool.begin() + col);
cardsRem--;
size--;
}
}
}
}
for(int i = 0; i< toDel.size(); i++){
GameBoard::pool.erase(GameBoard::pool.begin() + toDel[i]);
}

Loop over all (unordered) pairs of elements in a vector

I have a std::vector of some data (Points in my case) and I want to loop over all distinct pairs of elements. The order of the pair is not important (as I am only interested in the distance of the points). With a classic for loop what I would want to do would be something like:
std::vector<double> vec{-1., 3., 5., -8., 123., ...};
for (std::vector<double>::size_type first = 0; first < vec.size(); ++first) {
for (std::vector<double>::size_type second = first+1; second < vec.size();
++second) {
// Compute something using std::fabs(vec.at(first)-vec.at(second))
}
}
My question is now if one can achieve this more elegantly using range based loops.
I wouldn't attempt to coerce it into a range based loop (since contriving the start of the inner loop will be tricky), but I would work directly with the iterators to clarify the loop body and to make the code less dependent on the specific container you're using:
for (auto first = vec.begin(); first != vec.end(); ++first){
for (auto second = first + 1; second != vec.end(); ++second){
// Your vec.at(first) is now simply *first.
}
}
Note that first + 1 is always valid since first is never vec.end() when first + 1 is evaluated.
std::vector::at is also required by the C++ standard to check that the supplied index is in the bounds of the vector (and throw a std::out_of_range exception if it isn't within the bounds), which is an unnecessary overhead in your case.
I provide this answer only because OP want a way of doing that with
range based for loops. It isn't more elegant than ordinary loops.
If your vector doesn't have duplicate numbers you can use reverse iteration instead of beginning from a specific point in the second loop, so that you can use range based for in your iterations.
for reverse iteration by range based for loops you want an adapter class.
template <typename It>
class reverse_adapter
{
public:
reverse_adapter(It rbegin, It rend)
: _rbegin(rbegin), _rend(rend)
{}
It begin() const { return _rbegin; }
It end() const { return _rend; }
private:
It _rbegin;
It _rend;
};
template<typename Container>
reverse_adapter<typename Container::reverse_iterator> make_reverse(Container& container)
{
reverse_adapter<typename Container::reverse_iterator> adapter(std::rbegin(container), std::rend(container));
return adapter;
}
And use this adapter for reverse iteration in second loop.
for(auto val : vec)
{
for (auto second_val : make_reverse(vec)) // Start from last to current item in first loop
{
if (val == second_val) break; // Instead of first + 1 in second loop
auto dif = val - second_val;
}
}

What is proper way to delete objects that resides in a list that you find while looping that list?

I have a list of Star structs. These structs are in a std::list
I am double looping this list and compairing there locations to detect a collision. When A collision is found I will delete Star with the lowest mass. But how can I delete the Star when I am in the double Loop, and keep the loop going to check for more collisions?
It's worth mentioning that the second loop is a reverse loop.
Here is some code
void UniverseManager::CheckCollisions()
{
std::list<Star>::iterator iStar1;
std::list<Star>::reverse_iterator iStar2;
bool totalbreak = false;
for (iStar1 = mStars.begin(); iStar1 != mStars.end(); iStar1++)
{
for (iStar2 = mStars.rbegin(); iStar2 != mStars.rend(); iStar2++)
{
if (*iStar1 == *iStar2)
break;
Star &star1 = *iStar1;
Star &star2 = *iStar2;
if (CalculateDistance(star1.mLocation, star2.mLocation) < 10)
{
// collision
// get heaviest star
if (star1.mMass > star2.mMass)
{
star1.mMass += star2.mMass;
// I need to delete the star2 and keep looping;
}
else
{
star2.mMass += star1.mMass;
// I need to delete the star1 and keep looping;
}
}
}
}
}
You need to utilize the return value of the erase method like so.
iStar1 = mStars.erase(iStar1);
erase = true;
if (iStar1 == mStars.end())
break; //or handle the end condition
//continue to bottom of loop
if (!erase)
iStar1++; //you will need to move the incrementation of the iterator out of the loop declaration, because you need to make it not increment when an element is erased.
if you don't increment the iterator if an item is erased and check if you deleted the last element then you should be fine.
Since modifying the list invalidates the iterators (so that you cannot increment them), you have to keep safe the iterators before the list is changed.
In the most of the implementation std::list is a dual-linked list, hence a iteration like
for(auto i=list.begin(), ii; i!=list.end(); i=ii)
{
ii = i; ++ii; //ii now is next-of-i
// do stuff with i
// call list.erasee(i).
// i is now invalid, but ii is already the "next of i"
}
The safest way, is to create a list containing all the "collided", then iterate on the "collided" calling list.remove(*iterator_on_collided)
(but inefficient, since has O2 complexity)
You want to use the result of erase() to get the next iterator and advance the loop differently:
If you erase using the outer iterator you clearly can abondon checking this Star against others and break out of the inner loop. Only if the inner loop was complete you'd want to advance the outer iterator because otherwise it would be advanced by the erase().
If you erase using the inner loop you already advanced the iteration, otherwise, i.e. if no star was erased, you need to advance.
Sample code would look somethimg like this:
for (auto oit(s.begin()), end(s.end()); oit != end; )
{
auto iit(s.begin());
while (iit != end)
{
if (need_to_delete_outer)
{
oit = s.erase(oit);
break;
}
else if (need_to_delete_inner)
{
iit = s.erase(iit);
}
else
{
++iit;
}
}
if (iit == end)
{
++oit;
}
}

Erasing an element from the vector during iteration c++

I wrote this method to find the minor of a sparse matrix:
SpMatrixVec SparseMatrix::minor(SpMatrixVec matrix, int col) const{
SpMatrixVec::iterator it = matrix.begin();
int currRow = it->getRow();
int currCol = col;
while(it != matrix.end()) {
if(it->getRow() == currRow || it->getCol() == currCol){
matrix.erase(it);
}
// if we have deleted an element in the array, it doesn't advance the
// iterator and size() will be decreased by one.
else{
it++;
}
}
// now, we alter the cells of the minor matrix to be of proper coordinates.
// this is necessary for sign computation (+/-) in the determinant recursive
// formula of detHelper(), since the minor matrix non-zero elements are now
// in different coordinates. The row is always decreased by one, since we
// work witht he first line, and the col is decreased by one if the element
// was located after 'col' (which this function receives as a parameter).
//change the cells of the minor to their proper coordinates.
for(it = matrix.begin(); it != matrix.end(); it++){
it->setRow(it->getRow()-1);
int newY;
newY = (it->getCol() > col) ? it->getCol() + 1 : it->getCol();
it->setCol(newY);
}
return matrix;
}
Now, i'm probably doing something wrong, because when reaching the second interation of the while loop, the program crashes.
The basic idea was to go over the vector, and see if it is the relevant coordinate, and if so - to delete it. I increment the iterator only if there was no deletion (and in this case, the vector should update the iterator to be pointing the next element..unless i got these things wrong).
Where is the problem?
Thanks a lot.
erase() invalidates your iterator.
You must update it using the return value of erase() for the loop to work:
while(it != matrix.end()) {
if(it->getRow() == currRow || it->getCol() == currCol){
//matrix.erase(it);
it = matrix.erase(it); // Here is the change
}
// if we have deleted an element in the array, it doesn't advance the
// iterator and size() will be decreased by one.
else{
//it++;
++it; // ++i is usually faster than i++. It's a good habit to use it.
}
}
erase invalidates your iterator. Do it = matrix.erase(it) instead.
You can't change a collection while you're iterating between its elements.
Use another temp collection to store the partial results.
edit: Even better, use a functor to delete elements: remove_if
You write the condition.

Erasing multiple objects from a std::vector?

Here is my issue, lets say I have a std::vector with ints in it.
let's say it has 50,90,40,90,80,60,80.
I know I need to remove the second, fifth and third elements. I don't necessarily always know the order of elements to remove, nor how many. The issue is by erasing an element, this changes the index of the other elements. Therefore, how could I erase these and compensate for the index change. (sorting then linearly erasing with an offset is not an option)
Thanks
I am offering several methods:
1. A fast method that does not retain the original order of the elements:
Assign the current last element of the vector to the element to erase, then erase the last element. This will avoid big moves and all indexes except the last will remain constant. If you start erasing from the back, all precomputed indexes will be correct.
void quickDelete( int idx )
{
vec[idx] = vec.back();
vec.pop_back();
}
I see this essentially is a hand-coded version of the erase-remove idiom pointed out by Klaim ...
2. A slower method that retains the original order of the elements:
Step 1: Mark all vector elements to be deleted, i.e. with a special value. This has O(|indexes to delete|).
Step 2: Erase all marked elements using v.erase( remove (v.begin(), v.end(), special_value), v.end() );. This has O(|vector v|).
The total run time is thus O(|vector v|), assuming the index list is shorter than the vector.
3. Another slower method that retains the original order of the elements:
Use a predicate and remove if as described in https://stackoverflow.com/a/3487742/280314 . To make this efficient and respecting the requirement of
not "sorting then linearly erasing with an offset", my idea is to implement the predicate using a hash table and adjust the indexes stored in the hash table as the deletion proceeds on returning true, as Klaim suggested.
Using a predicate and the algorithm remove_if you can achieve what you want : see http://www.cplusplus.com/reference/algorithm/remove_if/
Don't forget to erase the item (see remove-erase idiom).
Your predicate will simply hold the idx of each value to remove and decrease all indexes it keeps each time it returns true.
That said if you can afford just removing each object using the remove-erase idiom, just make your life simple by doing it.
Erase the items backwards. In other words erase the highest index first, then next highest etc. You won't invalidate any previous iterators or indexes so you can just use the obvious approach of multiple erase calls.
I would move the elements which you don't want to erase to a temporary vector and then replace the original vector with this.
While this answer by Peter G. in variant one (the swap-and-pop technique) is the fastest when you do not need to preserve the order, here is the unmentioned alternative which maintains the order.
With C++17 and C++20 the removal of multiple elements from a vector is possible with standard algorithms. The run time is O(N * Log(N)) due to std::stable_partition. There are no external helper arrays, no excessive copying, everything is done inplace. Code is a "one-liner":
template <class T>
inline void erase_selected(std::vector<T>& v, const std::vector<int>& selection)
{
v.resize(std::distance(
v.begin(),
std::stable_partition(v.begin(), v.end(),
[&selection, &v](const T& item) {
return !std::binary_search(
selection.begin(),
selection.end(),
static_cast<int>(static_cast<const T*>(&item) - &v[0]));
})));
}
The code above assumes that selection vector is sorted (if it is not the case, std::sort over it does the job, obviously).
To break this down, let us declare a number of temporaries:
// We need an explicit item index of an element
// to see if it should be in the output or not
int itemIndex = 0;
// The checker lambda returns `true` if the element is in `selection`
auto filter = [&itemIndex, &sorted_sel](const T& item) {
return !std::binary_search(
selection.begin(),
selection.end(),
itemIndex++);
};
This checker lambda is then fed to std::stable_partition algorithm which is guaranteed to call this lambda only once for each element in the original (unpermuted !) array v.
auto end_of_selected = std::stable_partition(
v.begin(),
v.end(),
filter);
The end_of_selected iterator points right after the last element which should remain in the output array, so we now can resize v down. To calculate the number of elements we use the std::distance to get size_t from two iterators.
v.resize(std::distance(v.begin(), end_of_selected));
This is different from the code at the top (it uses itemIndex to keep track of the array element). To get rid of the itemIndex, we capture the reference to source array v and use pointer arithmetic to calculate itemIndex internally.
Over the years (on this and other similar sites) multiple solutions have been proposed, but usually they employ multiple "raw loops" with conditions and some erase/insert/push_back calls. The idea behind stable_partition is explained beautifully in this talk by Sean Parent.
This link provides a similar solution (and it does not assume that selection is sorted - std::find_if instead of std::binary_search is used), but it also employs a helper (incremented) variable which disables the possibility to parallelize processing on larger arrays.
Starting from C++17, there is a new first argument to std::stable_partition (the ExecutionPolicy) which allows auto-parallelization of the algorithm, further reducing the run-time for big arrays. To make yourself believe this parallelization actually works, there is another talk by Hartmut Kaiser explaining the internals.
Would this work:
void DeleteAll(vector<int>& data, const vector<int>& deleteIndices)
{
vector<bool> markedElements(data.size(), false);
vector<int> tempBuffer;
tempBuffer.reserve(data.size()-deleteIndices.size());
for (vector<int>::const_iterator itDel = deleteIndices.begin(); itDel != deleteIndices.end(); itDel++)
markedElements[*itDel] = true;
for (size_t i=0; i<data.size(); i++)
{
if (!markedElements[i])
tempBuffer.push_back(data[i]);
}
data = tempBuffer;
}
It's an O(n) operation, no matter how many elements you delete. You could gain some efficiency by reordering the vector inline (but I think this way it's more readable).
This is non-trival because as you delete elements from the vector, the indexes change.
[0] hi
[1] you
[2] foo
>> delete [1]
[0] hi
[1] foo
If you keep a counter of times you delete an element and if you have a list of indexes you want to delete in sorted order then:
int counter = 0;
for (int k : IndexesToDelete) {
events.erase(events.begin()+ k + counter);
counter -= 1;
}
You can use this method, if the order of the remaining elements doesn't matter
#include <iostream>
#include <vector>
using namespace std;
int main()
{
vector< int> vec;
vec.push_back(1);
vec.push_back(-6);
vec.push_back(3);
vec.push_back(4);
vec.push_back(7);
vec.push_back(9);
vec.push_back(14);
vec.push_back(25);
cout << "The elements befor " << endl;
for(int i = 0; i < vec.size(); i++) cout << vec[i] <<endl;
vector< bool> toDeleted;
int YesOrNo = 0;
for(int i = 0; i<vec.size(); i++)
{
cout<<"You need to delete this element? "<<vec[i]<<", if yes enter 1 else enter 0"<<endl;
cin>>YesOrNo;
if(YesOrNo)
toDeleted.push_back(true);
else
toDeleted.push_back(false);
}
//Deleting, beginning from the last element to the first one
for(int i = toDeleted.size()-1; i>=0; i--)
{
if(toDeleted[i])
{
vec[i] = vec.back();
vec.pop_back();
}
}
cout << "The elements after" << endl;
for(int i = 0; i < vec.size(); i++) cout << vec[i] <<endl;
return 0;
}
Here's an elegant solution in case you want to preserve the indices, the idea is to replace the values you want to delete with a special value that is guaranteed not be used anywhere, and then at the very end, you perform the erase itself:
std::vector<int> vec = {1, 2, 3, 4, 5, 6, 7, 8, 9};
// marking 3 elements to be deleted
vec[2] = std::numeric_limits<int>::lowest();
vec[5] = std::numeric_limits<int>::lowest();
vec[3] = std::numeric_limits<int>::lowest();
// erase
vec.erase(std::remove(vec.begin(), vec.end(), std::numeric_limits<int>::lowest()), vec.end());
// print values => 1 2 5 7 8 9
for (const auto& value : vec) std::cout << ' ' << value;
std::cout << std::endl;
It's very quick if you delete a lot of elements because the deletion itself is happening only once. Items can also be deleted in any order that way.
If you use a a struct instead of an int, then you can still mark an element of that struct, for ex dead=true and then use remove_if instead of remove =>
struct MyObj
{
int x;
bool dead = false;
};
std::vector<MyObj> objs = {{1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}};
objs[2].dead = true;
objs[5].dead = true;
objs[3].dead = true;
objs.erase(std::remove_if(objs.begin(), objs.end(), [](const MyObj& obj) { return obj.dead; }), objs.end());
// print values => 1 2 5 7 8 9
for (const auto& obj : objs) std::cout << ' ' << obj.x;
std::cout << std::endl;
This one is a bit slower, around 80% the speed of the remove.