How to shorten long (qualified) identifiers in C++? - c++

In Java, I find it very straightforward to use namespaces. For each qualified identifier Ident I use in a source file, I put an import ns1.ns2.ns2.ns3.ns4.Ident; at the top of the file. Then I can use (short) unqualified names everywhere in my source code. The import statement cannot cause any problems, because it applies only to the file in which it is written down.
However, I'm not quite sure how to get rid of namespace qualifiers in C++ the best way.
The most obivous solution would probably be the using and using namespace statement. However, that seems to be a rather bad solution, at least in the case of header files, because the using statements are not restricted to the single file where they are written down. So using is ruled out in the case of e.g. slim libraries consisting only of header files with the implementions directly inside or in the case of header files in general.
Another option, which I use so far, is to add for each qualified name I use in a class a corresponding typedef in the private section of the class. So when comparing this approach to Java, I basically take the whole import statement list, replace the import with typedef and place it in the class declaration.
However, I don't really like this approach, because users of my classes - strictly speaking -don't know the types of return values and parameter values, because the types in the method declarations are private types of the corresponding classes.
OK, now we could make all this typedef stuff public. But that's probably a not so good idea, as we would redefine each type many many times. Just think of a struct ns1::ns2::ns3::MyStructure and two Classes MyClassA and MyClassB. Both classes have a method which actually should take as parameter an instance of ns1::ns2::ns3::MyStructure. But because every class redefines the types it uses to get rid of the long qualified names, the two methods now take parameters of "different" types, say MyClassA::MyStructure and MyClassB::MyStructure. It becomes even catchier when we have a third class MyClassC which works with an instance of MyStructure and need to call both methods with it. Should this class declare this instance with type MyClassA::MyStructure, MyClassB::MyStructure or MyClassC::MyStructure?
Well, what I simply want to know is: What is the best practise for getting rid of the namespace qualifiers?

Related

Is it bad practice to have a class that requires no objects to be created? [duplicate]

Let's say I have, or am going to write, a set of related functions. Let's say they're math-related. Organizationally, should I:
Write these functions and put them in my MyMath namespace and refer to them via MyMath::XYZ()
Create a class called MyMath and make these methods static and refer to the similarly MyMath::XYZ()
Why would I choose one over the other as a means of organizing my software?
By default, use namespaced functions.
Classes are to build objects, not to replace namespaces.
In Object Oriented code
Scott Meyers wrote a whole Item for his Effective C++ book on this topic, "Prefer non-member non-friend functions to member functions". I found an online reference to this principle in an article from Herb Sutter: http://www.gotw.ca/gotw/084.htm
The important thing to know is that: In C++, functions that are in the same namespace as a class is, and that have that class as a parameter, belong to that class' interface (because ADL will search those functions when resolving function calls).
For example:
let's say you have a namespace N
let's say you have a class C, declared in namespace N (in other words, its full name is N::C)
let's say you have a function F, declared in namespace N (in other words, its full name is N::F)
let's say that function F has, among its parameters, a parameter of type C
... Then N::F is part of N::C's public interface.
Namespaced functions, unless declared "friend," have no access to the class's internals, whereas static methods have the right to access the class's internals.
This means, for example, that when maintaining your class, if you need to change your class' internals, you will need to search for side effects in all its methods, including the static ones.
Extension I
Adding code to a class' interface.
In C#, you can add methods to a class even if you have no access to it. But in C++, this is impossible.
But, still in C++, you can still add a namespaced function, even to a class someone wrote for you.
See from the other side, this is important when designing your code, because by putting your functions in a namespace, you will authorize your users to increase/complete the class' interface.
Extension II
A side-effect of the previous point, it is impossible to declare static methods in multiple headers. Every method must be declared in the same class.
For namespaces, functions from the same namespace can be declared in multiple headers (the almost-standard swap function is the best example of that).
Extension III
The basic coolness of a namespace is that in some code, you can avoid mentioning it, if you use the keyword using:
#include <string>
#include <vector>
// Etc.
{
using namespace std ;
// Now, everything from std is accessible without qualification
string s ; // Ok
vector v ; // Ok
}
string ss ; // COMPILATION ERROR
vector vv ; // COMPILATION ERROR
And you can even limit the "pollution" to one class:
#include <string>
#include <vector>
{
using std::string ;
string s ; // Ok
vector v ; // COMPILATION ERROR
}
string ss ; // COMPILATION ERROR
vector vv ; // COMPILATION ERROR
This "pattern" is mandatory for the proper use of the almost-standard swap idiom.
And this is impossible to do with static methods in classes.
So, C++ namespaces have their own semantics.
But it goes further, as you can combine namespaces in a way similar to inheritance.
For example, if you have a namespace A with a function AAA, a namespace B with a function BBB, you can declare a namespace C, and bring AAA and BBB in this namespace with the keyword using.
You can even bring the full content of a namespace inside another, with using namespace, as shown with namespace D!
namespace A
{
void AAA();
void AAA2();
}
namespace B
{
void BBB();
}
namespace C
{
using A::AAA;
using B::BBB;
}
namespace D
{
using namespace A;
using namespace B;
}
void foo()
{
C::AAA();
// C::AAA2(); // ERROR, won't compile
C::BBB();
}
void bar()
{
D::AAA();
D::AAA2();
D::BBB();
}
Conclusion
Namespaces are for namespaces.
Classes are for classes.
C++ was designed so each concept is different, and is used differently, in different cases, as a solution to different problems.
Don't use classes when you need namespaces.
And in your case, you need namespaces.
There are a lot of people who would disagree with me, but this is how I see it:
A class is essentially a definition of a certain kind of object. Static methods should define operations that are intimately tied to that object definition.
If you are just going to have a group of related functions not associated with an underlying object or definition of a kind of object, then I would say go with a namespace only. Just for me, conceptually, this is a lot more sensible.
For instance, in your case, ask yourself, "What is a MyMath?" If MyMath does not define a kind of object, then I would say: don't make it a class.
But like I said, I know there are plenty of folks who would (even vehemently) disagree with me on this (in particular, Java and C# developers).
If you need static data, use static methods.
If they're template functions and you'd like to be able to specify a set of template parameters for all functions together then use static methods in a template class.
Otherwise, use namespaced functions.
In response to the comments: yes, static methods and static data tend to be over-used. That's why I offered only two, related scenarios where I think they can be helpful. In the OP's specific example (a set of math routines), if he wanted the ability to specify parameters - say, a core data type and output precision - that would be applied to all routines, he might do something like:
template<typename T, int decimalPlaces>
class MyMath
{
// routines operate on datatype T, preserving at least decimalPlaces precision
};
// math routines for manufacturing calculations
typedef MyMath<double, 4> CAMMath;
// math routines for on-screen displays
typedef MyMath<float, 2> PreviewMath;
If you don't need that, then by all means use a namespace.
You should use a namespace, because a namespace has the many advantages over a class:
You don't have to define everything in the same header
You don't need to expose all your implementation in the header
You can't using a class member; you can using a namespace member
You can't using class, though using namespace is not all that often a good idea
Using a class implies that there is some object to be created when there really is none
Static members are, in my opinion, very very overused. They aren't a real necessity in most cases. Static members functions are probably better off as file-scope functions, and static data members are just global objects with a better, undeserved reputation.
I would prefer namespaces, that way you can have private data in an anonymous namespace in the implementation file (so it doesn't have to show up in the header at all as opposed to private members). Another benefit is that by using your namespace the clients of the methods can opt out of specifying MyMath::
I want to summarize and add to other answers. Also, my perspective is in the world of header-only.
Namespaces
Pros:
simple solution for naming hierarchies
they carry no semantics, so it is simpler to read
can live in different files (headers)
can be extended
ADL
shortcut can be defined (using).
Plays well with operator overload
Can be used for branding (you can design your code and put a namespace over it without much though)
Cons:
everything is public
private things need unnamed namespace so it is not explicit
ADL (yes, some people despise ADL)
can be extended (this can be a bad thing, specially in combination with ADL, semantics of existing code can change by extending the namespace)
functions need to be defined (or declared) in order of use
Classes with static methods
Pros:
can have private components (function, variables) and they are explicitly marked.
classes can be friended
can be type-parametrized (templates)
can be template parameters themselves
can be instantiated
can be passed to functions (static functions behave like non-static method by default).
it is easier to find patterns and go from groups of independent functions and convert them to a proper class (eventually with non static members)
dependencies among classes is well defined
functions (the static method) can be defined in any order
Cons:
No ADL
cannot be extended
needs the keyword static everywhere (opportunity to make fun of the language)
an overkill to solve the naming problem alone. Difficult to read in that case.
the functions (static methods) always need qualification (myclassspace::fun). There is no way to declare shortcuts (using).
almost useless for operator overload, needs complicated friend mechanism for that.
can not be used for branding.
you need to remember end it with ; :)
In summary, classes with static methods are better units of code and allow more meta programming, and except for ADL and some syntactic quirks, can replicate all the features of namespaces, but they can be an overkill sometimes.
Companies, such as Bloomberg, prefer classes over namespaces.
If you don’t like ADL or operator overload, classes with static methods is the way to go.
IMO, it would be nice if namespace and classes are integrated to become two sides of the same coin.
For example identify a namespace in the language as a class were the methods are static by default.
And then be able to use them as template parameters.
I wouldn't be sure what to do with ADL (may be it could be restricted to symbolic operators functions alone, e.g. operatorX, which was the original motivation for operator overload and ADL in the first place)
Why would I choose one over the other as a means of organizing my software?
If you use namespaces, you will frequently hit a language defect that functions which call each other must be listed in a specific order, because C++ can't see definitions further down in the file.
If you use classes, this defect does not occur.
It can be easier and cleaner to wrap implementation functions in a class than to maintain declarations for them all or put them in an unnatural order to make it compile.
One more reason to use class - Option to make use of access specifiers. You can then possibly break your public static method into smaller private methods. Public method can call multiple private methods.
Both namespace and class method have their uses. Namespace have the ability to be spread across files however that is a weakness if you need to enforce all related code to go in one file. As mentioned above class also allows you to create private static members in the class. You can have it in the anonymous namespace of the implementation file however it is still a bigger scope than having them inside the class.

Differences between an abstract class with static functions and regular functions in a namespace? [duplicate]

Let's say I have, or am going to write, a set of related functions. Let's say they're math-related. Organizationally, should I:
Write these functions and put them in my MyMath namespace and refer to them via MyMath::XYZ()
Create a class called MyMath and make these methods static and refer to the similarly MyMath::XYZ()
Why would I choose one over the other as a means of organizing my software?
By default, use namespaced functions.
Classes are to build objects, not to replace namespaces.
In Object Oriented code
Scott Meyers wrote a whole Item for his Effective C++ book on this topic, "Prefer non-member non-friend functions to member functions". I found an online reference to this principle in an article from Herb Sutter: http://www.gotw.ca/gotw/084.htm
The important thing to know is that: In C++, functions that are in the same namespace as a class is, and that have that class as a parameter, belong to that class' interface (because ADL will search those functions when resolving function calls).
For example:
let's say you have a namespace N
let's say you have a class C, declared in namespace N (in other words, its full name is N::C)
let's say you have a function F, declared in namespace N (in other words, its full name is N::F)
let's say that function F has, among its parameters, a parameter of type C
... Then N::F is part of N::C's public interface.
Namespaced functions, unless declared "friend," have no access to the class's internals, whereas static methods have the right to access the class's internals.
This means, for example, that when maintaining your class, if you need to change your class' internals, you will need to search for side effects in all its methods, including the static ones.
Extension I
Adding code to a class' interface.
In C#, you can add methods to a class even if you have no access to it. But in C++, this is impossible.
But, still in C++, you can still add a namespaced function, even to a class someone wrote for you.
See from the other side, this is important when designing your code, because by putting your functions in a namespace, you will authorize your users to increase/complete the class' interface.
Extension II
A side-effect of the previous point, it is impossible to declare static methods in multiple headers. Every method must be declared in the same class.
For namespaces, functions from the same namespace can be declared in multiple headers (the almost-standard swap function is the best example of that).
Extension III
The basic coolness of a namespace is that in some code, you can avoid mentioning it, if you use the keyword using:
#include <string>
#include <vector>
// Etc.
{
using namespace std ;
// Now, everything from std is accessible without qualification
string s ; // Ok
vector v ; // Ok
}
string ss ; // COMPILATION ERROR
vector vv ; // COMPILATION ERROR
And you can even limit the "pollution" to one class:
#include <string>
#include <vector>
{
using std::string ;
string s ; // Ok
vector v ; // COMPILATION ERROR
}
string ss ; // COMPILATION ERROR
vector vv ; // COMPILATION ERROR
This "pattern" is mandatory for the proper use of the almost-standard swap idiom.
And this is impossible to do with static methods in classes.
So, C++ namespaces have their own semantics.
But it goes further, as you can combine namespaces in a way similar to inheritance.
For example, if you have a namespace A with a function AAA, a namespace B with a function BBB, you can declare a namespace C, and bring AAA and BBB in this namespace with the keyword using.
You can even bring the full content of a namespace inside another, with using namespace, as shown with namespace D!
namespace A
{
void AAA();
void AAA2();
}
namespace B
{
void BBB();
}
namespace C
{
using A::AAA;
using B::BBB;
}
namespace D
{
using namespace A;
using namespace B;
}
void foo()
{
C::AAA();
// C::AAA2(); // ERROR, won't compile
C::BBB();
}
void bar()
{
D::AAA();
D::AAA2();
D::BBB();
}
Conclusion
Namespaces are for namespaces.
Classes are for classes.
C++ was designed so each concept is different, and is used differently, in different cases, as a solution to different problems.
Don't use classes when you need namespaces.
And in your case, you need namespaces.
There are a lot of people who would disagree with me, but this is how I see it:
A class is essentially a definition of a certain kind of object. Static methods should define operations that are intimately tied to that object definition.
If you are just going to have a group of related functions not associated with an underlying object or definition of a kind of object, then I would say go with a namespace only. Just for me, conceptually, this is a lot more sensible.
For instance, in your case, ask yourself, "What is a MyMath?" If MyMath does not define a kind of object, then I would say: don't make it a class.
But like I said, I know there are plenty of folks who would (even vehemently) disagree with me on this (in particular, Java and C# developers).
If you need static data, use static methods.
If they're template functions and you'd like to be able to specify a set of template parameters for all functions together then use static methods in a template class.
Otherwise, use namespaced functions.
In response to the comments: yes, static methods and static data tend to be over-used. That's why I offered only two, related scenarios where I think they can be helpful. In the OP's specific example (a set of math routines), if he wanted the ability to specify parameters - say, a core data type and output precision - that would be applied to all routines, he might do something like:
template<typename T, int decimalPlaces>
class MyMath
{
// routines operate on datatype T, preserving at least decimalPlaces precision
};
// math routines for manufacturing calculations
typedef MyMath<double, 4> CAMMath;
// math routines for on-screen displays
typedef MyMath<float, 2> PreviewMath;
If you don't need that, then by all means use a namespace.
You should use a namespace, because a namespace has the many advantages over a class:
You don't have to define everything in the same header
You don't need to expose all your implementation in the header
You can't using a class member; you can using a namespace member
You can't using class, though using namespace is not all that often a good idea
Using a class implies that there is some object to be created when there really is none
Static members are, in my opinion, very very overused. They aren't a real necessity in most cases. Static members functions are probably better off as file-scope functions, and static data members are just global objects with a better, undeserved reputation.
I would prefer namespaces, that way you can have private data in an anonymous namespace in the implementation file (so it doesn't have to show up in the header at all as opposed to private members). Another benefit is that by using your namespace the clients of the methods can opt out of specifying MyMath::
I want to summarize and add to other answers. Also, my perspective is in the world of header-only.
Namespaces
Pros:
simple solution for naming hierarchies
they carry no semantics, so it is simpler to read
can live in different files (headers)
can be extended
ADL
shortcut can be defined (using).
Plays well with operator overload
Can be used for branding (you can design your code and put a namespace over it without much though)
Cons:
everything is public
private things need unnamed namespace so it is not explicit
ADL (yes, some people despise ADL)
can be extended (this can be a bad thing, specially in combination with ADL, semantics of existing code can change by extending the namespace)
functions need to be defined (or declared) in order of use
Classes with static methods
Pros:
can have private components (function, variables) and they are explicitly marked.
classes can be friended
can be type-parametrized (templates)
can be template parameters themselves
can be instantiated
can be passed to functions (static functions behave like non-static method by default).
it is easier to find patterns and go from groups of independent functions and convert them to a proper class (eventually with non static members)
dependencies among classes is well defined
functions (the static method) can be defined in any order
Cons:
No ADL
cannot be extended
needs the keyword static everywhere (opportunity to make fun of the language)
an overkill to solve the naming problem alone. Difficult to read in that case.
the functions (static methods) always need qualification (myclassspace::fun). There is no way to declare shortcuts (using).
almost useless for operator overload, needs complicated friend mechanism for that.
can not be used for branding.
you need to remember end it with ; :)
In summary, classes with static methods are better units of code and allow more meta programming, and except for ADL and some syntactic quirks, can replicate all the features of namespaces, but they can be an overkill sometimes.
Companies, such as Bloomberg, prefer classes over namespaces.
If you don’t like ADL or operator overload, classes with static methods is the way to go.
IMO, it would be nice if namespace and classes are integrated to become two sides of the same coin.
For example identify a namespace in the language as a class were the methods are static by default.
And then be able to use them as template parameters.
I wouldn't be sure what to do with ADL (may be it could be restricted to symbolic operators functions alone, e.g. operatorX, which was the original motivation for operator overload and ADL in the first place)
Why would I choose one over the other as a means of organizing my software?
If you use namespaces, you will frequently hit a language defect that functions which call each other must be listed in a specific order, because C++ can't see definitions further down in the file.
If you use classes, this defect does not occur.
It can be easier and cleaner to wrap implementation functions in a class than to maintain declarations for them all or put them in an unnatural order to make it compile.
One more reason to use class - Option to make use of access specifiers. You can then possibly break your public static method into smaller private methods. Public method can call multiple private methods.
Both namespace and class method have their uses. Namespace have the ability to be spread across files however that is a weakness if you need to enforce all related code to go in one file. As mentioned above class also allows you to create private static members in the class. You can have it in the anonymous namespace of the implementation file however it is still a bigger scope than having them inside the class.

Static functions in class or namespace [duplicate]

Let's say I have, or am going to write, a set of related functions. Let's say they're math-related. Organizationally, should I:
Write these functions and put them in my MyMath namespace and refer to them via MyMath::XYZ()
Create a class called MyMath and make these methods static and refer to the similarly MyMath::XYZ()
Why would I choose one over the other as a means of organizing my software?
By default, use namespaced functions.
Classes are to build objects, not to replace namespaces.
In Object Oriented code
Scott Meyers wrote a whole Item for his Effective C++ book on this topic, "Prefer non-member non-friend functions to member functions". I found an online reference to this principle in an article from Herb Sutter: http://www.gotw.ca/gotw/084.htm
The important thing to know is that: In C++, functions that are in the same namespace as a class is, and that have that class as a parameter, belong to that class' interface (because ADL will search those functions when resolving function calls).
For example:
let's say you have a namespace N
let's say you have a class C, declared in namespace N (in other words, its full name is N::C)
let's say you have a function F, declared in namespace N (in other words, its full name is N::F)
let's say that function F has, among its parameters, a parameter of type C
... Then N::F is part of N::C's public interface.
Namespaced functions, unless declared "friend," have no access to the class's internals, whereas static methods have the right to access the class's internals.
This means, for example, that when maintaining your class, if you need to change your class' internals, you will need to search for side effects in all its methods, including the static ones.
Extension I
Adding code to a class' interface.
In C#, you can add methods to a class even if you have no access to it. But in C++, this is impossible.
But, still in C++, you can still add a namespaced function, even to a class someone wrote for you.
See from the other side, this is important when designing your code, because by putting your functions in a namespace, you will authorize your users to increase/complete the class' interface.
Extension II
A side-effect of the previous point, it is impossible to declare static methods in multiple headers. Every method must be declared in the same class.
For namespaces, functions from the same namespace can be declared in multiple headers (the almost-standard swap function is the best example of that).
Extension III
The basic coolness of a namespace is that in some code, you can avoid mentioning it, if you use the keyword using:
#include <string>
#include <vector>
// Etc.
{
using namespace std ;
// Now, everything from std is accessible without qualification
string s ; // Ok
vector v ; // Ok
}
string ss ; // COMPILATION ERROR
vector vv ; // COMPILATION ERROR
And you can even limit the "pollution" to one class:
#include <string>
#include <vector>
{
using std::string ;
string s ; // Ok
vector v ; // COMPILATION ERROR
}
string ss ; // COMPILATION ERROR
vector vv ; // COMPILATION ERROR
This "pattern" is mandatory for the proper use of the almost-standard swap idiom.
And this is impossible to do with static methods in classes.
So, C++ namespaces have their own semantics.
But it goes further, as you can combine namespaces in a way similar to inheritance.
For example, if you have a namespace A with a function AAA, a namespace B with a function BBB, you can declare a namespace C, and bring AAA and BBB in this namespace with the keyword using.
You can even bring the full content of a namespace inside another, with using namespace, as shown with namespace D!
namespace A
{
void AAA();
void AAA2();
}
namespace B
{
void BBB();
}
namespace C
{
using A::AAA;
using B::BBB;
}
namespace D
{
using namespace A;
using namespace B;
}
void foo()
{
C::AAA();
// C::AAA2(); // ERROR, won't compile
C::BBB();
}
void bar()
{
D::AAA();
D::AAA2();
D::BBB();
}
Conclusion
Namespaces are for namespaces.
Classes are for classes.
C++ was designed so each concept is different, and is used differently, in different cases, as a solution to different problems.
Don't use classes when you need namespaces.
And in your case, you need namespaces.
There are a lot of people who would disagree with me, but this is how I see it:
A class is essentially a definition of a certain kind of object. Static methods should define operations that are intimately tied to that object definition.
If you are just going to have a group of related functions not associated with an underlying object or definition of a kind of object, then I would say go with a namespace only. Just for me, conceptually, this is a lot more sensible.
For instance, in your case, ask yourself, "What is a MyMath?" If MyMath does not define a kind of object, then I would say: don't make it a class.
But like I said, I know there are plenty of folks who would (even vehemently) disagree with me on this (in particular, Java and C# developers).
If you need static data, use static methods.
If they're template functions and you'd like to be able to specify a set of template parameters for all functions together then use static methods in a template class.
Otherwise, use namespaced functions.
In response to the comments: yes, static methods and static data tend to be over-used. That's why I offered only two, related scenarios where I think they can be helpful. In the OP's specific example (a set of math routines), if he wanted the ability to specify parameters - say, a core data type and output precision - that would be applied to all routines, he might do something like:
template<typename T, int decimalPlaces>
class MyMath
{
// routines operate on datatype T, preserving at least decimalPlaces precision
};
// math routines for manufacturing calculations
typedef MyMath<double, 4> CAMMath;
// math routines for on-screen displays
typedef MyMath<float, 2> PreviewMath;
If you don't need that, then by all means use a namespace.
You should use a namespace, because a namespace has the many advantages over a class:
You don't have to define everything in the same header
You don't need to expose all your implementation in the header
You can't using a class member; you can using a namespace member
You can't using class, though using namespace is not all that often a good idea
Using a class implies that there is some object to be created when there really is none
Static members are, in my opinion, very very overused. They aren't a real necessity in most cases. Static members functions are probably better off as file-scope functions, and static data members are just global objects with a better, undeserved reputation.
I would prefer namespaces, that way you can have private data in an anonymous namespace in the implementation file (so it doesn't have to show up in the header at all as opposed to private members). Another benefit is that by using your namespace the clients of the methods can opt out of specifying MyMath::
I want to summarize and add to other answers. Also, my perspective is in the world of header-only.
Namespaces
Pros:
simple solution for naming hierarchies
they carry no semantics, so it is simpler to read
can live in different files (headers)
can be extended
ADL
shortcut can be defined (using).
Plays well with operator overload
Can be used for branding (you can design your code and put a namespace over it without much though)
Cons:
everything is public
private things need unnamed namespace so it is not explicit
ADL (yes, some people despise ADL)
can be extended (this can be a bad thing, specially in combination with ADL, semantics of existing code can change by extending the namespace)
functions need to be defined (or declared) in order of use
Classes with static methods
Pros:
can have private components (function, variables) and they are explicitly marked.
classes can be friended
can be type-parametrized (templates)
can be template parameters themselves
can be instantiated
can be passed to functions (static functions behave like non-static method by default).
it is easier to find patterns and go from groups of independent functions and convert them to a proper class (eventually with non static members)
dependencies among classes is well defined
functions (the static method) can be defined in any order
Cons:
No ADL
cannot be extended
needs the keyword static everywhere (opportunity to make fun of the language)
an overkill to solve the naming problem alone. Difficult to read in that case.
the functions (static methods) always need qualification (myclassspace::fun). There is no way to declare shortcuts (using).
almost useless for operator overload, needs complicated friend mechanism for that.
can not be used for branding.
you need to remember end it with ; :)
In summary, classes with static methods are better units of code and allow more meta programming, and except for ADL and some syntactic quirks, can replicate all the features of namespaces, but they can be an overkill sometimes.
Companies, such as Bloomberg, prefer classes over namespaces.
If you don’t like ADL or operator overload, classes with static methods is the way to go.
IMO, it would be nice if namespace and classes are integrated to become two sides of the same coin.
For example identify a namespace in the language as a class were the methods are static by default.
And then be able to use them as template parameters.
I wouldn't be sure what to do with ADL (may be it could be restricted to symbolic operators functions alone, e.g. operatorX, which was the original motivation for operator overload and ADL in the first place)
Why would I choose one over the other as a means of organizing my software?
If you use namespaces, you will frequently hit a language defect that functions which call each other must be listed in a specific order, because C++ can't see definitions further down in the file.
If you use classes, this defect does not occur.
It can be easier and cleaner to wrap implementation functions in a class than to maintain declarations for them all or put them in an unnatural order to make it compile.
One more reason to use class - Option to make use of access specifiers. You can then possibly break your public static method into smaller private methods. Public method can call multiple private methods.
Both namespace and class method have their uses. Namespace have the ability to be spread across files however that is a weakness if you need to enforce all related code to go in one file. As mentioned above class also allows you to create private static members in the class. You can have it in the anonymous namespace of the implementation file however it is still a bigger scope than having them inside the class.

Class with no data members in C++

This may not be a question specific to C++ and more to do with Object oriented programming. I am new to this and I am doubtful of my design. I have a class Parser that basically implements many functions dealing parsing expressions, conversion from infix to postfix etc. I use these Parser functions in the main function. I realized that I do not need any data members for this class. Hence, I do not really need an object of this class. Hence, I ended up making every function static in the class. Is there something strange about this design. Should I have this as an interface instead? Any suggestions?
You want a parser and you know what you want it to do for you - this is in effect, your "interface".
Your current implementation of the parser doesn't need any member variables - therefore, to implement your interface, you don't need a class. So yes, do away with your static methods. Like Kevin says, using a namespace with plain old functions (non-static) is a great idea.
If you feel you will need to add a new parser that WILL need to maintain internal state, then you probably want to define an interface in (1) - a plain old publicly visible header file with function declarations inside a namespace of your choice is enough.
A class with nothing but static functions seems pretty indistinguishable from a namespace to me. So, why not just use a namespace?
The way to decide for this question is on how will the functions be used?
1) If all the functions are used in one file and do not need to be exported anywhere, then definitely use static functions. Why? Because you can just type them directly into the body of the class in the .cpp file and you do not have to worry about maintaining declarations and keeping parameters aligned. Because when a C++ class is parsed all the code inside each function defined inside the class body is skipped and then parsed once all the classes members have been declared, so the functions can all see each other and are in a better name situation.The compiler will also inline a lot of the smaller functions if you declare them directly in the class like that.
2) If the functions need to be used from outside the current .cpp file, then use normal functions. Because later they can be used from anywhere else and exporting them by name is easier.
It is common to make utility functions static, so, if the functions of your Parser class do not rely on each other, you totally can made them static. If they rely on each other, and it may be possible that the same functions can be done another way, you should consider to use an interface

Why define constants in a class versus a namespace? [duplicate]

This question already has answers here:
Closed 11 years ago.
Possible Duplicate:
Static members class vs. normal c-like interface
I am looking at somebodies code and there are several dozen constants defined in a class like this:
// header file
class Defines
{
public:
static const int Val1;
static const int ValN;
static const char* String1;
static const char* StringN;
...
}
// .CPP
const char* Defines::String1 = "some value"
etc.
Is there some reason to do things this was as opposed to using a namespace instead?
Are there advantages/disadvantages of one over the other
--------- Edit ----------
I'm sorry, I obviously should have pointed this out explicitly, as nobody has inferred it from the name of the class - which is "Defines". i.e. these constants are not associated with a particular class, there has been a class created specifically just to hold constants and nothing else, that is all the class Defines contains.
My question is not why should you place constants in a particular class, the question is is there any value in collecting dozens of them together and placing them in a class whose only purpose is to collect together constants, as opposed to collecting them together in a namespace, or just collecting them together in a header file specifically for that purpose etc.
(There is no currently existing namespace in the project therefore potential issues of polluting the namespace as mentioned in answers are not relevant in this case.)
----- 32nd edit -----------
and a follow up question ---
is placing
const char* Defines::StringN = "Somevalue"
in the .h file inefficient versus placing it in the .cpp file?
Because those constants may be tightly coupled to that class. IE Maybe members of the class take those constants as arguments or return them. Maybe the only place they are meaningful is in the interface to this class, so putting them in a separate namespace doesn't make sense because they only matter to that class.
There is no reason to do it the way it is done here; just like there is not really a reason to use class Defines { public: ... }; instead of struct Defines { ... };. Perhaps whoever wrote the code had previously been writing in a language that does not support namespaces/global variables in namespaces, or thought that this looked `neater' than a lot of extern statements and a namespace.
There is some practical use for this, however, if you intend to make some of these constants private, and then give access to only a few functions/classes. From the looks of it, however, this isn't the case, and it would make sense to change this to be a namespace -- that way, one could use using Defines::constant; and similar.
Response to first edit: The global namespace is also a namespace, and it is more dangerous to pollute than other namespaces, as things are more likely to leak into it. In that sense, it is better to put the variables in a class, but still not as good as putting them in a namespace of their own.
Response to second edit: const char* Defines::StringN = "Somevalue"; in a header would lead to the constant being defined multiple times, and the program would fail to link. However, if you prepend an extern to that, and put the definition in a .cpp file, everything will be fine, and there should be no performance penalty.
For a few reasons:
You're not cluttering your namespace with potentially random constants.
You're adding meaning to both the class and the constants themselves by including them with their associated class.
If I were to define a global/namespace constant named NAME, then what is it associated with? If I added into the class itself, then you're forced to reference is with the class name, which adds meaning to the usage and makes the code more readable and less error prone.
Of course, this can be abused. You can misplace constants. You can improperly put truly global constants in specific classes. You can, in both cases, give bad names.
In general, there's no reason to use a type this way. I have seen it argued that if the "collection of constants" evolves into a concrete object, starting this way makes the transition easier. In practice, I've never seen this happen. It just hides intent, and potentially flutters the code with private constructors.
One could argue that classes work with templates, while namespaces do not. So something like the following would only work if Defines is a class:
template<typename T> int function() {
return T::x + T::y;
}
//later
cout << function<Defines>() << function<OtherDefines>() << endl;
In most cases, there's probably a redesign that would work better, particularly if all you have are "constants" that aren't really. Occasionally, this may come in handy, though.
At times, it can also fight argument dependent lookup. In brief, the compiler is allowed to expand it's search for eligable function names to different name namespaces based on the parameters passed to the function. This does not extend to static functions of a class. This applies more to the general case, though, where the "static class" also includes nested types and functions in addition to the collection of constants.
Why people do this varies. Some come from languages where can't be used this way, others just don't know any better.
For most things, it makes sense to give them the smallest scope possible. In this case its not so much an issue of visibility, but in clarity.
If you see String1 in a method, you have no idea where it came from. If you see Defines::String1, you can say "OK, this is a variable from the class Defines, let me go there and see what it is and what it's supposed to be". Looking in one class is a lot better than looking through an entire namespace that might even be spread across multiple source files. Obviously if the variable is in a class because its used primarily in that class, there's no doubt whatsoever that's that's where it should be. :D