I'm studying for an exam in c++ and i have a question on the past papers
"Write a function in C++ that takes as input an array of doubles and the length of the array, and returns an array twice the length. The first half of the returned array should contain a copy of the contents of the original array. The second half of the returned array should contain the contents of the original array in reverse order."
"The function should have the following prototype: double *copy_and_reverse(double *a, int length);"
since im obviously new to c++ i got stuck in my solution, my code so far is:
double *copy_and_reverse(double *a, int length){
double *b[length*2];
for(int i=0;i<length;i++){
*b[i]=a[i];
}
for(int i=length;i<length*2;i++){
int w=length-1;
*b[i]=a[w];
w--;
}
return *b;
}
int main()
{
double nums[2]={1.23,5.364};
double *pnums=nums;
*pnums=*copy_and_reverse(pnums, 2);
I think i got the core of the method correct but i'm just stuck in the syntax of using pointers, any help is appreciated and if possible a reasoning behind it so i can learn for the exam.
You've got a few problems with this code.
First
double *b[length*2];
Here you're declaring an array of pointers to doubles. The array is of size length * 2, however, none of the pointers in this array are valid yet. This is probably not what you intended to do.
You want an array of doubles, of size length * 2. You can't return an array in C++ but you can return a pointer to some memory that contains an array of doubles.
Let's start by allocating enough memory for all those doubles
double *b= new double[length * 2];
In your first for loop you can treat result as an array
for(int i=0;i<length;i++){
b[i]=a[i];
}
Here you're copying the values from a for each index i to be at the same index. I'll let you figure out how to fill in the reverse part for the second half of the array. You're on the right track, however you might want to think about doing it all in one loop ;)
Your return statement just needs to return your variable b, as it's already a double *.
return b;
An important thing to remember is that you're allocating memory in this function with new. You are responsible for deleting this when you're done with it. Also, when you allocate using new and [] you have to delete using [] as well.
delete [] b;
you can call your function just by de-referencing the first item in your array.
int main() {
double nums[2]={1.23,5.364};
double *pnums = copy_and_reverse(&pnums[0], 2);//don't forget to clean up pnums afterwards!
There are quite many errors in your code. The major one is that you need to allocate new array of doubles. And return that array. I'd suggest compare this with your version line by line:
double *copy_and_reverse(double *a, int length){
double *result = new double[length*2];
for(int i=0;i<length;i++) {
result[i]=a[i];
}
int r = length*2;
for(int i=0; i < length;i++){
result[--r]=a[i];
}
return result;
}
And your main() shall look like:
int main()
{
double nums[2]={1.23,5.364};
double *pnums = copy_and_reverse(nums, 2);
...
delete[] pnums;
}
Ok, there are at least two problems with this:
double *b[length*2];
The first problem is that you are declaring a local array (of pointers), which you will then try to return:
return *b;
(You're returning the wrong thing here, too, but that's another story) You can't return a pointer to a locally-allocated thing because as soon as the function returns, the locally-allocated thing will be destroyed. Instead, given that you must return a pointer to the first element of an array, you have to dynamically allocate that thing using new.
Second, you can't declare an array like this using a length which s only known at runtime. But this problem will be obviated when you use new to dynamically allocate the array.
I would normally say that you shouldn't be doing any of this at all, and just use a std::vector -- but clearly a requirement of this assignment is to use a dynamically allocated C-style array. (Which I take great issue with your professor on.)
I would also say that the prototype:
double *copy_and_reverse(double *a, int length);
doesn't declare a function which takes an array, as your professor incorrectly asserts, but a function which takes a pointer to a double. That that pointer is the first element in an array doesn't magically make a an array. In short: an array and a pointer are not the same thing.
These last two observations are just for your benefit.
I assume this is not your homework and I am trying to help you out.
Look at the comment of code.
double *copy_and_reverse(double *a, int length)
{
double * b = new double[length*2]; //create a new array using new[]
for(int i=0;i<length;i++){
b[i]=a[i]; //addressing element with []
}
int w=length-1; //I assume this is what you want
for(int i=length;i<length*2;i++){
b[i]=a[w];
w--;
}
return b;
}
int main()
{
double nums[2]={1.23,5.364};
double *pnums = copy_and_reverse(nums, 2);
delete[] pnums;
}
Also noted the memory is allocated in the function, so in the main, you want to delete it by using [].
Related
I am trying to make a void function where it changes the pointer that I pass. The code is throwing an exception on one of the lines and i'm not sure why. Could it be I cannot pass the arrays as pointers then implement math on it? I thought I deallocated the pointers to fix it but this seemed to not work.
Void function:
#include <iostream>
using namespace std;
void* func2(int one, double *value1[], int two, double *value2[], double *final1) {
double testval;
double finalval = 0;
//double *final1;
double final = 0;
for (int i = 1; i < one; i++) {
for (int j = 1; j < two; j++) {
testval = *value1[i] * *value2[j]; //exception thrown (works up to this point)
finalval = testval + finalval;
}
final = finalval + final;
}
*final1 = final;
return 0;
}
Main Function:
int main(){
double *array1 = new double[input1];
double *array2 = new double[input2];
//for loop that takes user input and fills in array1 and array2 with size and a list of values
...
double testval2;
func2(input1, &array1, input2, &array2, &testval2);
cout << testval2 << endl;
delete[] array1;
delete[] array2;
return 0;
I am relatively new to pointers, so my apologies if the code is a little illiterate.
It looks like you want to pass two 1D arrays to func2().
One way to do that is remove the [] from the function signature as
(int one, double *value1, int two, double *value2, double *final1)
Within the function, change *value1[i] to value1[i], and similarly for value2. And remove the & when calling the function from the main().
A couple other thoughts:
I'm not sure how an exception could throw from your code. But *value1[i] is definitely an invalid memory access, so what you may have seen is a segmentation fault message. A helpful tool to troubleshoot these kinds of errors is AddressSanitizer, enabled in clang or gcc by compiling with -fsanitize=address, or if you are using Xcode, there is an option for it. Another great tool is valgrind.
Manually allocating dynamic arrays is a pretty C-like way of using C++. In C++, it is idiomatic to create the arrays as std::vector objects, which under the hood works the same way (it also allocates a dynamic array) but has a more convenient interface. Particularly the vector cleans itself up automatically, so no need to call delete[], and the vector knows its own size, so no need to pass the size around as a separate parameter as with dynamic arrays.
Edit: Here is a note to clarify why the original code manages to compile but fails at runtime.
In the function signature, the combo of both * and [] on double *value1[] makes value1 a pointer to a pointer to double, equivalent to double **value1. In main(), array1 is a double*. When calling the function, &array1 takes the address of that double*, obtaining a double**. So the type matches and the code compiles.
The code fails at runtime on *value1[i]. value1 is a pointer to pointer to doubles, where the inner pointer points to the dynamic array. So what was intended is (*value1)[i] to first dereference the outer pointer, then subscript into the dynamic array. However, in C++, subscripting (a[]) has operator precedence over dereferencing (*a), so it is read in backward order as *(value1[i]). Subscripting the outer pointer value1[i] is invalid for nonzero i, reading memory from somewhere in the stack and arbitrarily interpreting it as a double*. Then the surrounding *( ) attempts to dereference this busted pointer. The machine's memory protection catches this, and the OS sends a "SIGSEGV" signal or similar to the program to kill it.
Hoping for a little C++ assistance - I'm very new to the topic. I'm attempting to dynamically create an array based on user input with a pointer, then pass the array to a function. But the pointer (and thus array) pass feels a little wrong because there is no dereferencing that occurs.
During/after passing, do we just treat the pointer as if it were any normally declared-and-passed array, without the need to dereference (*) anything? Or am I applying this incorrectly?
Pseudocode follows:
#include<iostream>
using namespace std;
void arrayFunc(int [], int); // << Note no indication of pointer pass
int main()
{
int *arrayPtr = 0; // Array pointer
int arrayElem = 0; // Number of elements in array
cout << "\nPlease enter the number of elements: ";
cin >> arrayElem;
arrayPtr = new int[arrayElem]; // Dynamically create the new array
arrayFunc(arrayPtr, arrayElem); // << Note no dereferencing or other indication of pointer
return 0;
}
void arrayFunc(int array[], int arrayElem) // << Same here - now it's just a plain old array
{
// All the functiony-bits go here, referencing array without the need to dereference
}
[EDIT] While the above code works, the following includes the fixes determined in the discussion below:
#include<iostream>
using namespace std;
void arrayFunc(int*, int); // Changed to pointer pass instead of []
int main()
{
int *arrayPtr = 0; // Array pointer
int arrayElem = 0; // Number of elements in array
cout << "\nPlease enter the number of elements: ";
cin >> arrayElem;
arrayPtr = new int[arrayElem]; // Dynamically create the new array
arrayFunc(arrayPtr, arrayElem);
return 0;
}
void arrayFunc(int* array, int arrayElem) // Passing a pointer now instead of []
{
// All the functiony-bits go here, referencing array without the need to dereference
}
You should pass the pointer in your function, because it describes the situation accurately i.e. you are passing a dynamically allocated memory. arrayPtr is essentially a pointer to the first element of the array. As a result, you do not need to worry about dereferencing it.
Change the function signature to:
void arrayFunc(int*, int);
Your attempt is correct. You are passing the array pointer by value. You can then dereference it as normal within arrayFunc
C is designed to pretend a pointer and an array are the mostly same thing. Lots of simple uses are easier because of that. But the concept gets much more confusing when you think about a pointer to an array. It feels like it shouldn't be the same thing as a pointer to the first element of that array, but in the common methods for allocating memory and using pointers, a pointer to an array really is just a pointer to the first element of the array.
I find it best to think of "pointer to first element of array of" as the normal meaning of * in C. The special case of pointing to a scalar object is effectively treating the scalar as the first (and only) element of an array of length 1.
I have a method which fills the array with integers:
void fill(int* a[], int dim1, int dim2)
{
int intinArray = 0;
for(int i=0;i<dim1;i++)
{
for(int j=0;j<dim2;j++)
{
cin >> intinArray;
a[i][j] = intinArray;
}
}
}
If I declare array in method main() like this:
int** tab;
fill(tab,3,3);
It crashes when I put the first integer in cin. Why? If there's a problem with this line:
a[i][j] = intinArray;
how should I change it?
The fundamental thing wrong with your code is that you declared pointers, but nowhere do you initialize the pointers to point somewhere. You treat the pointer as if it is a regular old 2 dimensional array of integer. So if it's as easy as that, why use pointers?
Given that this is a fundamental in pointer usage and you plainly aren't doing that, the solution is to review working code that uses pointer.
int main()
{
int *p; // uninitialized -- points to who-knows-where
*p = 10; // this is undefined behavior and may crash
}
Take that code and understand why it also may crash. That pointer points to "we don't know", and then you're assigning 10 to a location that is unknown to you, me, and everyone else reading this answer. See the problem? To fix it, you have to initialize the pointer to point somewhere valid, then you can dereference it and assign to it without error.
int main()
{
int *p; // uninitialized -- points to who-knows-where
int x = 20;
p = &x; // this is now ok, since p points to x
*p = 20; // now x changes to 20
}
Your problem is in this code
int** tab; // <- this one
fill(tab,3,3);
You declared a pointer, and are using it under the assumption that it is pointing to allocated memory. (I guess a source of confusion is that with C++ objects this isn't really the case)
A pointer is a pointer - it points to a location in memory. There's no guarantee that the value it points to is valid unless you explicitly make sure it is yourself.
Read PaulMcKenzie's answer for more about pointers.
Try
int tab[x][y] = {{0}};
fill(tab,3,3);
where x and y define your 2D array's width and height. You're going to have to handle bounds checking for your application.
Note that changing {{0}} to a non zero number will not initialize everything to that number.
I am pretty weak in understanding and working with pointers. So, Please help me here.
My objective is to pass an array pointer's address to a function ,(i.e.) the address the pointer is pointing to, and update the values directly in the address using the '*' operator, in the function, to avoid any return values. Moreover, the length of this array has to be changed dynamically in the function to which it is passed. This is my attempt. If there's a better method to update the value of an variable, without having it returned from a function, please do mention that to help me.
But am getting errors, as I know I am doing it wrong, but still wanted to try with what I know, since I thought the best way to learn is to do and make as many mistakes as possible. Please help me here
This is the main function
int main()
{
double *trans;
int *rots;
readctrls(rots,trans);
for(int i=0;i<trans.size();i++)
{
cout<<trans[i]<<endl<<rots[i];
}
}
Here, am trying to pass the address of the pointer arrays to the function readctrls. then later, print its values. I haven't mentioned a size, cuz it will be determined later in the function.
The function is just to read numbers from a text file, line by line and store these numbers in these 2 arrays. The readctrls function is as follows.
void readctrls(int*& rots,double*& trans)
{
fstream inputs;
inputs.open("input_coods.txt");
int nol = 0,i = 0;
string line,temp,subtemptrans,subtemprots;
while(getline(inputs,line))
{
++nol;
}
cout<<nol<<endl;
inputs.close();
inputs.open("input_coods.txt");
string *lines = new (nothrow) string[nol];
trans = new double[nol];
rots = new int[nol];
for(int i = 0; i<nol ; i++)
{
getline(inputs,lines[i]);
temp = lines[i];
for(int j = 0; j<temp.length() ; j++)
{
if(temp.at(j) == ' ')
{
subtemptrans = temp.substr(0,j);
subtemprots = temp.substr(j+1,temp.length()-j);
trans[j] = ::atof(subtemptrans.c_str());
rots[j] = atoi(subtemprots.c_str());
}
}
}
inputs.close();
}
Thanks a lot for your help guys. I was able to understand a bit and changed the code and was able to compile now without errors. however, the value I read from file and load into the array, doesn't seem to get reflected back in the main. Am getting the correct values from the file when I print the array in the function, but am getting zeros, when I print in the main(). Please help me here.
These are the contents of the file
0.2 0
0.2 0
0.2 0
0.2 0
0.2 0
while print 'trans', which takes the first number every line, in the function, am getting the correct values. But while printing in the main function
0
0
0
0.2.
I changed the pointer to pointer reference while passing to function. Please check edit in the function code. Thanks in advance.
The declaration
void readctrls(int &rots,double &trans)
tells the compiler that rots and trans are references to a single value each. They are not pointers.
To make matters worse, you are actually trying to pass a pointer-to-pointer as arguments when calling this function.
You should change the declaration to actually take pointers:
void readctrls(int* rots, double* trans)
then change your call to not use the address-of operator (as those are already pointers):
readctrls(rots, trans);
Your code has several errors. Here are some of them:
double *trans = new double[];
int *rots = new int[]; //^^You need to give the size
for(int i=0;i<trans.size();i++)
{
cout<<*trans[i]<<endl<<*rots[i];
}
trans and rots are simply array of double and integers, you simply use trans[i] to print the i-th element. Dynamic arrays should be used similarly to static arrays. Take a look at this pointer and arrays for some basic understanding. Meanwhile, look at dynamic memory in C++ for some understanding on this point.
void readctrls(int &rots,double &trans);
//^^expects reference to int and double while you are not passing int and double from main
An array and a pointer can be thought about similarly as a way of referring to a range in memory. If you want to refer to a range of memory via pointers, then just pass the pointer to the function, ie
double pd* = new double[10];
fun(pd);
...
void fun(double* pd, int numDoubles)
{
do {
double d = magicDoubleGenerator();
*pd = d; // read as "the value that pd points to" or "contents of pd"
} while (++pd < pd + numDoubles);
}
Pointers are hard until one day you realize "Ahh! they just point at things!"
There are many errors ...
inputs.open("input_coods.txt"); // second argument is missing
check this fstream open
void readctrls(int &rots,double &trans)
change to
void readctrls(int* rots, double* trans) // this creates pointer rots trans
*trans = new double[nol]; // remove *
*rots = new int[nol]; // remove *
double *trans = new double[]; // not specified the size
int *rots = new int[]; // not specified the size
readctrls(&rots,&trans); // this means you passing address of pointer
trans.size() ; // this is c++ double is not a class
I am recommending you to study c++ from this site C++ Tutorial
I am trying to make a c++ program with a class which holds integers on the "heap" and has only one method, pop() which returns the first item in the class and removes it. This is my code so far:
#include <iostream>
using namespace std;
class LinkList {
int *values; //pointer to integers stored in linklist
int number; // number of values stored in linklist
public:
LinkList(const int*, int); // Constructor (method declaration)
int pop(); // typically remove item from data structure (method declaration)
};
LinkList::LinkList(const int *v, int n){
number = n;
*values = *v;
int mypointer = 1;
while (mypointer<n) {
*(values+mypointer) = *(v+mypointer);
mypointer++;
}
}
int LinkList::pop() {
if (number>0) {
int returnme = *values; //get the first integer in the linklist
number--;
values++; //move values to next address
return returnme;
}
else {return -1;}
}
int main() {
int test[] = {1,2,3,4,5};
LinkList l1(test,5);
cout << l1.pop() << endl;
LinkList l2(test,5);
cout << l2.pop() << endl;
return 0;
}
The issue is that its failing at the line *values = *v, if i remove the 4th and 5th lines from the main method, I no longer get this issue, so its go to be a memory management thing.
What I want to do is to get values to point to a continuous bit of memory with integers in. I have tried to use arrays for this but keep just getting random memory addresses returned by pop()
Background: normal I programming in java, I've only be using C/C++ for 2 months, I'm using eclipse IDE in ubuntu, I can make very basic use of the debugger but currently I dont have functioning scroll bars in eclipse so I can't do somethings if they dont fit on my screen.
You are dereferencing an uninitialized pointer (values) at the line *values = *v; which is undefined behavior (UB). What this line says is "get the integer that values points to and assign to it the value pointed by v". The problem with this logic is that values doesn't yet point to anything. The result of this UB is the crash that you receive.
There are many other problems with this code, such as passing a const int* to the constructor with the intent of modifying those values. The biggest problem is that this is not an actual linked list.
*values = *v;
You dereference the values pointer in this line before initializing it. This is the source of the later errors, and the non-errors in the first three lines of main are simply due to luck. You have to allocate space via values = new int[n] and deallocate it in the destructor via delete[] values. std::vector does this work in a clean and exception-safe way for you.
Perhaps the problem is that you're incrementing an integer - mypointer, rather than a a pointer. If the integer requires more than one byte of space, then this might lead to errors. Could you try declaring a pointer and incrementing that instead?
The values member variable is a pointer to uninitialized memory. Before you start copying numbers into it you have to point it to valid memory. For example:
LinkList::LinkList(const int *v, int n){
number = n;
values = new int[n]; // allocate memory
int mypointer = 0;
while (mypointer<n) {
*(values+mypointer) = *(v+mypointer);
mypointer++;
}
}
LinkList::~LinkList() {
delete values; // release memory
}
Also, why do you call this a linked list while in fact you are using a memory array to store your numbers?