C++ property declaration [duplicate] - c++

This question already has answers here:
Why use pointers? [closed]
(17 answers)
Closed 9 years ago.
I'm diving into C++ coming from the worlds of Objective-C and Java. Java gave me all the OOP knowledge I have and Objective-C taught me about manual memory management. While adapting to C++ is easy (the language definitely does not deserve the reputation it has) I am confused about one thing:
I can declare a property as string my_string or string *my_string. I know I need to delete the second, but what's the advantage in declaring it as a pointer?

In most situations there is no benefit at all to use the pointer variant.
One reason to use this is if you want the member to survive the destruction of the object (if you do not delete it in the destructor). However this necessity is usually enforced by bad design, so I'd try to avoid this.
Another reason (and the more probable one) is, if you want the member to optionally be undefined (that is you initialize the member to NULL/nullptr(c++11) in the constructor and each read access checks if the pointer is still NULL or actually points to a value). This way you can postpone intialization. However even in this case I'd suggest using smart pointers (std::shared_ptr in c++11 or boost::shared_ptr in c++98) or boost::optional...

People have answered almost completely, but I'd add this reason: while declaring a variable as a pointer is useless, it comes in handy if it's a big structure and you have to pass it as a parameter to many functions, like a recursive algorithm.
strcut sMyStruct
{
// A lot of members
}
// Somewhere in your code
sMyStruct foo;
RecursiveOperation( &foo );
// Somewhere else if you want foo to don't be modified.
void RecursiveOperation( const sMyStruct *pFoo )
{
}
// or...
void RecursiveOperation( sMyStruct *pFoo )
{
}
In this case, having *pFoo makes your code faster and cheaper, even if you could use & to pass the reference having some more safety but slightly less speed.
Obviously I may be wrong but that's what jobmates teached me.

I know I need to delete the second
A pointer does not necessarily mean that any dynamically allocation is involved, at all. Therefore a pointer does not automatically need to be deleted.
What's the advantage in declaring it as a pointer?
As a rule of thumb you should always use automatic allocated memory (~ stack). If you'll ever feel the need to use dynamically allocated memory (for lack of space in the stack for example), you'll know. Dynamically allocated memory can also be used to manually control the lifetime of an object, but that's dangerous most of the time: that's why we have smart pointers like std::unique_ptr and std::shared_ptr.
In this particular case, unless you really need to have a pointer to an std::string as a reference (that can be nullptr) to a string, I can't see the purpose of it. Most std::string's implementations already store the char array dynamically.

In C++ you can store variables on stack or on heap, when you manage pointers usually you are on the heap and you need manually memory managment.
Small objects are good for stack, large object like a very huge string is not good for stack and can cause a stackoverflow (stack is quite small, see you compiler to see stack space ).
std::string are not huge object on the stack because they internally manage the pointers on the heap. Declaring a string as a pointer means that you usually need that string to refering to something else.
What can I suggest to you is to avoid raw pointers always. Prefer std::unique_ptr or std::shared_ptr.

Nothing. In C++, use values instead of pointers unless required. Heck, you can get away with references instead of pointers in most cases as well (like function calls).
There really is no sense in using std::string*.
The only time A* makes sense, or is useful at all, is when there are subclasses of A which you want to assign to this base class pointer. An example, with the classical shape
#include <iostream>
#include <memory>
#include <vector>
class shape
{
public:
virtual ~shape() {}; // required to properly be able to delete base class pointers
virtual bool isRound() const = 0;
virtual const char* name() const = 0;
};
class rectangle : public shape
{
public:
bool isRound() const { return false; }
const char* name() const { return "rectangle"; }
};
class circle : public shape
{
bool isRound() const { return true; }
const char* name() const { return "circle"; }
};
class square : public rectangle
{
const char* name() const { return "square"; }
};
int main()
{
std::vector<std::unique_ptr<shape>> shapes;
shapes.emplace_back(new square());
shapes.emplace_back(new circle());
shapes.emplace_back(new rectangle());
for(const auto& s : shapes)
{
if(s->isRound())
std::cout << s->name() << " is round.\n";
else
std::cout << s->name() << " is not round.\n";
}
}
Live demo
Here, the vector of pointers is only an example, it might be a member of a class or anything else really.
Note I used std::unique_ptr<shape> instead of shape*. Learn about smart pointers. Fast.

You have to understand the fact the pointer is some thing that holds the address to a memory location .It can hold the address from stack as well as from heap

Related

Conditional declaration of objects inherting from a common base class to pass a reference to one of them

Say I have two classes inheriting from a common base, such as
class Thing{
public:
virtual void f()=0;
};
class Thing_variant_a: public Thing{
public:
void f(){
std::cout<<"I am (a)"<<std::endl;
}
};
class Thing_variant_b: public Thing{
public:
void f(){
std::cout<<"I am (b)"<<std::endl;
}
};
And a function taking a reference to a Thing object as an argument.
void function(Thing& t){
t.f();
}
Depending on conditions I would like to call function with either a thing_a or thing_b (and possibly extend this at some point adding another possibility of thing_c)
I know I can do this using a pointer
Thing *t = nullptr;
if(condition_a){
t = new Thing_variant_a();
} else if(condition_b){
t = new Thing_variant_b();
}
function(*t);
However, I would like to know if there is a better way, that
does not allocate heap memory
does not require me to take care of deleting t at some point (probably smart pointers, but I don't know much about those)
ensures I always pass a valid Thing reference to function (there might be more conditionals in a complicated structure than in this minimal example) I could do if(t){ function(*t);}else{/*handle error*/}), but it seems like there should be a more elegant solution.
If not all of the above are possible any combination of those?
This sounds very much like an XY problem. There is probably a different solution to your problem entirely.
C++ is a statically-typed language; that means types used in a given code path are fixed at compile-time. Dynamic types (types known at run time) are normally allocated via the heap or all-at-once and then selected at run time.
So not much is possible in your case as you've noticed..
You could for example just have two different code paths:
if (condition_a) {
Thing_variant_a a;
function(a);
} else if (condition_b) {
Thing_variant_a b;
function(b);
}
Preallocate the types:
Thing_variant_a a;
Thing_variant_a b;
if (condition_a) {
function(a);
} else if (condition_b) {
function(b);
}
Or use a template:
template<typename T>
void do_something() {
T t;
function(t);
}
// somewhere else in the code ...
do_something<Thing_variant_a>();
// or ...
do_something<Thing_variant_b>();
Here's a way using dynamic memory and unique_ptr:
std::unique_ptr<Thing> t;
if (condition_a) {
t = std::make_unique<Thing_variant_a>();
} else if (condition_b) {
t = std::make_unique<Thing_variant_b>();
}
function(*t);
// t is delete'd automatically at end of scope...
And by the way, a function like int f(){...} should return some int value.
Here is a way to do it without using the heap or pointers:
Thing_variant_a thingA;
Thing_variant_b thingB;
if(condition_a){
function(thingA);
} else if(condition_b){
function(thingB);
}
If you want, you reduce it to a single call via the ternary operator:
Thing_variant_a thingA;
Thing_variant_b thingB;
function(condition_a ? static_cast<Thing &>(thingA) : static_cast<Thing &>(thingB));
As far as references go, references in C++ are required to be always be non-NULL -- so if you try to dereference a NULL pointer (e.g. by calling function(*t) when t==NULL) you've already invoked undefined behavior and are doomed; there is nothing the code inside function() can do to save you. So if there is any change that your pointer is NULL, you must check for that before dereferencing it.
I'll try to answer each of your questions
does not allocate heap memory
Unfortunately c++ only supports polymorphism using pointers. I guess the problem you would face here is fragmented memory (meaning that your pointers are everywhere in the heap). The best way to handle that is to allocate the memory using a memory pool.
You could use an std::variant but you will still need to test for the currently available type in the variant.
does not require me to take care of deleting t at some point (probably smart pointers, but I don't know much about those)
You could use a std::unique_ptr which will basically called the destructor when no one holds that pointer anymore.
ensures I always pass a valid Thing reference to function (there might be more conditionals in a complicated structure than in this minimal example) I could do if(t){ function(*t);}else{/handle error/}), but it seems like there should be a more elegant solution.
If you use pointers your could just check for the nullptr as you are doing right now. I'm not sure what you are meaning by valid reference as a reference always points toward something and cannot be empty.

Why is there no "weak pointer" for raw pointer? Or is there?

Shared pointers are good idea, no doubt. But as long as a large scale program includes raw pointers, I think there is a big risk in using shared pointers. Mainly, you will loose control of the real life-cycle of pointers to objects that hold raw pointers, and bugs will occur in locations which are more difficult to find and debug.
So my question is, was there no attempt to add to modern c++ a "weak pointer" which does not depend on using shared pointers? I mean just a pointer which becomes NULL when deleted in any part of the program. Is there a reason not to use such a self-made wrapper?
To better explain what I mean, the following is such a "weak pointer" that I made. I named it WatchedPtr.
#include <memory>
#include <iostream>
template <typename T>
class WatchedPtr {
public:
// the only way to allocate new pointer
template <typename... ARGS>
WatchedPtr(ARGS... args) : _ptr (new T(args...)), _allocated (std::make_shared<bool>(true)) {}
WatchedPtr(const WatchedPtr<T>& other) : _ptr (other._ptr), _allocated (other._allocated) {}
// delete the pointer
void del () {delete _ptr; *_allocated = false;}
auto& operator=(const WatchedPtr<T> &other) { return *this = other; }
bool isNull() const { return *_allocated; }
T* operator->() const { return _ptr; }
T& operator*() const { return *_ptr; }
private:
T* _ptr;
std::shared_ptr <bool> _allocated;
};
struct S {
int a = 1;
};
int main () {
WatchedPtr<S> p1;
WatchedPtr<S> p2(p1);
p1->a = 8;
std::cout << p1.isNull () << std::endl;
std::cout << p2.isNull () << std::endl;
p2.del ();
std::cout << p1.isNull () << std::endl;
std::cout << p1.isNull () << std::endl;
return 0;
}
Result:
1
1
0
0
-Edited-
Thank you all. Some clarifications following the comments and answers so far:
The implementation I presented for WatchedPtr is merely to demonstrate what I mean: a pointer that does not get the copy from external allocation, cannot be deleted externally, and becomes null if it is deleted. The implementation is knowingly far from perfect and was not meant to be perfect.
Problem with mix of shared_ptr and raw pointers is very common: A* is held as raw pointer, thus created at some point of the program and explicitly deleted at some point of the program. B holds a A*, and B* is held as shared_ptr, thus B* has vague lifespan. Thus B may live long after the deletion of A* that B holds.
The main usage of "WatchedPtr" in my mind is defensive programing. i.e. check for null and do the best thing possible for continuity (and a debug error). shared_ptr can do it, but in a very dangerous way - it will hide and delay the problem.
There can also be a design usage for "WatchedPtr" (very few and explicit "owners"), but this is not the main idea. For that indeed shared pointers are doing the job.
The intention of "WatchedPtr" is not for replacing all existing raw pointers in the program at once. It is not the same effort as replacing to shared_ptr, which IMHO has be done for the whole program at once. Which is unrealistic for large scale programs.
Weak pointers rely on notifications from the smart pointer infrastructure, so you could never do this with actual raw pointers.
One could imagine an extension of, say, unique_ptr which supported weak pointers, certainly. Presumably the main reason that nobody rushed in to implement such a feature is that weak pointers are already at the "Use refcounting and everything should just work" end of the scale, while unique_ptr is at the "Manage your lifetimes through RAII or you're not a real C++ programmer" end of the scale. Weak pointers also require there to be a separate control block per allocation, meaning that the performance advantage of such a WatchedPtr would be minimal compared to shared_ptr.
I think there is a big risk in using shared pointers. Mainly, you will loose control of the real life-cycle of pointers to objects that hold raw pointers, and bugs will occur in locations which are more difficult to find and debug.
Then you say
just a pointer which becomes NULL when deleted in any part of the program.
Don't you see the contradiction?
You don't want to use shared pointer because the lifetime of objects are determined at runtime. So far so good.
However, you want a pointer that automatically becomes null when the owner deletes it. The problem is if the lifetime of your pointer is known, you should not need that at all! If you know when the lifetime of your pointer ends, then you should be able to remove all instances of that pointer, a have a mean to check if the pointer is dead.
If you have a pointer that you don't know when the owner will free it and have no way to check or no observable side effect for the point of view of the weak owner, then do you really have control over lifetime of your pointer? Not really.
In fact, your implementation rely on containing a shared pointer. This is enlightening in the sense that you need some form of shared ownership in order to implement a raw pointer that can have weak pointer to it. Then if you need shared ownership to implement a raw pointer with weak references, you are left with a shared pointer. That's why the existence of your proposed class is contradictory.
std::shared_ptr + std::weak_ptr is made to deal with the issue of "parts of your program don't know when the owner free the resouce". What you need is a single std::shared_ptr and multiple std::weak_ptr, so they know when the resource is freed. These classes have the infomation needed to check the lifetime of a variable at runtime.
Or if in the contrary you know the lifetime of your pointers, then use that knowledge and find a way to remove dangling pointers, or expose a way to check for dangling pointers.
Reading the answers and comments, along with C++ Core Guidelines by Bjarne Stroustrup & Herb Sutter, I have come to the following answer:
When following the guidelines, there is no need for a "WatchedPtr" which involves "new" and "delete". However, a way to track the validity of a raw pointer taken from a smart pointer, is still in question for me, for debug/QA purposes.
In details:
Raw pointers should continue to be used. For various reasons. However, explicit "new" and "delete" should not. The cases of calling "new" and "delete" should all be replaced by shared_ptr/unique_ptr.
At the place where a raw pointer is currently allocated, there is no point in replacing it by "WatchedPtr".
If replacing a raw pointer to something else where it is allocated, it will be in most cases to unique_ptr, and on the other cases to shared_ptr. The "WatchedPtr", if at all, will continue from that point, built from the shared/unique pointer.
Therefor I have posted a somewhat different question.

C++ best practice: Returning reference vs. object

I'm trying to learn C++, and trying to understand returning objects. I seem to see 2 ways of doing this, and need to understand what is the best practice.
Option 1:
QList<Weight *> ret;
Weight *weight = new Weight(cname, "Weight");
ret.append(weight);
ret.append(c);
return &ret;
Option 2:
QList<Weight *> *ret = new QList();
Weight *weight = new Weight(cname, "Weight");
ret->append(weight);
ret->append(c);
return ret;
(of course, I may not understand this yet either).
Which way is considered best-practice, and should be followed?
Option 1 is defective. When you declare an object
QList<Weight *> ret;
it only lives in the local scope. It is destroyed when the function exits. However, you can make this work with
return ret; // no "&"
Now, although ret is destroyed, a copy is made first and passed back to the caller.
This is the generally preferred methodology. In fact, the copy-and-destroy operation (which accomplishes nothing, really) is usually elided, or optimized out and you get a fast, elegant program.
Option 2 works, but then you have a pointer to the heap. One way of looking at C++ is that the purpose of the language is to avoid manual memory management such as that. Sometimes you do want to manage objects on the heap, but option 1 still allows that:
QList<Weight *> *myList = new QList<Weight *>( getWeights() );
where getWeights is your example function. (In this case, you may have to define a copy constructor QList::QList( QList const & ), but like the previous example, it will probably not get called.)
Likewise, you probably should avoid having a list of pointers. The list should store the objects directly. Try using std::list… practice with the language features is more important than practice implementing data structures.
Use the option #1 with a slight change; instead of returning a reference to the locally created object, return its copy.
i.e. return ret;
Most C++ compilers perform Return value optimization (RVO) to optimize away the temporary object created to hold a function's return value.
In general, you should never return a reference or a pointer. Instead, return a copy of the object or return a smart pointer class which owns the object. In general, use static storage allocation unless the size varies at runtime or the lifetime of the object requires that it be allocated using dynamic storage allocation.
As has been pointed out, your example of returning by reference returns a reference to an object that no longer exists (since it has gone out of scope) and hence are invoking undefined behavior. This is the reason you should never return a reference. You should never return a raw pointer, because ownership is unclear.
It should also be noted that returning by value is incredibly cheap due to return-value optimization (RVO), and will soon be even cheaper due to the introduction of rvalue references.
passing & returning references invites responsibilty.! u need to take care that when you modify some values there are no side effects. same in the case of pointers. I reccomend you to retun objects. (BUT IT VERY-MUCH DEPENDS ON WHAT EXACTLY YOU WANT TO DO)
In ur Option 1, you return the address and Thats VERY bad as this could lead to undefined behaviour. (ret will be deallocated, but y'll access ret's address in the called function)
so use return ret;
It's generally bad practice to allocate memory that has to be freed elsewhere. That's one of the reasons we have C++ rather than just C. (But savvy programmers were writing object-oriented code in C long before the Age of Stroustrup.) Well-constructed objects have quick copy and assignment operators (sometimes using reference-counting), and they automatically free up the memory that they "own" when they are freed and their DTOR automatically is called. So you can toss them around cheerfully, rather than using pointers to them.
Therefore, depending on what you want to do, the best practice is very likely "none of the above." Whenever you are tempted to use "new" anywhere other than in a CTOR, think about it. Probably you don't want to use "new" at all. If you do, the resulting pointer should probably be wrapped in some kind of smart pointer. You can go for weeks and months without ever calling "new", because the "new" and "delete" are taken care of in standard classes or class templates like std::list and std::vector.
One exception is when you are using an old fashion library like OpenCV that sometimes requires that you create a new object, and hand off a pointer to it to the system, which takes ownership.
If QList and Weight are properly written to clean up after themselves in their DTORS, what you want is,
QList<Weight> ret();
Weight weight(cname, "Weight");
ret.append(weight);
ret.append(c);
return ret;
As already mentioned, it's better to avoid allocating memory which must be deallocated elsewhere. This is what I prefer doing (...these days):
void someFunc(QList<Weight *>& list){
// ... other code
Weight *weight = new Weight(cname, "Weight");
list.append(weight);
list.append(c);
}
// ... later ...
QList<Weight *> list;
someFunc(list)
Even better -- avoid new completely and using std::vector:
void someFunc(std::vector<Weight>& list){
// ... other code
Weight weight(cname, "Weight");
list.push_back(weight);
list.push_back(c);
}
// ... later ...
std::vector<Weight> list;
someFunc(list);
You can always use a bool or enum if you want to return a status flag.
Based on experience, do not use plain pointers because you can easily forget to add proper destruction mechanisms.
If you want to avoid copying, you can go for implementing the Weight class with copy constructor and copy operator disabled:
class Weight {
protected:
std::string name;
std::string desc;
public:
Weight (std::string n, std::string d)
: name(n), desc(d) {
std::cout << "W c-tor\n";
}
~Weight (void) {
std::cout << "W d-tor\n";
}
// disable them to prevent copying
// and generate error when compiling
Weight(const Weight&);
void operator=(const Weight&);
};
Then, for the class implementing the container, use shared_ptr or unique_ptr to implement the data member:
template <typename T>
class QList {
protected:
std::vector<std::shared_ptr<T>> v;
public:
QList (void) {
std::cout << "Q c-tor\n";
}
~QList (void) {
std::cout << "Q d-tor\n";
}
// disable them to prevent copying
QList(const QList&);
void operator=(const QList&);
void append(T& t) {
v.push_back(std::shared_ptr<T>(&t));
}
};
Your function for adding an element would make use or Return Value Optimization and would not call the copy constructor (which is not defined):
QList<Weight> create (void) {
QList<Weight> ret;
Weight& weight = *(new Weight("cname", "Weight"));
ret.append(weight);
return ret;
}
On adding an element, the let the container take the ownership of the object, so do not deallocate it:
QList<Weight> ql = create();
ql.append(*(new Weight("aname", "Height")));
// this generates segmentation fault because
// the object would be deallocated twice
Weight w("aname", "Height");
ql.append(w);
Or, better, force the user to pass your QList implementation only smart pointers:
void append(std::shared_ptr<T> t) {
v.push_back(t);
}
And outside class QList you'll use it like:
Weight * pw = new Weight("aname", "Height");
ql.append(std::shared_ptr<Weight>(pw));
Using shared_ptr you could also 'take' objects from collection, make copies, remove from collection but use locally - behind the scenes it would be only the same only object.
All of these are valid answers, avoid Pointers, use copy constructors, etc. Unless you need to create a program that needs good performance, in my experience most of the performance related problems are with the copy constructors, and the overhead caused by them. (And smart pointers are not any better on this field, I'd to remove all my boost code and do the manual delete because it was taking too much milliseconds to do its job).
If you're creating a "simple" program (although "simple" means you should go with java or C#) then use copy constructors, avoid pointers and use smart pointers to deallocate the used memory, if you're creating a complex programs or you need a good performance, use pointers all over the place, and avoid copy constructors (if possible), just create your set of rules to delete pointers and use valgrind to detect memory leaks,
Maybe I will get some negative points, but I think you'll need to get the full picture to take your design choices.
I think that saying "if you're returning pointers your design is wrong" is little misleading. The output parameters tends to be confusing because it's not a natural choice for "returning" results.
I know this question is old, but I don't see any other argument pointing out the performance overhead of that design choices.

Proper way to reassign pointers in c++

EDIT: I know in this case, if it were an actual class i would be better off not putting the string on the heap. However, this is just a sample code to make sure i understand the theory. The actual code is going to be a red black tree, with all the nodes stored on the heap.
I want to make sure i have these basic ideas correct before moving on (I am coming from a Java/Python background). I have been searching the net, but haven't found a concrete answer to this question yet.
When you reassign a pointer to a new object, do you have to call delete on the old object first to avoid a memory leak? My intuition is telling me yes, but i want a concrete answer before moving on.
For example, let say you had a class that stored a pointer to a string
class MyClass
{
private:
std::string *str;
public:
MyClass (const std::string &_str)
{
str=new std::string(_str);
}
void ChangeString(const std::string &_str)
{
// I am wondering if this is correct?
delete str;
str = new std::string(_str)
/*
* or could you simply do it like:
* str = _str;
*/
}
....
In the ChangeString method, which would be correct?
I think i am getting hung up on if you dont use the new keyword for the second way, it will still compile and run like you expected. Does this just overwrite the data that this pointer points to? Or does it do something else?
Any advice would be greatly appricated :D
If you must deallocate the old instance and create another one, you should first make sure that creating the new object succeeds:
void reset(const std::string& str)
{
std::string* tmp = new std::string(str);
delete m_str;
m_str = tmp;
}
If you call delete first, and then creating a new one throws an exception, then the class instance will be left with a dangling pointer. E.g, your destructor might end up attempting to delete the pointer again (undefined behavior).
You could also avoid that by setting the pointer to NULL in-between, but the above way is still better: if resetting fails, the object will keep its original value.
As to the question in the code comment.
*str = _str;
This would be the correct thing to do. It is normal string assignment.
str = &_str;
This would be assigning pointers and completely wrong. You would leak the string instance previously pointed to by str. Even worse, it is quite likely that the string passed to the function isn't allocated with new in the first place (you shouldn't be mixing pointers to dynamically allocated and automatic objects). Furthermore, you might be storing the address of a string object whose lifetime ends with the function call (if the const reference is bound to a temporary).
Why do you think you need to store a pointer to a string in your class? Pointers to C++ collections such as string are actually very rarely necessary. Your class should almost certainly look like:
class MyClass
{
private:
std::string str;
public:
MyClass (const std::string & astr) : str( astr )
{
}
void ChangeString(const std::string & astr)
{
str = astr;
}
....
};
Just pinpointing here, but
str = _str;
would not compile (you're trying to assign _str, which is the value of a string passed by reference, to str, which is the address of a string). If you wanted to do that, you would write :
str = &_str;
(and you would have to change either _str or str so that the constnest matches).
But then, as your intuition told you, you would have leaked the memory of whatever string object was already pointed to by str.
As pointed earlier, when you add a variable to a class in C++, you must think of whether the variable is owned by the object, or by something else.
If it is owned by the object, than you're probably better off with storing it as a value, and copying stuff around (but then you need to make sure that copies don't happen in your back).
It is is not owned, then you can store it as a pointer, and you don't necessarily need to copy things all the time.
Other people will explain this better than me, because I am not really confortable with it.
What I end up doing a lot is writing code like this :
class Foo {
private :
Bar & dep_bar_;
Baz & dep_baz_;
Bing * p_bing_;
public:
Foo(Bar & dep_bar, Baz & dep_baz) : dep_bar_(dep_bar), dep_baz_(dep_baz) {
p_bing = new Bing(...);
}
~Foo() {
delete p_bing;
}
That is, if an object depends on something in the 'Java' / 'Ioc' sense (the objects exists elsewhere, you're not creating it, and you only wants to call method on it), I would store the dependency as a reference, using dep_xxxx.
If I create the object, I would use a pointer, with a p_ prefix.
This is just to make the code more "immediate". Not sure it helps.
Just my 2c.
Good luck with the memory mgt, you're right that it is the tricky part comming from Java ; don't write code until you're confortable, or you're going to spend hours chasing segaults.
Hoping this helps !
The general rule in C++ is that for every object created with "new" there must be a "delete". Making sure that always happens in the hard part ;) Modern C++ programmers avoid creating memory on the heap (i.e. with "new") like the plague and use stack objects instead. Really consider whether you need to be using "new" in your code. It's rarely needed.
If you're coming from a background with garbage collected languages and find yourself really needing to use heap memory, I suggest using the boost shared pointers. You use them like this:
#include <boost/shared_ptr.hpp>
...
boost::shared_ptr<MyClass> myPointer = boost::shared_ptr<MyClass>(new MyClass());
myPointer has pretty much the same language semantics as a regular pointer, but shared_ptr uses reference counting to determine when delete the object it's referencing. It's basically do it yourself garbage collection. The docs are here: http://www.boost.org/doc/libs/1_42_0/libs/smart_ptr/smart_ptr.htm
I'll just write a class for you.
class A
{
Foo * foo; // private by default
public:
A(Foo * foo_): foo(foo_) {}
A(): foo(0) {} // in case you need a no-arguments ("default") constructor
A(const A &a):foo(new Foo(a.foo)) {} // this is tricky; explanation below
A& operator=(const &A a) { foo = new Foo(a.foo); return *this; }
void setFoo(Foo * foo_) { delete foo; foo = foo_; }
~A() { delete foo; }
}
For classes that hold resources like this, the copy constructor, assignment operator, and destructor are all necessary. The tricky part of the copy constructor and assignment operator is that you need to delete each Foo precisely once. If the copy constructor initializer had said :foo(a.foo), then that particular Foo would be deleted once when the object being initialized was destroyed and once when the object being initialized from (a) was destroyed.
The class, the way I've written it, needs to be documented as taking ownership of the Foo pointer it's being passed, because Foo * f = new Foo(); A a(f); delete f; will also cause double deletion.
Another way to do that would be to use Boost's smart pointers (which were the core of the next standard's smart pointers) and have boost::shared_ptr<Foo> foo; instead of Foo * f; in the class definition. In that case, the copy constructor should be A(const A &a):foo(a.foo) {}, since the smart pointer will take care of deleting the Foo when all the copies of the shared pointer pointing at it are destroyed. (There's problems you can get into here, too, particularly if you mix shared_ptr<>s with any other form of pointer, but if you stick to shared_ptr<> throughout you should be OK.)
Note: I'm writing this without running it through a compiler. I'm aiming for accuracy and good style (such as the use of initializers in constructors). If somebody finds a problem, please comment.
Three comments:
You need a destructor as well.
~MyClass()
{
delete str;
}
You really don't need to use heap allocated memory in this case. You could do the following:
class MyClass {
private:
std::string str;
public:
MyClass (const std::string &_str) {
str= _str;
}
void ChangeString(const std::string &_str) {
str = _str;
};
You can't do the commented out version. That would be a memory leak. Java takes care of that because it has garbage collection. C++ does not have that feature.
When you reassign a pointer to a new object, do you have to call delete on the old object first to avoid a memory leak? My intuition is telling me yes, but i want a concrete answer before moving on.
Yes. If it's a raw pointer, you must delete the old object first.
There are smart pointer classes that will do this for you when you assign a new value.

What are potential dangers when using boost::shared_ptr?

What are some ways you can shoot yourself in the foot when using boost::shared_ptr? In other words, what pitfalls do I have to avoid when I use boost::shared_ptr?
Cyclic references: a shared_ptr<> to something that has a shared_ptr<> to the original object. You can use weak_ptr<> to break this cycle, of course.
I add the following as an example of what I am talking about in the comments.
class node : public enable_shared_from_this<node> {
public :
void set_parent(shared_ptr<node> parent) { parent_ = parent; }
void add_child(shared_ptr<node> child) {
children_.push_back(child);
child->set_parent(shared_from_this());
}
void frob() {
do_frob();
if (parent_) parent_->frob();
}
private :
void do_frob();
shared_ptr<node> parent_;
vector< shared_ptr<node> > children_;
};
In this example, you have a tree of nodes, each of which holds a pointer to its parent. The frob() member function, for whatever reason, ripples upwards through the tree. (This is not entirely outlandish; some GUI frameworks work this way).
The problem is that, if you lose reference to the topmost node, then the topmost node still holds strong references to its children, and all its children also hold a strong reference to their parents. This means that there are circular references keeping all the instances from cleaning themselves up, while there is no way of actually reaching the tree from the code, this memory leaks.
class node : public enable_shared_from_this<node> {
public :
void set_parent(shared_ptr<node> parent) { parent_ = parent; }
void add_child(shared_ptr<node> child) {
children_.push_back(child);
child->set_parent(shared_from_this());
}
void frob() {
do_frob();
shared_ptr<node> parent = parent_.lock(); // Note: parent_.lock()
if (parent) parent->frob();
}
private :
void do_frob();
weak_ptr<node> parent_; // Note: now a weak_ptr<>
vector< shared_ptr<node> > children_;
};
Here, the parent node has been replaced by a weak pointer. It no longer has a say in the lifetime of the node to which it refers. Thus, if the topmost node goes out of scope as in the previous example, then while it holds strong references to its children, its children don't hold strong references to their parents. Thus there are no strong references to the object, and it cleans itself up. In turn, this causes the children to lose their one strong reference, which causes them to clean up, and so on. In short, this wont leak. And just by strategically replacing a shared_ptr<> with a weak_ptr<>.
Note: The above applies equally to std::shared_ptr<> and std::weak_ptr<> as it does to boost::shared_ptr<> and boost::weak_ptr<>.
Creating multiple unrelated shared_ptr's to the same object:
#include <stdio.h>
#include "boost/shared_ptr.hpp"
class foo
{
public:
foo() { printf( "foo()\n"); }
~foo() { printf( "~foo()\n"); }
};
typedef boost::shared_ptr<foo> pFoo_t;
void doSomething( pFoo_t p)
{
printf( "doing something...\n");
}
void doSomethingElse( pFoo_t p)
{
printf( "doing something else...\n");
}
int main() {
foo* pFoo = new foo;
doSomething( pFoo_t( pFoo));
doSomethingElse( pFoo_t( pFoo));
return 0;
}
Constructing an anonymous temporary shared pointer, for instance inside the arguments to a function call:
f(shared_ptr<Foo>(new Foo()), g());
This is because it is permissible for the new Foo() to be executed, then g() called, and g() to throw an exception, without the shared_ptr ever being set up, so the shared_ptr does not have a chance to clean up the Foo object.
Be careful making two pointers to the same object.
boost::shared_ptr<Base> b( new Derived() );
{
boost::shared_ptr<Derived> d( b.get() );
} // d goes out of scope here, deletes pointer
b->doSomething(); // crashes
instead use this
boost::shared_ptr<Base> b( new Derived() );
{
boost::shared_ptr<Derived> d =
boost::dynamic_pointer_cast<Derived,Base>( b );
} // d goes out of scope here, refcount--
b->doSomething(); // no crash
Also, any classes holding shared_ptrs should define copy constructors and assignment operators.
Don't try to use shared_from_this() in the constructor--it won't work. Instead create a static method to create the class and have it return a shared_ptr.
I've passed references to shared_ptrs without trouble. Just make sure it's copied before it's saved (i.e., no references as class members).
Here are two things to avoid:
Calling the get() function to get the raw pointer and use it after the pointed-to object goes out of scope.
Passing a reference of or a raw pointer to a shared_ptr should be dangerous too, since it won't increment the internal count which helps keep the object alive.
We debug several weeks strange behavior.
The reason was:
we passed 'this' to some thread workers instead of 'shared_from_this'.
Not precisely a footgun, but certainly a source of frustration until you wrap your head around how to do it the C++0x way: most of the predicates you know and love from <functional> don't play nicely with shared_ptr. Happily, std::tr1::mem_fn works with objects, pointers and shared_ptrs, replacing std::mem_fun, but if you want to use std::negate, std::not1, std::plus or any of those old friends with shared_ptr, be prepared to get cozy with std::tr1::bind and probably argument placeholders as well. In practice this is actually a lot more generic, since now you basically end up using bind for every function object adaptor, but it does take some getting used to if you're already familiar with the STL's convenience functions.
This DDJ article touches on the subject, with lots of example code. I also blogged about it a few years ago when I first had to figure out how to do it.
Using shared_ptr for really small objects (like char short) could be an overhead if you have a lot of small objects on heap but they are not really "shared". boost::shared_ptr allocates 16 bytes for every new reference count it creates on g++ 4.4.3 and VS2008 with Boost 1.42. std::tr1::shared_ptr allocates 20 bytes. Now if you have a million distinct shared_ptr<char> that means 20 million bytes of your memory are gone in holding just count=1. Not to mention the indirection costs and memory fragmentation. Try with the following on your favorite platform.
void * operator new (size_t size) {
std::cout << "size = " << size << std::endl;
void *ptr = malloc(size);
if(!ptr) throw std::bad_alloc();
return ptr;
}
void operator delete (void *p) {
free(p);
}
Giving out a shared_ptr< T > to this inside a class definition is also dangerous.
Use enabled_shared_from_this instead.
See the following post here
You need to be careful when you use shared_ptr in multithread code. It's then relatively easy to become into a case when couple of shared_ptrs, pointing to the same memory, is used by different threads.
The popular widespread use of shared_ptr will almost inevitably cause unwanted and unseen memory occupation.
Cyclic references are a well known cause and some of them can be indirect and difficult to spot especially in complex code that is worked on by more than one programmer; a programmer may decide than one object needs a reference to another as a quick fix and doesn't have time to examine all the code to see if he is closing a cycle. This hazard is hugely underestimated.
Less well understood is the problem of unreleased references. If an object is shared out to many shared_ptrs then it will not be destroyed until every one of them is zeroed or goes out of scope. It is very easy to overlook one of these references and end up with objects lurking unseen in memory that you thought you had finished with.
Although strictly speaking these are not memory leaks (it will all be released before the program exits) they are just as harmful and harder to detect.
These problems are the consequences of expedient false declarations: 1. Declaring what you really want to be single ownership as shared_ptr. scoped_ptr would be correct but then any other reference to that object will have to be a raw pointer, which could be left dangling. 2. Declaring what you really want to be a passive observing reference as shared_ptr. weak_ptr would be correct but then you have the hassle of converting it to share_ptr every time you want to use it.
I suspect that your project is a fine example of the kind of trouble that this practice can get you into.
If you have a memory intensive application you really need single ownership so that your design can explicitly control object lifetimes.
With single ownership opObject=NULL; will definitely delete the object and it will do it now.
With shared ownership spObject=NULL; ........who knows?......
If you have a registry of the shared objects (a list of all active instances, for example), the objects will never be freed. Solution: as in the case of circular dependency structures (see Kaz Dragon's answer), use weak_ptr as appropriate.
Smart pointers are not for everything, and raw pointers cannot be eliminated
Probably the worst danger is that since shared_ptr is a useful tool, people will start to put it every where. Since plain pointers can be misused, the same people will hunt raw pointers and try to replace them with strings, containers or smart pointers even when it makes no sense. Legitimate uses of raw pointers will become suspect. There will be a pointer police.
This is not only probably the worst danger, it may be the only serious danger. All the worst abuses of shared_ptr will be the direct consequence of the idea that smart pointers are superior to raw pointer (whatever that means), and that putting smart pointers everywhere will make C++ programming "safer".
Of course the mere fact that a smart pointer needs to be converted to a raw pointer to be used refutes this claim of the smart pointer cult, but the fact that the raw pointer access is "implicit" in operator*, operator-> (or explicit in get()), but not implicit in an implicit conversion, is enough to give the impression that this is not really a conversion, and that the raw pointer produced by this non-conversion is an harmless temporary.
C++ cannot be made a "safe language", and no useful subset of C++ is "safe"
Of course the pursuit of a safe subset ("safe" in the strict sense of "memory safe", as LISP, Haskell, Java...) of C++ is doomed to be endless and unsatisfying, as the safe subset of C++ is tiny and almost useless, as unsafe primitives are the rule rather than the exception. Strict memory safety in C++ would mean no pointers and only references with automatic storage class. But in a language where the programmer is trusted by definition, some people will insist on using some (in principle) idiot-proof "smart pointer", even where there is no other advantage over raw pointers that one specific way to screw the program state is avoided.