Find number of occurrences of numbers in a vector in C++ - c++

I have a vector of integers. which contains numbers. I want to count the number of occurrences of every number in this vector. So what will be the optimum way to do this. As I am new to Vectors please let me know any optimum method.

You can use a hash table, implemented by std::unordered_map. For example:
#include <unordered_map>
#include <vector>
void count_occurrence(std::unordered_map<int,int>& m, std::vector<int>& v){
for (auto itr = v.begin(); itr != v.end(); ++itr){
++m[*itr];
}
}
//...somewhere else
//you already have std::vector v filled
std::unordered_map<int,int> m;
count_occurrence(m, v);
//print the number of occurrences of 1
std::cout<<m[1]<<std::endl;

You could sort the elements of the vector
Iterate through vector
Store the current integer as x
Compare current index to previous index.
If they are equal, increment another variable as f
If they are unequal, begin the cycle again
This of course is by no means a step by step instruction, but it contains enough direction to get you going

To find the mode of a number of integers stored in an array/list/vector/etc. where v is the DS and num is the number of integers.
You may use the following technique:
Its simple and sober.
i = 0;
int m = 0, mode, c = 0, nc = 0;
while(i<num)
{
c = 0;
nc = v[i];
c++;
i++;
while(nc == v[i])
{
c++;
i++;
}
if(m < c)
{
m = c;
mode = nc;
}
}

Related

C++ How to optimize this algorithm ? (std::map)

The problem is the following: We are given a number 's', s ∈ [0, 10^6], and a number 'n', n ∈ [0, 50000], then n numbers, and we have to find how many number pairs' sum is equal to the 's' number (and we must use either maps or sets to solve it)
Here is the example:
Input:
5 (this is s)
6 (this is n)
1
4
3
6
-1
5
Output:
2
explanation : these are the (1,4) and (6,−1) pairs. (1 +4 = 5 and 6 + (-1) = 5)
Here is my "solution" , I don't even know if it's correct, but it works for the example that we got.
#include <iostream>
#include <map>
#include <iterator>
using namespace std;
int main()
{
cin.tie(0);
ios::sync_with_stdio(false);
int s;
cin >> s;
int n;
cin >> n;
map<int, int> numbers;
int element;
int counter = 0;
for(int i=0; i<n;i++)
{
cin >> element;
numbers.insert(pair<int, int>(element, s-element));
}
for(map<int, int>::iterator it = numbers.begin(); it != numbers.end(); it++)
{
map<int, int>::iterator it2 = it;
while(it2 != numbers.end())
{
if(it->second == it2->first)
{
counter++;
break;
}
it2++;
}
}
cout << counter << "\n";
return 0;
}
Thanks for the answers in advance! I'm still a beginner and I'm learning, sorry.
element, s-element is a good idea but there is no reason to store all the pairs and only then check for duplicates. This removes the O(n^2) loop you have there at the end.
The standard way using hashing would be:
seen=unordered_map<number,count>()
for 1...n:
e = read_int()
if (s-e) in seen:
duplicates+=seen[s-e] # Found new seen[s-e] duplicates.
if e in seen:
seen[e]+=1
else:
seen.insert(e,1)
return duplicates
Here's a brute-force method, using a vector:
int target_s = 0;
int quantity_numbers = 0;
std::cin >> target_s >> quantity_numbers;
std::vector<int> data(quantity_numbers);
for (int i = 0; i < quantity_numbers; ++i)
{
cin >> data[i];
}
int count = 0;
for (int i = 0; i < quantity_numbers; ++i)
{
for (j = 0; j < quantity_numbers; ++j)
{
if (i == j) continue;
int pair_sum = data[i] + data[j];
if (pair_sum == target_s) ++count;
}
}
std::cout << count;
The above code includes the cases where pair <a,b> == s and pair <b,a> == s. Not sure if the requirement only wants pair <a,b> in this case.
As always with this kind of questions, the selection of the appropriate algorithm will improve your solution. Writing some "better" C++ code, will nearly never help. Also, brute forcing is nearly never a solution for such an algorithm.
With the following described approach (which was of course not invented by me), we need just one std::map (or even better, a std::unordered_map) and one for loop. We do not need to store the read values in an additional std::vector or such alike. So, we can come up with low memory condumption and fast computation.
Approach. Any time, after reading a value, we will calculate the delta from the desired sum.
If we look at the required condition that the current value and some previuosly read value, should add up to the desired sum, we can write the following mathematical equations:
currentValue + previouslyReadValue = desiredSum
or
desiredSum - currentValue = previouslyReadValue
or with
delta = desiredSum - currentValue
-->
delta == previouslyReadValue
So, we need to look at the already read values and if they are equal to the delta (Because then they would add up the the desired sum), add their count of occurence the the resulting count of valid pairs.
The already read values and their count of occurence will be stored in a std::unordered_map.
All this will result in a 10 line solution:
#include <iostream>
#include <unordered_map>
int main() {
// Initialize our working variables
int numberOfValues{}, desiredSum{}, currentValue{}, resultingCount{};
// Read basic parameters. Desired sum and overall number of input values.
std::cin >> desiredSum >> numberOfValues;
// Here, we will store all values and their count of occurence
std::unordered_map<int, int> valuesAndCount{};
// Read all values and operate on them
for (int i{}; i < numberOfValues; ++i) {
std::cin >> currentValue; // Read from cin
const int delta{ desiredSum - currentValue }; // Calculate the delta from the desired sum
// Look, if the calculated delta is already in the map. Becuase, if the delta and the
// current value sum up to our desired sum, then we found a valid pair.
if (valuesAndCount.find(delta) != valuesAndCount.end())
// Increase the resulting count, by the number of times that this delta value has already been there
resultingCount += valuesAndCount[delta];
// Nothing special, Just cound the occurence of this value.
valuesAndCount[currentValue]++;
}
return !!(std::cout << resultingCount);
}

Can I get rid of nested for loops here?

I have a function that takes a vector and returns a vector by combining all the elements in it. Right now, I have 3 nested for loops that create a combination that is 3 levels deep. I would like it to look better and have the ability to add the functionality to make it 4 levels deep when I want.
If input = ["one", "two", "three"]
3 level output = "onetwothree" "twoonethree" and so on.
std::vector<std::string> generator(std::vector<std::string>& x)
{
std::vector<std::string> output;
std::string tmp;
for (auto i : x) {
output.push_back(i);
for (auto j : x) {
tmp = i + j;
output.push_back(tmp);
for (auto k : x) {
tmp = i + j + k;
output.push_back(tmp);
}
}
}
return output;
}
I have looked into iterators, but I can't figure out if it would work.
If what you are looking for is to simply generate the permutations of all the elements of the string vector x and store these permutations into another output vector, this is easily accomplished by using std::next_permutation and std::accumulate:
#include <vector>
#include <string>
#include <numeric>
#include <iostream>
#include <algorithm>
std::vector<std::string> generator(std::vector<std::string> x)
{
std::vector<std::string> output;
std::sort(x.begin(), x.end());
do
{
output.push_back(std::accumulate(x.begin(), x.end(), std::string()));
} while (std::next_permutation(x.begin(), x.end()));
return output;
}
int main()
{
auto v = generator({"one","two","three"});
for (auto& val : v)
std::cout << val << "\n";
}
Live Example
The std::accumulate basically calls operator + on the elements by default, thus the string is automatically concatenated.
As far as std::next_permutation, the description of what it does is explained at the link. Basically you want to start out with a sorted sequence, and call std::next_permutation to get the next permutation of elements.
Note that this is not contingent of the number of "levels" (as you call it). You could have a vector of 10 strings, and this would work correctly (assuming there are no memory constraints).
If you want to generate all combinations of N words with max length L you could use this:
std::vector<std::string> generator(const std::vector<std::string> & x, int levels) {
int nWords = x.size();
std::vector<std::string> output;
for (int l = 1; l <= levels; ++l) {
int nCombs = std::pow(nWords, l);
for (int i = 0; i < nCombs; ++i) {
std::string cur;
for (int j = 0, k = i; j < l; ++j) {
cur += x[k%nWords];
k /= nWords;
}
output.push_back(cur);
}
}
return output;
}
Live Example
There are still 3 nested loops, but this works for any value of L - not just 3. L > N also works.
Hi I had the similar problem in Python once.
The goal I suppose is to have a "n-nested" loops such that n is a variable. A better result would be to make each index I_i of level i be variables. That is to say, given a list [I_1,I_2,...,I_n], you should be able to generate such loop
for i_1 in range( I_1):
for i_2 in range( I_2):
...
for i_n in range(I_n):
some_function(i_1,i_2,...,i_n)
One way to do this is to use mathematics. You can build a number such that on the ith digit, it's I_i based. This number's maxmium value is just I_1*I_2*...*I_n. In this way, the entire loop will be collaped into one simple loop
for i in range(I_1*I_2*...*I_n):
# obtain these numbers
i_1 = f_1(i)
i_2 = f_2(i)
...
i_n = f_n(i)
some_function(i_1,i_2,...,i_n)
Although the functions to obtain the is are a bit complicated.
Another way to do it is, as you have mentioned, iterators. In Python it's just import itertools. In C++, however, I found this cppitertools. I haven't tried it, but I suppose this could work.
Still, if you want speed, the first approch is preferred. Still, I think there are better solutions.

How to output a missing number in set in c++?

If I have a set in C++, and it contains numbers from 0 to n. I wish to find out the number that is missing from 1 to n and output that and if none of them is missing, then output the number (n+1).
For example, if the set contains, 0 1 2 3 4 5 6 7, then it should output 8
If it contains, 0 1 3 4 5 6, then it should output 2.
I made the following code for this, but it always seems to output 0. I dont know what is the problem.
set<int>::iterator i = myset.begin();
set<int>::iterator j = i++;
while (1)
{
if ( *(j) != *(i)+1 )
{
cout<<*(j)<<"\n";
break;
}
else
{
i++;
j++;
}
}
What is the problem? Thanks!
The problem is that you're advancing i:
set<int>::iterator i = myset.begin(); // <-- i points to first element
set<int>::iterator j = i++; // <-- j points to first element
// i points to second!
while (1)
{ // so if our set starts with {0, 1, ...}
if ( *(j) != *(i)+1 ) // then *j == 0, *i == 1, *i + 1 == 2, so this
// inequality holds
What you meant to do is have j be the next iterator after i:
std::set<int>::iterator i = myset.begin(), j = myset.begin();
std::advance(j, 1);
With C++11, there's also std::next():
auto i = myset.begin();
auto j = std::next(i, 1);
Or, alternatively, just reverse your construction:
std::set<int>::iterator j = myset.begin();
std::set<int>::iterator i = j++; // now i is the first element, j is the second
Or, lastly, you really only need one iterator:
int expected = 0;
for (std::set<int>::iterator it = myset.begin(); it != myset.end();
++it, ++expected)
{
if (*it != expected) {
std::cout << "Missing " << expected << std::endl;
break;
}
}
The easiest stuff: Use count() function of set to check whether an element is present in set or not.
The count() takes an integer argument: The number whose existence in the set is to be checked. If the element is present in set, count() returns a non zero value, else it returns 0.
For example:
#include <iostream>
#include <set>
using namespace std;
int main()
{
set<int> s;
//I insert 0 - 4 in the set.
for(int i=0;i < 5; ++i)
s.insert(i);
//Let 10 be the 'n'.
for(int i = 0; i < 10; ++i)
{
//If i is NOT present in the set, the below condition will be true.
if (!s.count(i))
cout<<i<<" is missing!\n";
}
}
One problem is that you access beyond the end of the set if the set is
dense, which is undefined behavior. Another is that you always output
an element in the set (*j, where j is an iterator into the set);
according to your description, what you want to output is a value which
isn't in the set.
There are a couple of ways of handling this. The simplest is probably
just to maintain a variable expected, initialized with 0 and
incremented each time. Something like the following.
int
firstAvailable( std::set<int> const& allocated )
{
int expected = 0;
for ( auto current = allocated.begin(), end = allocated.end();
current != end && *current == expected;
++ current ) {
++ expected;
}
return expected;
}
If you don't want to return 0 if the list isn't empty, but starts with
some other value, initialize expected with the first element of the
set (or with whatever you want to return if the set is empty).
EDIT:
Of course, other algorithms may be better. For this sort of thing, I usually use a bit map.
The problem with your original code has already been pointed out in the other answers. You're modifying i while assigning j. You can fix this by initializing the iterators as:
set<int>::iterator i = myset.begin();
set<int>::iterator j = i;
j++;
A more elegant solution is to take advantage of the fact that the sum of all values up to n is n * (n + 1) / 2. You can calculate the sum of the actual values, and subtract it from the full sum to obtain the missing value:
int findMissing(const std::set<int>& valSet) {
int valCount = valSet.size();
int allSum = (valCount * (valCount + 1)) >> 1;
int valSum = std::accumulate(valSet.begin(), valSet.end(), 0);
return allSum - valSum;
}
The big advantage of this approach is that it does not rely on using a container where iterators provide the values in sorted order. You can use the same solution e.g. on an unsorted std::vector.
One danger to look out for when using this approach is overflow. With 32-bit ints, it will overflow with approximately 2^16 values. It might actually still work if it overflows, particularly if you use unsigned instead of int, but I did not confirm that.
There's a similar approach that uses the XOR of all values instead of the sum, which does not have the problem with overflow.

How to find a unique number using std::find

Hey here is a trick question asked in class today, I was wondering if there is a way to find a unique number in a array, The usual method is to use two for loops and get the unique number which does not match with all the others I am using std::vectors for my array in C++ and was wondering if find could spot the unique number as I wouldn't know where the unique number is in the array.
Assuming that we know that the vector has at least three
elements (because otherwise, the question doesn't make sense),
just look for an element different from the first. If it
happens to be the second, of course, we have to check the third
to see whether it was the first or the second which is unique,
which means a little extra code, but roughly:
std::vector<int>::const_iterator
findUniqueEntry( std::vector<int>::const_iterator begin,
std::vector<int>::const_iterator end )
{
std::vector<int>::const_iterator result
= std::find_if(
next( begin ), end, []( int value) { return value != *begin );
if ( result == next( begin ) && *result == *next( result ) ) {
-- result;
}
return result;
}
(Not tested, but you get the idea.)
As others have said, sorting is one option. Then your unique value(s) will have a different value on either side.
Here's another option that solves it, using std::find, in O(n^2) time(one iteration of the vector, but each iteration iterates through the whole vector, minus one element.) - sorting not required.
vector<int> findUniques(vector<int> values)
{
vector<int> uniqueValues;
vector<int>::iterator begin = values.begin();
vector<int>::iterator end = values.end();
vector<int>::iterator current;
for(current = begin ; current != end ; current++)
{
int val = *current;
bool foundBefore = false;
bool foundAfter = false;
if (std::find(begin, current, val) != current)
{
foundBefore = true;
}
else if (std::find(current + 1, end, val) != end)
{
foundAfter = true;
}
if(!foundBefore && !foundAfter)
uniqueValues.push_back(val);
}
return uniqueValues;
}
Basically what is happening here, is that I am running ::find on the elements in the vector before my current element, and also running ::find on the elements after my current element. Since my current element already has the value stored in 'val'(ie, it's in the vector once already), if I find it before or after the current value, then it is not a unique value.
This should find all values in the vector that are not unique, regardless of how many unique values there are.
Here's some test code to run it and see:
void printUniques(vector<int> uniques)
{
vector<int>::iterator it;
for(it = uniques.begin() ; it < uniques.end() ; it++)
{
cout << "Unique value: " << *it << endl;
}
}
void WaitForKey()
{
system("pause");
}
int main()
{
vector<int> values;
for(int i = 0 ; i < 10 ; i++)
{
values.push_back(i);
}
/*for(int i = 2 ; i < 10 ; i++)
{
values.push_back(i);
}*/
printUniques(findUniques(values));
WaitForKey();
return -13;
}
As an added bonus:
Here's a version that uses a map, does not use std::find, and gets the job done in O(nlogn) time - n for the for loop, and log(n) for map::find(), which uses a red-black tree.
map<int,bool> mapValues(vector<int> values)
{
map<int, bool> uniques;
for(unsigned int i = 0 ; i < values.size() ; i++)
{
uniques[values[i]] = (uniques.find(values[i]) == uniques.end());
}
return uniques;
}
void printUniques(map<int, bool> uniques)
{
cout << endl;
map<int, bool>::iterator it;
for(it = uniques.begin() ; it != uniques.end() ; it++)
{
if(it->second)
cout << "Unique value: " << it->first << endl;
}
}
And an explanation. Iterate over all elements in the vector<int>. If the current member is not in the map, set its value to true. If it is in the map, set the value to false. Afterwards, all values that have the value true are unique, and all values with false have one or more duplicates.
If you have more than two values (one of which has to be unique), you can do it in O(n) in time and space by iterating a first time through the array and filling a map that has as a key the value, and value the number of occurences of the key.
Then you just have to iterate through the map in order to find a value of 1. That would be a unique number.
This example uses a map to count number occurences. Unique number will be seen only one time:
#include <iostream>
#include <map>
#include <vector>
int main ()
{
std::map<int,int> mymap;
std::map<int,int>::iterator mit;
std::vector<int> v;
std::vector<int> myunique;
v.push_back(10); v.push_back(10);
v.push_back(20); v.push_back(30);
v.push_back(40); v.push_back(30);
std::vector<int>::iterator vit;
// count occurence of all numbers
for(vit=v.begin();vit!=v.end();++vit)
{
int number = *vit;
mit = mymap.find(number);
if( mit == mymap.end() )
{
// there's no record in map for your number yet
mymap[number]=1; // we have seen it for the first time
} else {
mit->second++; // thiw one will not be unique
}
}
// find the unique ones
for(mit=mymap.begin();mit!=mymap.end();++mit)
{
if( mit->second == 1 ) // this was seen only one time
{
myunique.push_back(mit->first);
}
}
// print out unique numbers
for(vit=myunique.begin();vit!=myunique.end();++vit)
std::cout << *vit << std::endl;
return 0;
}
Unique numbers in this example are 20 and 40. There's no need for the list to be ordered for this algorithm.
Do you mean to find a number in a vector which appears only once? The nested loop if the easy solution. I don't think std::find or std::find_if is very useful here. Another option is to sort the vector so that you only need to find two consecutive numbers that are different. It seems overkill, but it is actually O(nlogn) instead of O(n^2) as the nested loop:
void findUnique(const std::vector<int>& v, std::vector<int> &unique)
{
if(v.size() <= 1)
{
unique = v;
return;
}
unique.clear();
vector<int> w = v;
std::sort(w.begin(), w.end());
if(w[0] != w[1]) unique.push_back(w[0]);
for(size_t i = 1; i < w.size(); ++i)
if(w[i-1] != w[i]) unique.push_back(w[i]);
// unique contains the numbers that are not repeated
}
Assuming you are given an array size>=3 which contains one instance of value A, and all other values are B, then you can do this with a single for loop.
int find_odd(int* array, int length) {
// In the first three elements, we are guaranteed to have 2 common ones.
int common=array[0];
if (array[1]!=common && array[2]!=common)
// The second and third elements are the common one, and the one we thought was not.
return common;
// Now search for the oddball.
for (int i=0; i<length; i++)
if (array[i]!=common) return array[i];
}
EDIT:
K what if more than 2 in an array of 5 are different? – super
Ah... that is a different problem. So you have an array of size n, which contains the common element c more than once, and all other elements exactly once. The goal is to find the set of non-common (i.e. unique) elements right?
Then you need to look at Sylvain's answer above. I think he was answering a different question, but it would work for this. At the end, you will have a hash map full of the counts of each value. Loop through the hash map, and every time you see a value of 1, you will know the key is a unique value in the input array.

Given a vector with integers from 0 to n, but not all included, how do I efficiently get the non-included integers?

Given a vector with integers from 0 to n, but not all included, how do I efficiently get the non-included integers?
For example if I have a vector with 1 2 3 5, I need to get the vector that contains 0 4.
But I need to do it very efficiently.
Since the vector is already sorted, this becomes trivial:
vector<int> v = {1,2,3,5};
vector<int> ret;
v.push_back(n+1); // this is to enforce a limit using less branches in the loop
for(int i = 0, j = 0; i <= n; ++i){
int present = v[j++];
while(i < present){
ret.push_back(i++);
}
}
return ret;
Additionally, if it wasn't sorted, you could either sort it and apply the above algorithm, or, if you know the range of n, and you can afford the extra memory, you could instead create an array of boolean (or a bitset) and mark the index corresponding to every element you encounter (e.g. bitset[v[j++]] = true;), subsequently iterating from 0 to n and inserting into your vector every element whose bitset position has not been marked.
Basically the idea presented here is that we know the number of missing items beforehand if we can assume sorted input without duplicate values.
Then it is possible to pre-allocate enough space to hold the missing values beforehand (no later dynamic allocation required). Then we can also exploit the possible shortcut when all missing values were found.
If the input vector is not sorted or contains duplicate values, a wrapper function can be used that establishes this precondition.
#include <iostream>
#include <set>
#include <vector>
inline std::vector<int> find_missing(std::vector<int> const & input) {
// assuming non-empty, sorted input, no duplicates
// number of items missing
int n_missing = input.back() - input.size() + 1;
// pre-allocate enough memory for missing values
std::vector<int> result(n_missing);
// iterate input vector with shortcut if all missing values were found
auto input_it = input.begin();
auto result_it = result.begin();
for (int i = 0; result_it != result.end() && input_it != input.end(); ++i) {
if (i < *input_it) (*result_it++) = i;
else ++input_it;
}
return result;
}
// use this if the input vector is not sorted/unique
inline std::vector<int> find_missing_unordered(std::vector<int> const & input) {
std::set<int> values(input.begin(), input.end());
return find_missing(std::vector<int>(values.begin(), values.end()));
}
int main() {
std::vector<int> input = {1,2,3,5,5,5,7};
std::vector<int> result = find_missing_unordered(input);
for (int i : result)
std::cout << i << " ";
std::cout << "\n";
}
The output is:
$ g++ test.cc -std=c++11 && ./a.out
0 4 6