How do you rotate a sprite based on mouse position? - c++

Basically, I have a sprite that I render using SDL 2.0 that I can rotate a variable amount around a center orgin point of the texture clockwise using SDL_RenderCopyEx(). I want to rotate it based on the mouse position by using the angle x between my physical slope line and my two straight lines based off of my base line. The base line I'm talking about can be represented mathematically as x = orgin_x, where orgin_x is the rotation orgin. The other line is a segment along the baseline that connects the horizontal line end point to the orgin_x point vertically. With the angle to the mouse cursor being the one I want to find to rotate my character.
Please no complicated math symbols. I would rather the formula be posted in C-style format, and please explain the logic behind the math so I can maybe understand what's happening and fix similar future problems if needed.

Some basic trigonometry. You can use atan2(delta_y, delta_x). With this you will get your angle in RAD. To get your angle in degree, because RenderCopyEx use Degree for angle, you need to convert your angle. You got 360 Degree and 2*PI Rad for a full circle. So
angle_deg = (atan2(delta_y, delta_x)*180.0000)/3.1416
Now you got your angle to do a RenderCopyEx
BTW :
delta_y = origin_y - mouse_y
AND
delta_x = origin_x - mouse_x

Related

Inbetweening a rotation

I have an image (let's say it's a simple rectangle) positioned on the left of my screen, which I can move up and down. When moving it upwards, I use some simple trigonometry to rotate it so that the rectangle "points" towards the upper right corner of the screen. When moving downwards, it points towards the lower left corner of the screen.
Given that my application uses the following coordinate system:
I use the following code to achieve the rotation:
// moving upwards
rotation = -atan2(position.y , res.x - position.x));
// moving downwards
rotation = atan2(res.y - position.y , res.x - position.x));
where res is the reference point and position is the position (upper left corner) of our rectangle image. (For information on atan2(): atan2() on cplusplus.com).
This works just fine: it rotates more when farther away from the reference point (res). However, let's say the image is all the way at the bottom of the screen. If we move it upwards, it will very suddenly rotate. I would like to 'inbetween' this rotation, so that it is smoothened out.
What I mean by suddenly rotating is this:
Let's say the rectangle is not moving in frame n: therefore its rotation is 0 degrees. I then press the up arrow, which makes it calculate the angle. In frame n+1, the angle is 30 degrees (for example). This is ofcourse not very smooth.
Is my question clear? How do I go about this?
You can incrementally change the angle on each frame. For a very "smooth" rotation effect, you can use
target_angle = ...
current_angle += (target_angle - current_angle) * smoothing_factor
where smoothing_factor gives the rate at which current_angle should converge to target_angle. For example, a value of 1 would be instantaneous, a value of 0.1 would probably give a smooth effect.
By doing this you may encounter the wraparound issue whereby something like going from 10 degrees to 350 degrees would go the wrong way. In such a case, use
target_angle = ...
current_angle += diff(target_angle, current_angle) * smoothing_factor
where
diff(a, b) {
return atan2(sin(a - b), cos(a - b))
}
This nice angle difference formula is taken from another question.

Connecting Circles in C++/Excel

This is quite complicated to explain, so I will do my best, sorry if there is anything I missed out, let me know and I will rectify it.
My question is, I have been tasked to draw this shape,
(source: learnersdictionary.com)
This is to be done using C++ to write code that will calculate the points on this shape.
Important details.
User Input - Centre Point (X, Y), number of points to be shown, Font Size (influences radius)
Output - List of co-ordinates on the shape.
The overall aim once I have the points is to put them into a graph on Excel and it will hopefully draw it for me, at the user inputted size!
I know that the maximum Radius is 165mm and the minimum is 35mm. I have decided that my base [Font Size][1] shall be 20. I then did some thinking and came up with the equation.
Radius = (Chosen Font Size/20)*130. This is just an estimation, I realise it probably not right, but I thought it could work at least as a template.
I then decided that I should create two different circles, with two different centre points, then link them together to create the shape. I thought that the INSIDE line will have to have a larger Radius and a centre point further along the X-Axis (Y staying constant), as then it could cut into the outside line.*
*(I know this is not what it looks like on the picture, just my chain of thought as it will still give the same shape)
So I defined 2nd Centre point as (X+4, Y). (Again, just estimation, thought it doesn't really matter how far apart they are).
I then decided Radius 2 = (Chosen Font Size/20)*165 (max radius)
So, I have my 2 Radii, and two centre points.
This is my code so far (it works, and everything is declared/inputted above)
for(int i=0; i<=n; i++) //output displayed to user
{
Xnew = -i*(Y+R1)/n; //calculate x coordinate
Ynew = pow((((Y+R1)*(Y+R1)) - (Xnew*Xnew)), 0.5); //calculate y coordinate
AND
for(int j=0; j<=n; j++)//calculation for angles and output displayed to user
{
Xnew2 = -j*(Y+R2)/((n)+((0.00001)*(n==0))); //calculate x coordinate
Ynew2 = Y*(pow(abs(1-(pow((Xnew2/X),2))),0.5));
if(abs(Ynew2) <= R1)
cout<<"\n("<<Xnew2<<", "<<Ynew2<<")"<<endl;
I am having the problem drawing the crescent moon that I cannot get the two circles to have the same starting point?
I have managed to get the results to Excel. Everything in that regard works. But when i plot the points on a graph on Excel, they do not have the same starting points. Its essentially just two half circles, one smaller than the other (Stops at the Y axis, giving the half doughnut shape).
If this makes sense, I am trying to get two parts of circles to draw the shape as such that they have the same start and end points.
If anyone has any suggestions on how to do this, it would be great, currently all I am getting more a 'half doughnut' shape, due to the circles not being connected.
So. Does anyone have any hints/tips/links they can share with me on how to fix this exactly?
Thanks again, any problems with the question, sorry will do my best to rectify if you let me know.
Cheers
Formular for points on a circle:
(x-h)^2+(y-k)^2=r^2
The center of the circle is at (h/k)
Solving for y
2y1 = k +/- sqrt( -x^2 + 2hx +r^2 - h^2)
So now if the inner circle has its center # h/k , the half-moon will begin # h and will stretch to h - r2
Now you need to solve the endpoint formular for the inner circle and the outter circle and plot it. Per x you should receive 4 points (solve the equation two times, each with two solutions)
I did not implement it, but this would be my train of thought...

C++ How can i find the vector between 2 points in a window?

Im working on a project right now and i need to make a function that finds the vector direction for a bullet. My current code is off and i cant seem to find the reason why.
float AngleX = pMouse->X() - This->DirectionX();
float AngleY = pMouse->Y() - This->DirectionY();
The best function for finding angles from (x, y) offsets is atan2(dy, dx), where dy and dx are the delta components in each direction.
Note that the result will be in radians, and that on some graphics systems the y axis goes down instead of up!
The particularly nice feature of atan2 is that it'll always give you the result in the full range of -π .. π which you can't get with a single acos or asin operation. The resulting angle will be the angle of the given line relative to the positive X axis, in an anti-clockwise direction.

2d rotation on set of points causes skewing distortion

I'm writing an application in OpenGL (though I don't think this problem is related to that). I have some 2d point set data that I need to rotate. It later gets projected into 3d.
I apply my rotation using this formula:
x' = x cos f - y sin f
y' = y cos f + x sin f
Where 'f' is the angle. When I rotate the point set, the result is skewed. The severity of the effect varies with the angle.
It's hard to describe so I have pictures;
The red things are some simple geometry. The 2d point sets are the vertices for the white polylines you see around them. The first picture shows the undistorted pointsets, and the second picture shows them after rotation. It's not just skew that's occuring with the rotation; sometimes it seems like displacement occurs as well.
The code itself is trivial:
double cosTheta = cos(2.4);
double sinTheta = sin(2.4);
CalcSimplePolyCentroid(listHullVx,xlate);
for(size_t j=0; j < listHullVx.size(); j++) {
// translate
listHullVx[j] = listHullVx[j] - xlate;
// rotate
double xPrev = listHullVx[j].x;
double yPrev = listHullVx[j].y;
listHullVx[j].x = ((xPrev*cosTheta) - (yPrev*sinTheta));
listHullVx[j].y = ((yPrev*cosTheta) + (xPrev*sinTheta));
// translate
listHullVx[j] = listHullVx[j] + xlate;
}
If I comment out the code under '//rotate' above, the output of the application is the first image. And adding it back in gives the second image. There's literally nothing else that's going on (afaik).
The data types being used are all doubles so I don't think its a precision issue. Does anyone have any idea why rotation would cause skewing like the above pictures show?
EDIT
filipe's comment below was correct. This probably has nothing to do with the rotation and I hadn't provided enough information for the problem;
The geometry I've shown in the pictures represents buildings. They're generated from lon/lat map coordinates. In the point data I use to do the transform, I forgot to use an actual projection to cartesian coordinate space and just mapped x->lon, y->lat, and I think this is the reason I'm seeing the distortion. I'm going to request that this question be deleted since I don't think it'll be useful to anyone else.
Update:
As a result of your comments it tunred out the it is unlikely that the bug is in the presented code.
One final other hint: std transform formulars are only valid if the cooridnate system is cartesian,
on ios you sometimes have inverted y Achsis.

Implementing a complex rotation-based camera

I am implementing a 3D engine for spatial visualisation, and am writing a camera with the following navigation features:
Rotate the camera (ie, analogous to rotating your head)
Rotate around an arbitrary 3D point (a point in space, which is probably not in the center of the screen; the camera needs to rotate around this keeping the same relative look direction, ie the look direction changes too. This does not look directly at the chosen rotation point)
Pan in the camera's plane (so move up/down or left/right in the plane orthogonal to the camera's look vector)
The camera is not supposed to roll - that is, 'up' remains up. Because of this I represent the camera with a location and two angles, rotations around the X and Y axes (Z would be roll.) The view matrix is then recalculated using the camera location and these two angles. This works great for pan and rotating the eye, but not for rotating around an arbitrary point. Instead I get the following behaviour:
The eye itself apparently moving further up or down than it should
The eye not moving up or down at all when m_dRotationX is 0 or pi. (Gimbal lock? How can I avoid this?)
The eye's rotation being inverted (changing the rotation makes it look further up when it should look further down, down when it should look further up) when m_dRotationX is between pi and 2pi.
(a) What is causing this 'drift' in rotation?
This may be gimbal lock. If so, the standard answer to this is 'use quaternions to represent rotation', said many times here on SO (1, 2, 3 for example), but unfortunately without concrete details (example. This is the best answer I've found so far; it's rare.) I've struggled to implemented a camera using quaternions combining the above two types of rotations. I am, in fact, building a quaternion using the two rotations, but a commenter below said there was no reason - it's fine to immediately build the matrix.
This occurs when changing the X and Y rotations (which represent the camera look direction) when rotating around a point, but does not occur simply when directly changing the rotations, i.e. rotating the camera around itself. To me, this doesn't make sense. It's the same values.
(b) Would a different approach (quaternions, for example) be better for this camera? If so, how do I implement all three camera navigation features above?
If a different approach would be better, then please consider providing a concrete implemented example of that approach. (I am using DirectX9 and C++, and the D3DX* library the SDK provides.) In this second case, I will add and award a bounty in a couple of days when I can add one to the question. This might sound like I'm jumping the gun, but I'm low on time and need to implement or solve this quickly (this is a commercial project with a tight deadline.) A detailed answer will also improve the SO archives, because most camera answers I've read so far are light on code.
Thanks for your help :)
Some clarifications
Thanks for the comments and answer so far! I'll try to clarify a few things about the problem:
The view matrix is recalculated from the camera position and the two angles whenever one of those things changes. The matrix itself is never accumulated (i.e. updated) - it is recalculated afresh. However, the camera position and the two angle variables are accumulated (whenever the mouse moves, for example, one or both of the angles will have a small amount added or subtracted, based on the number of pixels the mouse moved up-down and/or left-right onscreen.)
Commenter JCooper states I'm suffering from gimbal lock, and I need to:
add another rotation onto your transform that rotates the eyePos to be
completely in the y-z plane before you apply the transformation, and
then another rotation that moves it back afterward. Rotate around the
y axis by the following angle immediately before and after applying
the yaw-pitch-roll matrix (one of the angles will need to be negated;
trying it out is the fastest way to decide which).
double fixAngle = atan2(oEyeTranslated.z,oEyeTranslated.x);
Unfortunately, when implementing this as described, my eye shoots off above the scene at a very fast rate due to one of the rotations. I'm sure my code is simply a bad implementation of this description, but I still need something more concrete. In general, I find unspecific text descriptions of algorithms are less useful than commented, explained implementations. I am adding a bounty for a concrete, working example that integrates with the code below (i.e. with the other navigation methods, too.) This is because I would like to understand the solution, as well as have something that works, and because I need to implement something that works quickly since I am on a tight deadline.
Please, if you answer with a text description of the algorithm, make sure it is detailed enough to implement ('Rotate around Y, then transform, then rotate back' may make sense to you but lacks the details to know what you mean. Good answers are clear, signposted, will allow others to understand even with a different basis, are 'solid weatherproof information boards.')
In turn, I have tried to be clear describing the problem, and if I can make it clearer please let me know.
My current code
To implement the above three navigation features, in a mouse move event moving based on the pixels the cursor has moved:
// Adjust this to change rotation speed when dragging (units are radians per pixel mouse moves)
// This is both rotating the eye, and rotating around a point
static const double dRotatePixelScale = 0.001;
// Adjust this to change pan speed (units are meters per pixel mouse moves)
static const double dPanPixelScale = 0.15;
switch (m_eCurrentNavigation) {
case ENavigation::eRotatePoint: {
// Rotating around m_oRotateAroundPos
const double dX = (double)(m_oLastMousePos.x - roMousePos.x) * dRotatePixelScale * D3DX_PI;
const double dY = (double)(m_oLastMousePos.y - roMousePos.y) * dRotatePixelScale * D3DX_PI;
// To rotate around the point, translate so the point is at (0,0,0) (this makes the point
// the origin so the eye rotates around the origin), rotate, translate back
// However, the camera is represented as an eye plus two (X and Y) rotation angles
// This needs to keep the same relative rotation.
// Rotate the eye around the point
const D3DXVECTOR3 oEyeTranslated = m_oEyePos - m_oRotateAroundPos;
D3DXMATRIX oRotationMatrix;
D3DXMatrixRotationYawPitchRoll(&oRotationMatrix, dX, dY, 0.0);
D3DXVECTOR4 oEyeRotated;
D3DXVec3Transform(&oEyeRotated, &oEyeTranslated, &oRotationMatrix);
m_oEyePos = D3DXVECTOR3(oEyeRotated.x, oEyeRotated.y, oEyeRotated.z) + m_oRotateAroundPos;
// Increment rotation to keep the same relative look angles
RotateXAxis(dX);
RotateYAxis(dY);
break;
}
case ENavigation::ePanPlane: {
const double dX = (double)(m_oLastMousePos.x - roMousePos.x) * dPanPixelScale;
const double dY = (double)(m_oLastMousePos.y - roMousePos.y) * dPanPixelScale;
m_oEyePos += GetXAxis() * dX; // GetX/YAxis reads from the view matrix, so increments correctly
m_oEyePos += GetYAxis() * -dY; // Inverted compared to screen coords
break;
}
case ENavigation::eRotateEye: {
// Rotate in radians around local (camera not scene space) X and Y axes
const double dX = (double)(m_oLastMousePos.x - roMousePos.x) * dRotatePixelScale * D3DX_PI;
const double dY = (double)(m_oLastMousePos.y - roMousePos.y) * dRotatePixelScale * D3DX_PI;
RotateXAxis(dX);
RotateYAxis(dY);
break;
}
The RotateXAxis and RotateYAxis methods are very simple:
void Camera::RotateXAxis(const double dRadians) {
m_dRotationX += dRadians;
m_dRotationX = fmod(m_dRotationX, 2 * D3DX_PI); // Keep in valid circular range
}
void Camera::RotateYAxis(const double dRadians) {
m_dRotationY += dRadians;
// Limit it so you don't rotate around when looking up and down
m_dRotationY = std::min(m_dRotationY, D3DX_PI * 0.49); // Almost fully up
m_dRotationY = std::max(m_dRotationY, D3DX_PI * -0.49); // Almost fully down
}
And to generate the view matrix from this:
void Camera::UpdateView() const {
const D3DXVECTOR3 oEyePos(GetEyePos());
const D3DXVECTOR3 oUpVector(0.0f, 1.0f, 0.0f); // Keep up "up", always.
// Generate a rotation matrix via a quaternion
D3DXQUATERNION oRotationQuat;
D3DXQuaternionRotationYawPitchRoll(&oRotationQuat, m_dRotationX, m_dRotationY, 0.0);
D3DXMATRIX oRotationMatrix;
D3DXMatrixRotationQuaternion(&oRotationMatrix, &oRotationQuat);
// Generate view matrix by looking at a point 1 unit ahead of the eye (transformed by the above
// rotation)
D3DXVECTOR3 oForward(0.0, 0.0, 1.0);
D3DXVECTOR4 oForward4;
D3DXVec3Transform(&oForward4, &oForward, &oRotationMatrix);
D3DXVECTOR3 oTarget = oEyePos + D3DXVECTOR3(oForward4.x, oForward4.y, oForward4.z); // eye pos + look vector = look target position
D3DXMatrixLookAtLH(&m_oViewMatrix, &oEyePos, &oTarget, &oUpVector);
}
It seems to me that "Roll" shouldn't be possible given the way you form your view matrix. Regardless of all the other code (some of which does look a little funny), the call D3DXMatrixLookAtLH(&m_oViewMatrix, &oEyePos, &oTarget, &oUpVector); should create a matrix without roll when given [0,1,0] as an 'Up' vector unless oTarget-oEyePos happens to be parallel to the up vector. This doesn't seem to be the case since you're restricting m_dRotationY to be within (-.49pi,+.49pi).
Perhaps you can clarify how you know that 'roll' is happening. Do you have a ground plane and the horizon line of that ground plane is departing from horizontal?
As an aside, in UpdateView, the D3DXQuaternionRotationYawPitchRoll seems completely unnecessary since you immediately turn around and change it into a matrix. Just use D3DXMatrixRotationYawPitchRoll as you did in the mouse event. Quaternions are used in cameras because they're a convenient way to accumulate rotations happening in eye coordinates. Since you're only using two axes of rotation in a strict order, your way of accumulating angles should be fine. The vector transformation of (0,0,1) isn't really necessary either. The oRotationMatrix should already have those values in the (_31,_32,_33) entries.
Update
Given that it's not roll, here's the problem: you create a rotation matrix to move the eye in world coordinates, but you want the pitch to happen in camera coordinates. Since roll isn't allowed and yaw is performed last, yaw is always the same in both the world and camera frames of reference. Consider the images below:
Your code works fine for local pitch and yaw because those are accomplished in camera coordinates.
But when you rotate around a reference point, you are creating a rotation matrix that is in world coordinates and using that to rotate the camera center. This works okay if the camera's coordinate system happens to line up with the world's. However, if you don't check to see if you're up against the pitch limit before you rotate the camera position, you will get crazy behavior when you hit that limit. The camera will suddenly start to skate around the world--still 'rotating' around the reference point, but no longer changing orientation.
If the camera's axes don't line up with the world's, strange things will happen. In the extreme case, the camera won't move at all because you're trying to make it roll.
The above is what would normally happen, but since you handle the camera orientation separately, the camera doesn't actually roll.
Instead, it stays upright, but you get strange translation going on.
One way to handle this would be to (1)always put the camera into a canonical position and orientation relative to the reference point, (2)make your rotation, and then (3)put it back when you're done (e.g., similar to the way that you translate the reference point to the origin, apply the Yaw-Pitch rotation, and then translate back). Thinking more about it, however, this probably isn't the best way to go.
Update 2
I think that Generic Human's answer is probably the best. The question remains as to how much pitch should be applied if the rotation is off-axis, but for now, we'll ignore that. Maybe it'll give you acceptable results.
The essence of the answer is this: Before mouse movement, your camera is at c1 = m_oEyePos and being oriented by M1 = D3DXMatrixRotationYawPitchRoll(&M_1,m_dRotationX,m_dRotationY,0). Consider the reference point a = m_oRotateAroundPos. From the point of view of the camera, this point is a'=M1(a-c1).
You want to change the orientation of the camera to M2 = D3DXMatrixRotationYawPitchRoll(&M_2,m_dRotationX+dX,m_dRotationY+dY,0). [Important: Since you won't allow m_dRotationY to fall outside of a specific range, you should make sure that dY doesn't violate that constraint.] As the camera changes orientation, you also want its position to rotate around a to a new point c2. This means that a won't change from the perspective of the camera. I.e., M1(a-c1)==M2(a-c2).
So we solve for c2 (remember that the transpose of a rotation matrix is the same as the inverse):
M2TM1(a-c1)==(a-c2) =>
-M2TM1(a-c1)+a==c2
Now if we look at this as a transformation being applied to c1, then we can see that it is first negated, then translated by a, then rotated by M1, then rotated by M2T, negated again, and then translated by a again. These are transformations that graphics libraries are good at and they can all be squished into a single transformation matrix.
#Generic Human deserves credit for the answer, but here's code for it. Of course, you need to implement the function to validate a change in pitch before it's applied, but that's simple. This code probably has a couple typos since I haven't tried to compile:
case ENavigation::eRotatePoint: {
const double dX = (double)(m_oLastMousePos.x - roMousePos.x) * dRotatePixelScale * D3DX_PI;
double dY = (double)(m_oLastMousePos.y - roMousePos.y) * dRotatePixelScale * D3DX_PI;
dY = validatePitch(dY); // dY needs to be kept within bounds so that m_dRotationY is within bounds
D3DXMATRIX oRotationMatrix1; // The camera orientation before mouse-change
D3DXMatrixRotationYawPitchRoll(&oRotationMatrix1, m_dRotationX, m_dRotationY, 0.0);
D3DXMATRIX oRotationMatrix2; // The camera orientation after mouse-change
D3DXMatrixRotationYawPitchRoll(&oRotationMatrix2, m_dRotationX + dX, m_dRotationY + dY, 0.0);
D3DXMATRIX oRotationMatrix2Inv; // The inverse of the orientation
D3DXMatrixTranspose(&oRotationMatrix2Inv,&oRotationMatrix2); // Transpose is the same in this case
D3DXMATRIX oScaleMatrix; // Negative scaling matrix for negating the translation
D3DXMatrixScaling(&oScaleMatrix,-1,-1,-1);
D3DXMATRIX oTranslationMatrix; // Translation by the reference point
D3DXMatrixTranslation(&oTranslationMatrix,
m_oRotateAroundPos.x,m_oRotateAroundPos.y,m_oRotateAroundPos.z);
D3DXMATRIX oTransformMatrix; // The full transform for the eyePos.
// We assume the matrix multiply protects against variable aliasing
D3DXMatrixMultiply(&oTransformMatrix,&oScaleMatrix,&oTranslationMatrix);
D3DXMatrixMultiply(&oTransformMatrix,&oTransformMatrix,&oRotationMatrix1);
D3DXMatrixMultiply(&oTransformMatrix,&oTransformMatrix,&oRotationMatrix2Inv);
D3DXMatrixMultiply(&oTransformMatrix,&oTransformMatrix,&oScaleMatrix);
D3DXMatrixMultiply(&oTransformMatrix,&oTransformMatrix,&oTranslationMatrix);
D3DXVECTOR4 oEyeFinal;
D3DXVec3Transform(&oEyeFinal, &m_oEyePos, &oTransformMatrix);
m_oEyePos = D3DXVECTOR3(oEyeFinal.x, oEyeFinal.y, oEyeFinal.z)
// Increment rotation to keep the same relative look angles
RotateXAxis(dX);
RotateYAxis(dY);
break;
}
I think there is a much simpler solution that lets you sidestep all rotation issues.
Notation: A is the point we want to rotate around, C is the original camera location, M is the original camera rotation matrix that maps global coordinates to the camera's local viewport.
Make a note of the local coordinates of A, which are equal to A' = M × (A - C).
Rotate the camera like you would in normal "eye rotation" mode. Update the view matrix M so that it is modified to M2 and C remains unchanged.
Now we would like to find C2 such that A' = M2 × (A - C2).
This is easily done by the equation C2 = A - M2-1 × A'.
Voilà, the camera has been rotated and because the local coordinates of A are unchanged, A remains at the same location and the same scale and distance.
As an added bonus, the rotation behavior is now consistent between "eye rotation" and "point rotation" mode.
You rotate around the point by repeatedly applying small rotation matrices, this probably cause the drift (small precision errors add up) and I bet you will not really do a perfect circle after some time. Since the angles for the view use simple 1-dimension double, they have much less drift.
A possible fix would be to store a dedicated yaw/pitch and relative position from the point when you enter that view mode, and using those to do the math. This requires a bit more bookkeeping, since you need to update those when moving the camera. Note that it will also make the camera move if the point move, which I think is an improvement.
If I understand correctly, you are satisfied with the rotation component in the final matrix (save for inverted rotation controls in the problem #3), but not with the translation part, is that so?
The problem seems to come from the fact that you treating them differently: you are recalculating the rotation part from scratch every time, but accumulate the translation part (m_oEyePos). Other comments mention precision problems, but it's actually more significant than just FP precision: accumulating rotations from small yaw/pitch values is simply not the same---mathematically---as making one big rotation from the accumulated yaw/pitch. Hence the rotation/translation discrepancy. To fix this, try recalculating eye position from scratch simultaneously with the rotation part, similarly to how you find "oTarget = oEyePos + ...":
oEyePos = m_oRotateAroundPos - dist * D3DXVECTOR3(oForward4.x, oForward4.y, oForward4.z)
dist can be fixed or calculated from the old eye position. That will keep the rotation point in the screen center; in the more general case (which you are interested in), -dist * oForward here should be replaced by the old/initial m_oEyePos - m_oRotateAroundPos multiplied by the old/initial camera rotation to bring it to the camera space (finding a constant offset vector in camera's coordinate system), then multiplied by the inverted new camera rotation to get the new direction in the world.
This will, of course, be subject to gimbal lock when the pitch is straight up or down. You'll need to define precisely what behavior you expect in these cases to solve this part. On the other hand, locking at m_dRotationX=0 or =pi is rather strange (this is yaw, not pitch, right?) and might be related to the above.