Newbie Lisp question, sorry for the ignorance.
What is the equivalent of Common Lisp's do in Clojure?
Clojure avoids these kind of sequential binding forms, but the same functionality can be expressed with while or loop - the first example from the CLHS in each style:
;; common lisp version
(do ((temp-one 1 (1+ temp-one))
(temp-two 0 (1- temp-two)))
((> (- temp-one temp-two) 5) temp-one)) => 4
;; clojure, while
(let [temp-one (atom 1)
temp-two (atom 0)]
(while (> (- #temp-one #temp-two) 5)
(swap! temp-one inc)
(swap! temp-two dec))
#temp-one)
;; clojure, loop
(loop [temp-one 1 temp-two 0]
(if (> (- temp-one temp-two) 5)
temp-one
(recur (inc temp-one) (dec temp-two))))
Related
I am new to Clojure, and doing my best to forget all my previous experience with more procedural languages (java, ruby, swift) and embrace Clojure for what it is. I am actually really enjoying the way it makes me think differently -- however, I have come up against a pattern that I just can't seem to figure out. The easiest way to illustrate, is with some code:
(defn char-to-int [c] (Integer/valueOf (str c)))
(defn digits-dont-decrease? [str]
(let [digits (map char-to-int (seq str)) i 0]
(when (< i 5)
(if (> (nth digits i) (nth digits (+ i 1)))
false
(recur (inc i))))))
(def result (digits-dont-decrease? "112233"))
(if (= true result)
(println "fit rules")
(println "doesn't fit rules"))
The input is a 6 digit number as a string, and I am simply attempting to make sure that each digit from left to right is >= the previous digit. I want to return false if it doesn't, and true if it does. The false situation works great -- however, given that recur needs to be the last thing in the function (as far as I can tell), how do I return true. As it is, when the condition is satisfied, I get an illegal argument exception:
Execution error (IllegalArgumentException) at clojure.exercise.two/digits-dont-decrease? (four:20).
Don't know how to create ISeq from: java.lang.Long
How should I be thinking about this? I assume my past training is getting in my mental way.
This is not answering your question, but also shows an alternative. While the (apply < ...) approach over the whole string is very elegant for small strings (it is eager), you can use every? for an short-circuiting approach. E.g.:
user=> (defn nr-seq [s] (map #(Integer/parseInt (str %)) s))
#'user/nr-seq
user=> (every? (partial apply <=) (partition 2 1 (nr-seq "123")))
true
You need nothing but
(apply <= "112233")
Reason: string is a sequence of character and comparison operator works on character.
(->> "0123456789" (mapcat #(repeat 1000 %)) (apply str) (def loooong))
(count loooong)
10000
(time (apply <= loooong))
"Elapsed time: 21.006625 msecs"
true
(->> "9123456789" (mapcat #(repeat 1000 %)) (apply str) (def bad-loooong))
(count bad-loooong)
10000
(time (apply <= bad-loooong))
"Elapsed time: 2.581750 msecs"
false
(above runs on my iPhone)
In this case, you don't really need loop/recur. Just use the built-in nature of <= like so:
(ns tst.demo.core
(:use demo.core tupelo.core tupelo.test))
(def true-samples
["123"
"112233"
"13"])
(def false-samples
["10"
"12324"])
(defn char->int
[char-or-str]
(let [str-val (str char-or-str)] ; coerce any chars to len-1 strings
(assert (= 1 (count str-val)))
(Integer/parseInt str-val)))
(dotest
(is= 5 (char->int "5"))
(is= 5 (char->int \5))
(is= [1 2 3] (mapv char->int "123"))
; this shows what we are going for
(is (<= 1 1 2 2 3 3))
(isnt (<= 1 1 2 1 3 3))
and now test the char sequences:
;-----------------------------------------------------------------------------
; using built-in `<=` function
(doseq [true-samp true-samples]
(let [digit-vals (mapv char->int true-samp)]
(is (apply <= digit-vals))))
(doseq [false-samp false-samples]
(let [digit-vals (mapv char->int false-samp)]
(isnt (apply <= digit-vals))))
if you want to write your own, you can like so:
(defn increasing-equal-seq?
"Returns true iff sequence is non-decreasing"
[coll]
(when (< (count coll) 2)
(throw (ex-info "coll must have at least 2 vals" {:coll coll})))
(loop [prev (first coll)
remaining (rest coll)]
(if (empty? remaining)
true
(let [curr (first remaining)
prev-next curr
remaining-next (rest remaining)]
(if (<= prev curr)
(recur prev-next remaining-next)
false)))))
;-----------------------------------------------------------------------------
; using home-grown loop/recur
(doseq [true-samp true-samples]
(let [digit-vals (mapv char->int true-samp)]
(is (increasing-equal-seq? digit-vals))))
(doseq [false-samp false-samples]
(let [digit-vals (mapv char->int false-samp)]
(isnt (increasing-equal-seq? digit-vals))))
)
with result
-------------------------------
Clojure 1.10.1 Java 13
-------------------------------
Testing tst.demo.core
Ran 2 tests containing 15 assertions.
0 failures, 0 errors.
Passed all tests
Finished at 23:36:17.096 (run time: 0.028s)
You an use loop with recur.
Assuming you require following input v/s output -
"543221" => false
"54321" => false
"12345" => true
"123345" => true
Following function can help
;; Assuming char-to-int is defined by you before as per the question
(defn digits-dont-decrease?
[strng]
(let [digits (map char-to-int (seq strng))]
(loop [;;the bindings in loop act as initial state
decreases true
i (- (count digits) 2)]
(let [decreases (and decreases (>= (nth digits (+ i 1)) (nth digits i)))]
(if (or (< i 1) (not decreases))
decreases
(recur decreases (dec i)))))))
This should work for numeric string of any length.
Hope this helps. Please let me know if you were looking for something else :).
(defn non-decreasing? [str]
(every?
identity
(map
(fn [a b]
(<= (int a) (int b)))
(seq str)
(rest str))))
(defn non-decreasing-loop? [str]
(loop [a (seq str) b (rest str)]
(if-not (seq b)
true
(if (<= (int (first a)) (int (first b)))
(recur (rest a) (rest b))
false))))
(non-decreasing? "112334589")
(non-decreasing? "112324589")
(non-decreasing-loop? "112334589")
(non-decreasing-loop? "112324589")
I have written a function that uses recursion to find the number of elements in a list and it works successfully however, I don't particularly like the way I've written it. Now I've written it one way I can't seem to think of a different way of doing it.
My code is below:
(def length
(fn [n]
(loop [i n total 0]
(cond (= 0 i) total
:t (recur (rest i)(inc total))))))
To me it seems like it is over complicated, can anyone think of another way this can be written for comparison?
Any help greatly appreciated.
Here is a naive recursive version:
(defn my-count [coll]
(if (empty? coll)
0
(inc (my-count (rest coll)))))
Bear in mind there's not going to be any tail call optimization going on here so for long lists the stack will overflow.
Here is a version using reduce:
(defn my-count [coll]
(reduce (fn [acc x] (inc acc)) 0 coll))
Here is code showing some different solutions. Normally, you should use the built-in function count.
(def data [:one :two :three])
(defn count-loop [data]
(loop [cnt 0
remaining data]
(if (empty? remaining)
cnt
(recur (inc cnt) (rest remaining)))))
(defn count-recursive [remaining]
(if (empty? remaining)
0
(inc (count-recursive (rest remaining)))))
(defn count-imperative [data]
(let [cnt (atom 0)]
(doseq [elem data]
(swap! cnt inc))
#cnt))
(deftest t-count
(is (= 3 (count data)))
(is (= 3 (count-loop data)))
(is (= 3 (count-recursive data)))
(is (= 3 (count-imperative data))))
Here's one that is tail-call optimized, and doesn't rely on loop. Basically the same as Alan Thompson's first one, but inner functions are the best things. (And feel more idiomatic to me.) :-)
(defn my-count [sq]
(letfn [(inner-count [c s]
(if (empty? s)
c
(recur (inc c) (rest s))))]
(inner-count 0 sq)))
Just for completeness, here is another twist
(defn my-count
([data]
(my-count data 0))
([data counter]
(if (empty? data)
counter
(recur (rest data) (inc counter)))))
Hey I'm doing a Project Euler question, and I'm looking to sum up all the numbers under 1000 that are multiplies of 3 or 5.
But being a clojure noob, my code just keeps returning zero.. and I'm not sure why.
(defn sum-of-multiples [max]
(let [result (atom 0)]
(for [i (range max)]
(if (or (= (rem i 3) 0) (= (rem i 5) 0))
(swap! result (+ #result i)))
)
#result))
(sum-of-multiples 1000)
Also the line (swap! result (+ #result i))) bugs me.. In C# I could do result += i, but I'm guessing there must be a better way to this in Clojure?
In Clojure - and at large in functional programming - we avoid assignment as it destroys state history and makes writing concurrent programs a whole lot harder. In fact, Clojure doesn't even support assignment. An atom is a reference type that is thread safe.
Another common trait of functional programming is that we try to solve problems as a series of data transformations. In your case you case some data, a list of numbers from 0 to 1000 exclusive, and you need to obtain the sum of all numbers that match a predicate. This can certainly be done by applying data transformations and completely removing the need for assignment. One such implementation is this:
(->> (range 1000)
(filter #(or (= (rem % 3) 0) (= (rem % 5) 0)))
(reduce +))
Please understand that a function such as the one you wrote isn't considered idiomatic code. Having said that, in the interest of learning, it can be made to work like so:
(defn sum-of-multiples [max]
(let [result (atom 0)]
(doseq [i (range max)]
(if (or (= (rem i 3) 0) (= (rem i 5) 0))
(swap! result #(+ % i)))
)
#result))
(sum-of-multiples 1000)
for returns a lazy sequence but since you're simply interested in the side-effects caused by swap! you need to use doseq to force the sequence. The other problem is that the second argument to swap! is a function, so you don't need to deref result again.
for is a list comprehension that return a lazy sequence, you have to traverse it for your code to work:
(defn sum-of-multiples [max]
(let [result (atom 0)]
(dorun
(for [i (range max)]
(if (or (= (rem i 3) 0) (= (rem i 5) 0))
(swap! result + i))))
#result))
An equivalent, more idiomatic implementation using for:
(defn sum-of-multiples [max]
(reduce +
(for [i (range max)
:when (or (zero? (rem i 3))
(zero? (rem i 5)))]
i)))
The other answers are good examples of what I alluded to in my comment. For the sake of completeness, here's a solution that uses loop/recur, so it may be easier to understand for someone who's still not comfortable with concepts like filter, map or reduce. It also happens to be about 30-40% faster, not that it really matters in this case.
(defn sum-of-multiples [max]
(loop [i 0
sum 0]
(if (> max i)
(recur (inc i)
(if (or (zero? (rem i 3)) (zero? (rem i 5)))
(+ sum i)
sum))
sum)))
I have written a game loop based on deWitter's game loop.
However, I am unsure how to transfer it to a more functional state. I realize that there may need to be some mutable state left within the code but are there any general principles for cleaning up extraneous defs?
(ns beepboop.core)
(def ticks-per-second 25)
(def skip-ticks (/ 1000 ticks-per-second))
(def max-frameskip 5)
(defn update []
(println "Updating."))
(defn display [delta]
(println "Displaying with delta: " delta))
(defn -main []
(def *next-tick* (System/currentTimeMillis))
(while true
(def *loops* 0)
(while (and
(> (System/currentTimeMillis)
*next-tick*)
(< *loops*
max-frameskip))
(update)
(def *next-tick* (+ *next-tick* skip-ticks))
(def *loops* (+ *loops* 1)))
(display
(/ (+ (System/currentTimeMillis) skip-ticks (* -1 *next-tick*))
skip-ticks))))
You should use loop and recur for updating your loop variables:
(defn -main []
(loop [next-tick (System/currentTimeMillis)]
(let [next-next
(loop [next-tick next-tick
loops 0]
(if (and (> (System/currentTimeMillis) next-tick)
(< loops max-frameskip))
(do (update)
(recur (+ next-tick skip-ticks) (+ loops 1)))
next-tick))]
(display (/ (+ (System/currentTimeMillis) skip-ticks (- next-next))
skip-ticks))
(recur next-next))))
As a neophyte clojurian, it was recommended to me that I go through the Project Euler problems as a way to learn the language. Its definitely a great way to improve your skills and gain confidence. I just finished up my answer to problem #14. It works fine, but to get it running efficiently I had to implement some memoization. I couldn't use the prepackaged memoize function because of the way my code was structured, and I think it was a good experience to roll my own anyways. My question is if there is a good way to encapsulate my cache within the function itself, or if I have to define an external cache like I have done. Also, any tips to make my code more idiomatic would be appreciated.
(use 'clojure.test)
(def mem (atom {}))
(with-test
(defn chain-length
([x] (chain-length x x 0))
([start-val x c]
(if-let [e (last(find #mem x))]
(let [ret (+ c e)]
(swap! mem assoc start-val ret)
ret)
(if (<= x 1)
(let [ret (+ c 1)]
(swap! mem assoc start-val ret)
ret)
(if (even? x)
(recur start-val (/ x 2) (+ c 1))
(recur start-val (+ 1 (* x 3)) (+ c 1)))))))
(is (= 10 (chain-length 13))))
(with-test
(defn longest-chain
([] (longest-chain 2 0 0))
([c max start-num]
(if (>= c 1000000)
start-num
(let [l (chain-length c)]
(if (> l max)
(recur (+ 1 c) l c)
(recur (+ 1 c) max start-num))))))
(is (= 837799 (longest-chain))))
Since you want the cache to be shared between all invocations of chain-length, you would write chain-length as (let [mem (atom {})] (defn chain-length ...)) so that it would only be visible to chain-length.
In this case, since the longest chain is sufficiently small, you could define chain-length using the naive recursive method and use Clojure's builtin memoize function on that.
Here's an idiomatic(?) version using plain old memoize.
(def chain-length
(memoize
(fn [n]
(cond
(== n 1) 1
(even? n) (inc (chain-length (/ n 2)))
:else (inc (chain-length (inc (* 3 n))))))))
(defn longest-chain [start end]
(reduce (fn [x y]
(if (> (second x) (second y)) x y))
(for [n (range start (inc end))]
[n (chain-length n)])))
If you have an urge to use recur, consider map or reduce first. They often do what you want, and sometimes do it better/faster, since they take advantage of chunked seqs.
(inc x) is like (+ 1 x), but inc is about twice as fast.
You can capture the surrounding environment in a clojure :
(defn my-memoize [f]
(let [cache (atom {})]
(fn [x]
(let [cy (get #cache x)]
(if (nil? cy)
(let [fx (f x)]
(reset! cache (assoc #cache x fx)) fx) cy)))))
(defn mul2 [x] (do (print "Hello") (* 2 x)))
(def mmul2 (my-memoize mul2))
user=> (mmul2 2)
Hello4
user=> (mmul2 2)
4
You see the mul2 funciton is only called once.
So the 'cache' is captured by the clojure and can be used to store the values.