machine learning in c++ - c++

I am working on vision project using ( c++ and opencv )
I need to classify 5 number of double , so Is there function in opencv to classify vector of double ?
and if not exist like this function , What is the easiest way to classify vector of double in c++ ?

I extracted 5 points from the edges of the human body, head and hands
and feet and I need to train a neural network in order to identify if
the object is a human being or not
For that purpose would be better to use a Viola-Jones classificator, I think. However, OpenCV provides Multi-Layer-Perceptron (MLP) which you can easily use for this.
You have to create a big (>1000) training set which contains five doubles for each item. Then you have to use each time 5% or 10% elements of that set to create a test set.
See Multi-Layer-Perceptron here for more information about theory and implementation.
However I warn you that with such classifier you probably won't get good results as 5 points are probably not sufficient and you may have many false positives.

Related

Weka can I train a model to minimize or maximize an input value?

Is it possible in Weka to train a model minimizing a cost factor?
I have a data set containing a cost factor in each sample. It defines what using this sample would cost. Now, I would like to select as much of the samples as possible while minimizing this cost factor.
E.g. with Multilayer perceptron, I want to train the neurons in a way, that it chooses as many samples as possible while minimizing the sum of the cost factor.
I've checked all the model options and also searched the package manager for something like that, but I was unable to find anything. Could someone tell me whether this can be done using Weka?
What you are describing sounds more like an optimization problem rather than a classification or regression problem (for which you would use a Weka classifier).
Weka does have some limited support for optimization through its abstract weka.core.Optimization class (e.g., used internally by weka.classifiers.functions.Logistic). But that requires implementing some methods.
To cast your net wider, you might want to take a look at the following article that describes various optimization techniques:
https://machinelearningmastery.com/tour-of-optimization-algorithms/

Neural network and image classification

I have built an experimental neural network - the idea being that it can look at a JPEG image and identify which parts of the image are musical notation.
To train the network I have used various images of pages cut into 100 x 100 boxes which can either be valued at 1.0 (ie contains notation) or 0.0 (does not contain notation).
On training the network, though, it seems to have fixed itself that it - more or less - delivers a result of 0.5 every time (giving a square error of 0.25). The sigmoid (logistic) function is used for activation.
The network has 10,000 input neurons (for each pixel of the 100 x 100 image), 2000 hidden neurons (each input is attached to both a 'row' and a 'column' hidden neuron).
There is one output neuron.
Would I get better results with two output neurons? (ie one which activates for 'is music' and one which activates for 'is not music').
(You can see the C++ source for this here: https://github.com/mcmenaminadrian/musonet - though at any given time what is in the public repo may not be exactly what I am using on the machine.)
FWIW - the actual problem was because of the sign error in the code as described in the comment - so the two layers were fighting one another and, as you might expect, converged towards the middle.
But ... I based my code on a book from the 1990s - the much cited "Practical Neural Network Recipes in C++". There is nothing wrong with the book as such (though the C++ reflects that time's coding style and there is no use of STL classes and so on), but it does also come from an era where neural nets were not as well understood/engineered as today and so the basic design was quite flawed.
I'm now thinking about how best to implement a many layered convolutional network - not something discussed in the book at all (indeed it dismisses the idea of many layered networks relying instead on the fact that a single hidden layer NN is a general approximator).
I got some interesting results with the single hidden layer NN, but it's not really all that useful for image processing.

Building Speech Dataset for LSTM binary classification

I'm trying to do binary LSTM classification using theano.
I have gone through the example code however I want to build my own.
I have a small set of "Hello" & "Goodbye" recordings that I am using. I preprocess these by extracting the MFCC features for them and saving these features in a text file. I have 20 speech files(10 each) and I am generating a text file for each word, so 20 text files that contains the MFCC features. Each file is a 13x56 matrix.
My problem now is: How do I use this text file to train the LSTM?
I am relatively new to this. I have gone through some literature on it as well but not found really good understanding of the concept.
Any simpler way using LSTM's would also be welcome.
There are many existing implementation for example Tensorflow Implementation, Kaldi-focused implementation with all the scripts, it is better to check them first.
Theano is too low-level, you might try with keras instead, as described in tutorial. You can run tutorial "as is" to understand how things goes.
Then, you need to prepare a dataset. You need to turn your data into sequences of data frames and for every data frame in sequence you need to assign an output label.
Keras supports two types of RNNs - layers returning sequences and layers returning simple values. You can experiment with both, in code you just use return_sequences=True or return_sequences=False
To train with sequences you can assign dummy label for all frames except the last one where you can assign the label of the word you want to recognize. You need to place input and output labels to arrays. So it will be:
X = [[word1frame1, word1frame2, ..., word1framen],[word2frame1, word2frame2,...word2framen]]
Y = [[0,0,...,1], [0,0,....,2]]
In X every element is a vector of 13 floats. In Y every element is just a number - 0 for intermediate frames and word ID for final frame.
To train with just labels you need to place input and output labels to arrays and output array is simpler. So the data will be:
X = [[word1frame1, word1frame2, ..., word1framen],[word2frame1, word2frame2,...word2framen]]
Y = [[0,0,1], [0,1,0]]
Note that output is vectorized (np_utils.to_categorical) to turn it to vectors instead of just numbers.
Then you create network architecture. You can have 13 floats for input, a vector for output. In the middle you might have one fully connected layer followed by one lstm layer. Do not use too big layers, start with small ones.
Then you feed this dataset into model.fit and it trains you the model. You can estimate model quality on heldout set after training.
You will have a problem with convergence since you have just 20 examples. You need way more examples, preferably thousands to train LSTM, you will only be able to use very small models.

Regression Tree Forest in Weka

I'm using Weka and would like to perform regression with random forests. Specifically, I have a dataset:
Feature1,Feature2,...,FeatureN,Class
1.0,X,...,1.4,Good
1.2,Y,...,1.5,Good
1.2,F,...,1.6,Bad
1.1,R,...,1.5,Great
0.9,J,...,1.1,Horrible
0.5,K,...,1.5,Terrific
.
.
.
Rather than learning to predict the most likely class, I want to learn the probability distribution over the classes for a given feature vector. My intuition is that using just the RandomForest model in Weka would not be appropriate, since it would be attempting to minimize its absolute error (maximum likelihood) rather than its squared error (conditional probability distribution). Is that intuition right? Is there a better model to be using if I want to perform regression rather than classification?
Edit: I'm actually thinking now that in fact it may not be a problem. Presumably, classifiers are learning the conditional probability P(Class | Feature1,...,FeatureN) and the resulting classification is just finding the c in Class that maximizes that probability distribution. Therefore, a RandomForest classifier should be able to give me the conditional probability distribution. I just had to think about it some more. If that's wrong, please correct me.
If you want to predict the probabilities for each class explicitly, you need different input data. That is, you would need to replace the value to predict. Instead of one data set with the class label, you would need n data sets (for n different labels) with aggregated data for each unique feature vector. Your data would look something like
Feature1,...,Good
1.0,...,0.5
0.3,...,1.0
and
Feature1,...,Bad
1.0,...,0.8
0.3,...,0.1
and so on. You would need to learn one model for each class and run them separately on any data to be classified. That is, for each label you learn a model to predict a number that is the probability of being in that class, given a feature vector.
If you don't need the probabilities to be predicted explicitly, have a look at the Bayesian classifiers in Weka, which make use of probabilities in the models that they learn.

Face Recognition Using Backpropagation Neural Network?

I'm very new in image processing and my first assignment is to make a working program which can recognize faces and their names.
Until now, I successfully make a project to detect, crop the detected image, make it to sobel and translate it to array of float.
But, I'm very confused how to implement the Backpropagation MLP to learn the image so it can recognize the correct name for the detected face.
It's a great honor for all experts in stackoverflow to give me some examples how to implement the Image array to be learned with the backpropagation.
It is standard machine learning algorithm. You have a number of arrays of floats (instances in ML or observations in statistics terms) and corresponding names (labels, class tags), one per array. This is enough for use in most ML algorithms. Specifically in ANN, elements of your array (i.e. features) are inputs of the network and labels (names) are its outputs.
If you are looking for theoretical description of backpropagation, take a look at Stanford's ml-class lectures (ANN section). If you need ready implementation, read this question.
You haven't specified what are elements of your arrays. If you use just pixels of original image, this should work, but not very well. If you need production level system (though still with the use of ANN), try to extract more high level features (e.g. Haar-like features, that OpenCV uses itself).
Have you tried writing your feature vectors to an arff file and to feed them to weka, just to see if your approach might work at all?
Weka has a lot of classifiers integrated, including MLP.
As I understood so far, I suspect the features and the classifier you have chosen not to work.
To your original question: Have you made any attempts to implement a neural network on your own? If so, where you got stuck? Note, that this is not the place to request a complete working implementation from the audience.
To provide a general answer on a general question:
Usually you have nodes in an MLP. Specifically input nodes, output nodes, and hidden nodes. These nodes are strictly organized in layers. The input layer at the bottom, the output layer on the top, hidden layers in between. The nodes are connected in a simple feed-forward fashion (output connections are allowed to the next higher layer only).
Then you go and connect each of your float to a single input node and feed the feature vectors to your network. For your backpropagation you need to supply an error signal that you specify for the output nodes. So if you have n names to distinguish, you may use n output nodes (i.e. one for each name). Make them for example return 1 in case of a match and 0 else. You could very well use one output node and let it return n different values for the names. Probably it would even be best to use n completely different perceptrons, i.e. one for each name, to avoid some side-effects (catastrophic interference).
Note, that the output of each node is a number, not a name. Therefore you need to use some sort of thresholds, to get a number-name relation.
Also note, that you need a lot of training data to train a large network (i.e. to obey the curse of dimensionality). It would be interesting to know the size of your float array.
Indeed, for a complex decision you may need a larger number of hidden nodes or even hidden layers.
Further note, that you may need to do a lot of evaluation (i.e. cross validation) to find the optimal configuration (number of layers, number of nodes per layer), or to find even any working configuration.
Good luck, any way!