Freeing a null pointer causes following pop up message - c++

I have some memory intensive code followed by the following statement
free(array1); // array1 is NULL
I essentially called free upon a null pointer. It was my understanding that accidentally calling free on a NULL pointer was safe. However, I got the following pop up when the free statement was executed.
"Windows has triggered a breakpoint in app.exe.
This may be due to a corruption of the heap, which indicates a bug in app.exe or any of the DLLs it has loaded."
Does this mean free is not safe to call on NULL pointers, or is this a sign that there could be memory problems in my program?
When I uncomment the free statement, everything works normally.

It is definitely safe to call free() on a NULL pointer, so you must have corrupted your heap earlier. That said, it may be worth putting a print statement in to guarantee array1 really is NULL just before the crash. If you can't spot the error, you may have to resort to tools to help you - there are lots of questions about such heap usage verification tools.
Supporting docs: you're on Windows, but the API is the standardised with the C language: see "If ptr is NULL, no operation is performed." at http://linux.die.net/man/3/free
Of course, you should check new/new[]/malloc-or-realloc are properly paired with delete/delete[]/realloc-or-free everywhere. There are valid reasons to be using malloc/free in C++ though - most obviously for interoperability with C code, and very occasionally for the potential performance benefits of in-place growth with realloc.
"When I uncomment the free statement, everything works normally." - best not to rely on that... if your program misuses the heap, it could crash at any time e.g. some runs and not others, after the tiniest seemingly unrelated change anywhere in your code, after changing a compiler flag, with innocuous input changes, or even the same executable deployed on another PC....

Related

How to find reason for app crash on close?

My Qt5 app crashes when I hit the close window returning:
MyApp(28741,0x7fff7aa73000) malloc: *** error for object 0x7fc40bc8e300: pointer being freed was not allocated
*** set a breakpoint in malloc_error_break to debug
The program has unexpectedly finished.
Classic approach to recover it, I guess, is to disable application modules (should I say parts of it, when things are not so well organized) systematically until the problem appears.
Is there some (more) intelligent way to solve this issue?
From what has been returned the problem is obvious, there is pointer somewhere being deleted (at least) two times. But were is this thing hiding?
What can I do with 28741,0x7fff7aa73000? And with 0x7fc40bc8e300? Can I use those to find something in Qt Creator 4 on Mac?
Because the app crash on close it means the problem is in a destructor?
From what has been returned the problem is obvious, there is pointer somewhere being deleted (at least) two times. But were is this thing hiding?
Not exactly; what you say is normally signaled as a "double free"; this seems more like somebody is passing to free something that never came from malloc.
To pinpoint it, do as the message says:
*** set a breakpoint in malloc_error_break to debug.
(or really, even just run it under a debugger; normally on Linux it does break into the debugger at the top of the stack when the program is aborted)
Once the breakpoint is hit, walk up the call stack and see what pointer is being freed, and try to find out why it is being freed when it doesn't actually come from malloc.
The fact that the address is "big" (0x7fc40bc8e300) tells that it probably comes from the stack (if OS X is anything like Linux, the heap is "down" in memory, the stack is at the opposite side of the virtual address space), so probably it's just as simple as somebody passing to free or delete an address that comes from the stack. This often happens when you erroneously pass a stack-allocated object to some method that wants to take ownership of it and free it with free or delete when it isn't needed anymore.
Also, running valgrind never hurts, but I doubt that in this case it can be of any help - you don't seem to be dealing with an invalid pointer (which it would detect at the first read/write), but you have a valid non-heap-allocated pointer that is being incorrectly deallocated with free. It will probably detect it at the same time as free itself.

Unexpected Behaviour from tcmalloc

I have been using tcmalloc for a few months in a large project, and so far I must say that I am pretty happy about it, most of all for its HeapProfiling features which allowed to track memory leaks and remove them.
In the past couple of weeks though we experienced random crashes in our application, and we could not find the source of the random crash. In a very particular situation, When the application crashed, we found ourselves with a completely corrupted stack for one of the application threads. Several times instead I found that threads were stuck in tcmalloc::PageHeap::AllocLarge(), but since I dont have debug symbols of tcmalloc linked, I could not understand what the issue was.
After nearly one week of investigation, today I tried the most simple of things: removed tcmalloc from linkage to avoid using it, just to see what happened. Well... I finally found out what the problem was, and the offending code looks very much like this:
void AllocatingFunction()
{
Object object_on_stack;
ProcessObject(&object_on_stack);
}
void ProcessObject(Object* object)
{
...
// Do Whatever
...
delete object;
}
Using libc the application still crashed but I finally saw that I was calling delete on an object which was allocated on the stack.
What I still cant figure out is why tcmalloc instead kept the application running regardless of this very risky (if not utterly wrong) object deallocation, and the double deallocation when object_on_stack goes out of scope when AllocatingFunction ends. The fact is that the offending code could be called repeatedly without any hint of the underlying abomination.
I know that memory deallocation is one of those "undefined behaviour" when not used properly, but my surprise is such a different behaviour between "standard" libc and tcmalloc.
Does anyone have some sort of explanation of insight, on why tcmalloc keeps the application running?
Thanks in advance :)
Have a Nice Day
very risky (if not utterly wrong) object deallocation
well, I disagree here, it is utterly wrong, and since you invoke UB, anything can happen.
It very much depends on what the tcmalloc code acutally does on deallocation, and how it uses the (possibly garbage) data around the stack at that location.
I have seen tcmalloc crash on such occasions too, as well as glibc going into an infinite loop. What you see is just coincidence.
Firstly, there was no double free in your case. When object_on_stack goes out of scope there is no free call, just the stack pointer is decreased (or rather increased, as stack grows down...).
Secondly, during delete TcMalloc should be able to recognize that the address from a stack does not belong to the program heap. Here is a part of free(ptr) implementation:
const PageID p = reinterpret_cast<uintptr_t>(ptr) >> kPageShift;
Span* span = NULL;
size_t cl = Static::pageheap()->GetSizeClassIfCached(p);
if (cl == 0) {
span = Static::pageheap()->GetDescriptor(p);
if (!span) {
// span can be NULL because the pointer passed in is invalid
// (not something returned by malloc or friends), or because the
// pointer was allocated with some other allocator besides
// tcmalloc. The latter can happen if tcmalloc is linked in via
// a dynamic library, but is not listed last on the link line.
// In that case, libraries after it on the link line will
// allocate with libc malloc, but free with tcmalloc's free.
(*invalid_free_fn)(ptr); // Decide how to handle the bad free request
return;
}
Call to invalid_free_fn crashes.

Compare pointer to given value in C++

I'm on amd64 architecture. The following code gets rejected by the g++ compiler at the "if" statement:
void * newmem=malloc(n);
if(newmem==0xefbeaddeefbeadde){
with the error message:
error: ISO C++ forbids comparison between pointer and integer [-fpermissive]
I can't seem to find the magic incantation needed to get it going (and I don't want to use -fpermissive). Any help appreciated.
Background:
I'm hunting an ugly bug which crashes my program while requesting memory in some STL new operation (at least gdb told me that). Thinking it could be some memory overrun of one of the allocated memory chunks being, by bad luck, adjacent to memory used by the OS to manage memory lists of my program, I quickly overrode new(), new plus their delete counterparts with own routines that added memory fencing; and while the application still crashes (all fences intact (sigh)), gdb now told me this:
Program received signal SIGSEGV, Segmentation fault.
0x0000000000604f5e in construct (__val=..., __p=0xefbeaddeefbeadde, this=<optimized out>)
at /usr/include/c++/4.6/ext/new_allocator.h:108
108 { ::new((void *)__p) _Tp(__val); }
I noted that the pointer __p has as value the pointer representation of the value I used for one of my memory fences (0xdeadbeef), hence my wish to catch this earlier in my new() to try and dump out some more complex values in my program.
Additional note: the function where it crashes runs flawlessly a couple of million times before it crashes (intermixed with dozens of other routines which all also run a couple of thousand to million times), using valgrind does not seem like an option atm because it takes 6hrs and 11 Gb before my program crashes.
One of them is an integer, and the other a pointer. Perhaps an ugly cast would do
if(newmem==(void*)0xefbeaddeefbeadde){
For your question: you have 2 options - cast the pointer to 64bit number or cast the number to void*
For the background: as this takes too long, it could be a memory leak. So, try valgrind - no need to wait for crash, just run your program through valgrind and use the appropriate options. valgrind could help you to catch undefined behavior, too.
Another thing - compile your program with -O0 optimization level and with max level of debug symbols - -ggdb3. Also, if your executable does not generate a core dump, when this error occurs, make it generate. Then leave it working, while you're trying different approaches to catch the error.
In case you don't succeed, you'll at least have a (hopefully) nice core dump, that you can examine with gdb your_exe the_core_dump. Then, watch the core frame by frame, watch the variables, etc.
If it's not a memory leak, it could be a memory corruption somewhere, undefined behavior or something like this. If a good core dump is generated, you'll probably catch the error. Or, at least, it could give you useful information about the case.
Another thing, that could be useful, if you generate a core dump (no matter if it's a good or a bad one) - the size of the dump. If it's too large (the definition of "large" this depends on your program), then you most probably have a memory leak (it could be some kind of cross-reference issue, if you use smart pointers and if so - valgrind will not catch it)
That probably won't work that way. Next time when your program runs, malloc may never return that value. There is something else you must do, rather than just checking on the return value of new!

My code crashes on delete this

I get a segmentation fault when attempting to delete this.
I know what you think about delete this, but it has been left over by my predecessor. I am aware of some precautions I should take, which have been validated and taken care of.
I don't get what kind of conditions might lead to this crash, only once in a while. About 95% of the time the code runs perfectly fine but sometimes this seems to be corrupted somehow and crash.
The destructor of the class doesn't do anything btw.
Should I assume that something is corrupting my heap somewhere else and that the this pointer is messed up somehow?
Edit : As requested, the crashing code:
long CImageBuffer::Release()
{
long nRefCount = InterlockedDecrement(&m_nRefCount);
if(nRefCount == 0)
{
delete this;
}
return nRefCount;
}
The object has been created with a new, it is not in any kind of array.
The most obvious answer is : don't delete this.
If you insists on doing that, then use common ways of finding bugs :
1. use valgrind (or similar tool) to find memory access problems
2. write unit tests
3. use debugger (prepare for loooong staring at the screen - depends on how big your project is)
It seems like you've mismatched new and delete. Note that delete this; can only be used on an object which was allocated using new (and in case of overridden operator new, or multiple copies of the C++ runtime, the particular new that matches delete found in the current scope)
Crashes upon deallocation can be a pain: It is not supposed to happen, and when it happens, the code is too complicated to easily find a solution.
Note: The use of InterlockedDecrement have me assume you are working on Windows.
Log everything
My own solution was to massively log the construction/destruction, as the crash could well never happen while debugging:
Log the construction, including the this pointer value, and other relevant data
Log the destruction, including the this pointer value, and other relevant data
This way, you'll be able to see if the this was deallocated twice, or even allocated at all.
... everything, including the stack
My problem happened in Managed C++/.NET code, meaning that I had easy access to the stack, which was a blessing. You seem to work on plain C++, so retrieving the stack could be a chore, but still, it remains very very useful.
You should try to load code from internet to print out the current stack for each log. I remember playing with http://www.codeproject.com/KB/threads/StackWalker.aspx for that.
Note that you'll need to either be in debug build, or have the PDB file along the executable file, to make sure the stack will be fully printed.
... everything, including multiple crashes
I believe you are on Windows: You could try to catch the SEH exception. This way, if multiple crashes are happening, you'll see them all, instead of seeing only the first, and each time you'll be able to mark "OK" or "CRASHED" in your logs. I went even as far as using maps to remember addresses of allocations/deallocations, thus organizing the logs to show them together (instead of sequentially).
I'm at home, so I can't provide you with the exact code, but here, Google is your friend, but the thing to remember is that you can't have a __try/__except handdler everywhere (C++ unwinding and C++ exception handlers are not compatible with SEH), so you'll have to write an intermediary function to catch the SEH exception.
Is your crash thread-related?
Last, but not least, the "I happens only 5% of the time" symptom could be caused by different code path executions, or the fact you have multiple threads playing together with the same data.
The InterlockedDecrement part bothers me: Is your object living in multiple threads? And is m_nRefCount correctly aligned and volatile LONG?
The correctly aligned and LONG part are important, here.
If your variable is not a LONG (for example, it could be a size_t, which is not a LONG on a 64-bit Windows), then the function could well work the wrong way.
The same can be said for a variable not aligned on 32-byte boundaries. Is there #pragma pack() instructions in your code? Does your projet file change the default alignment (I assume you're working on Visual Studio)?
For the volatile part, InterlockedDecrement seem to generate a Read/Write memory barrier, so the volatile part should not be mandatory (see http://msdn.microsoft.com/en-us/library/f20w0x5e.aspx).

Dereferencing deleted pointers always result in an Access Violation?

I have a very simple C++ code here:
char *s = new char[100];
strcpy(s, "HELLO");
delete [] s;
int n = strlen(s);
If I run this code from Visual C++ 2008 by pressing F5 (Start Debugging,) this always result in crash (Access Violation.) However, starting this executable outside the IDE, or using the IDE's Ctrl+F5 (Start without Debugging) doesn't result in any crash. What could be the difference?
I also want to know if it's possible to stably reproduce the Access Violation crash caused from accessing deleted area? Is this kind of crash rare in real-life?
Accessing memory through a deleted pointer is undefined behavior. You can't expect any reliable/repeatable behavior.
Most likely it "works" in the one case because the string is still "sitting there" in the now available memory -= but you cannot rely on that. VS fills memory with debug values to help force crashes to help find these errors.
The difference is that a debugger, and debug libraries, and code built in "debug" mode, likes to break stuff that should break. Your code should break (because it accesses memory it no longer technically owns), so it breaks easier when compiled for debugging and run in the debugger.
In real life, you don't generally get such unsubtle notice. All that stuff that makes things break when they should in the debugger...that stuff's expensive. So it's not checked as strictly in release. You might be able 99 times out of 100 to get away with freeing some memory and accessing it right after, cause the runtime libs don't always hand the memory back to the OS right away. But that 100th time, either the memory's gone, or another thread owns it now and you're getting the length of a string that's no longer a string, but a 252462649-byte array of crap that runs headlong into unallocated (and thus non-existent, as far as you or the runtime should care) memory. And there's next to nothing to tell you what just happened.
So don't do that. Once you've deleted something, consider it dead and gone. Or you'll be wasting half your life tracking down heisenbugs.
Dereferencing a pointer after delete is undefined behavior - anything can happen, including but not limited to:
data corruption
access violation
no visible effects
exact results will depend on multiple factors most of which are out of your control. You'll be much better off not triggering undefined behavior in the first place.
Usually, there is no difference in allocated and freed memory from a process perspective. E.g the process only has one large memory map that grows on demand.
Access violation is caused by reading/writing memory that is not available, ususally not paged in to the process. Various run-time memory debugging utilities uses the paging mechanism to track invalid memory accesses without the severe run time penalty that software memory checking would have.
Anyway your example proves only that an error is sometimes detected when running the program in one environment, but not detected in another environment, but it is still an error and the behaviour of the code above is undefined.
The executable with debug symbols is able to detect some cases of access violations. The code to detect this is contained in the executable, but will not be triggered by default.
Here you'll find an explanation of how you can control behaviour outside of a debugger: http://msdn.microsoft.com/en-us/library/w500y392%28v=VS.80%29.aspx
I also want to know if it's possible
to stably reproduce the Access
Violation crash caused from accessing
deleted area?
Instead of plain delete you could consider using an inline function that also sets the value of the deleted pointer to 0/NULL. This will typically crash if you reference it. However, it won't complain if you delete it a second time.
Is this kind of crash rare in
real-life?
No, this kind of crash is probably behind the majority of the crashes you and I see in software.