OpenCV templates in 2D point data set - c++

I was wandering what the best approach would be for detecting 'figures' in an array of 2D points.
In this example I have two 'templates'. Figure 1 is a template and figure 2 is a template.
Each of these templates exists only as a vector of points with an x,y coordinate.
Let's say we have a third vector with points with x,y coordinate
What would be the best way to find out and isolate points matching one of the first two arrays in the third one. (including scaling, rotation)?
I have been trying nearest neigbours(FlannBasedMatcehr) or even SVM implementation but it doesn't seem to get me any result, template matching doesn't seem to be the way to go either, I think. I am not working on images but only on 2D points in memory...
Especially because the input vector always has more points than the original data set to be compared with.
All it needs to do is find points in array that match a template.
I am not a 'specialist' in machine learning or opencv. I guess I am overlooking something from the beginning...
Thank you very much for your help/suggestions.

just for fun I tried this:
Choose two points of the point dataset and compute the transformation mapping the first two pattern points to those points.
Test whether all transformed pattern points can be found in the data set.
This approach is very naive and has a complexity of O(m*n²) with n data points and a single pattern of size m (points). This complexity might be increased for some nearest neighbor search methods. So you have to consider whether it's not efficient enough for your appplication.
Some improvements could include some heuristic to not choose all n² combinations of points but, but you need background information of maximal pattern scaling or something like that.
For evaluation I first created a pattern:
Then I create random points and add the pattern somewhere within (scaled, rotated and translated):
After some computation this method recognizes the pattern. The red line shows the chosen points for transformation computation.
Here's the code:
// draw a set of points on a given destination image
void drawPoints(cv::Mat & image, std::vector<cv::Point2f> points, cv::Scalar color = cv::Scalar(255,255,255), float size=10)
{
for(unsigned int i=0; i<points.size(); ++i)
{
cv::circle(image, points[i], 0, color, size);
}
}
// assumes a 2x3 (affine) transformation (CV_32FC1). does not change the input points
std::vector<cv::Point2f> applyTransformation(std::vector<cv::Point2f> points, cv::Mat transformation)
{
for(unsigned int i=0; i<points.size(); ++i)
{
const cv::Point2f tmp = points[i];
points[i].x = tmp.x * transformation.at<float>(0,0) + tmp.y * transformation.at<float>(0,1) + transformation.at<float>(0,2) ;
points[i].y = tmp.x * transformation.at<float>(1,0) + tmp.y * transformation.at<float>(1,1) + transformation.at<float>(1,2) ;
}
return points;
}
const float PI = 3.14159265359;
// similarity transformation uses same scaling along both axes, rotation and a translation part
cv::Mat composeSimilarityTransformation(float s, float r, float tx, float ty)
{
cv::Mat transformation = cv::Mat::zeros(2,3,CV_32FC1);
// compute rotation matrix and scale entries
float rRad = PI*r/180.0f;
transformation.at<float>(0,0) = s*cosf(rRad);
transformation.at<float>(0,1) = s*sinf(rRad);
transformation.at<float>(1,0) = -s*sinf(rRad);
transformation.at<float>(1,1) = s*cosf(rRad);
// translation
transformation.at<float>(0,2) = tx;
transformation.at<float>(1,2) = ty;
return transformation;
}
// create random points
std::vector<cv::Point2f> createPointSet(cv::Size2i imageSize, std::vector<cv::Point2f> pointPattern, unsigned int nRandomDots = 50)
{
// subtract center of gravity to allow more intuitive rotation
cv::Point2f centerOfGravity(0,0);
for(unsigned int i=0; i<pointPattern.size(); ++i)
{
centerOfGravity.x += pointPattern[i].x;
centerOfGravity.y += pointPattern[i].y;
}
centerOfGravity.x /= (float)pointPattern.size();
centerOfGravity.y /= (float)pointPattern.size();
pointPattern = applyTransformation(pointPattern, composeSimilarityTransformation(1,0,-centerOfGravity.x, -centerOfGravity.y));
// create random points
//unsigned int nRandomDots = 0;
std::vector<cv::Point2f> pointset;
srand (time(NULL));
for(unsigned int i =0; i<nRandomDots; ++i)
{
pointset.push_back( cv::Point2f(rand()%imageSize.width, rand()%imageSize.height) );
}
cv::Mat image = cv::Mat::ones(imageSize,CV_8UC3);
image = cv::Scalar(255,255,255);
drawPoints(image, pointset, cv::Scalar(0,0,0));
cv::namedWindow("pointset"); cv::imshow("pointset", image);
// add point pattern to a random location
float scaleFactor = rand()%30 + 10.0f;
float translationX = rand()%(imageSize.width/2)+ imageSize.width/4;
float translationY = rand()%(imageSize.height/2)+ imageSize.height/4;
float rotationAngle = rand()%360;
std::cout << "s: " << scaleFactor << " r: " << rotationAngle << " t: " << translationX << "/" << translationY << std::endl;
std::vector<cv::Point2f> transformedPattern = applyTransformation(pointPattern,composeSimilarityTransformation(scaleFactor,rotationAngle,translationX,translationY));
//std::vector<cv::Point2f> transformedPattern = applyTransformation(pointPattern,trans);
drawPoints(image, transformedPattern, cv::Scalar(0,0,0));
drawPoints(image, transformedPattern, cv::Scalar(0,255,0),3);
cv::imwrite("dataPoints.png", image);
cv::namedWindow("pointset + pattern"); cv::imshow("pointset + pattern", image);
for(unsigned int i=0; i<transformedPattern.size(); ++i)
pointset.push_back(transformedPattern[i]);
return pointset;
}
void programDetectPointPattern()
{
cv::Size2i imageSize(640,480);
// create a point pattern, this can be in any scale and any relative location
std::vector<cv::Point2f> pointPattern;
pointPattern.push_back(cv::Point2f(0,0));
pointPattern.push_back(cv::Point2f(2,0));
pointPattern.push_back(cv::Point2f(4,0));
pointPattern.push_back(cv::Point2f(1,2));
pointPattern.push_back(cv::Point2f(3,2));
pointPattern.push_back(cv::Point2f(2,4));
// transform the pattern so it can be drawn
cv::Mat trans = cv::Mat::ones(2,3,CV_32FC1);
trans.at<float>(0,0) = 20.0f; // scale x
trans.at<float>(1,1) = 20.0f; // scale y
trans.at<float>(0,2) = 20.0f; // translation x
trans.at<float>(1,2) = 20.0f; // translation y
// draw the pattern
cv::Mat drawnPattern = cv::Mat::ones(cv::Size2i(128,128),CV_8U);
drawnPattern *= 255;
drawPoints(drawnPattern,applyTransformation(pointPattern, trans), cv::Scalar(0),5);
// display and save pattern
cv::imwrite("patternToDetect.png", drawnPattern);
cv::namedWindow("pattern"); cv::imshow("pattern", drawnPattern);
// draw the points and the included pattern
std::vector<cv::Point2f> pointset = createPointSet(imageSize, pointPattern);
cv::Mat image = cv::Mat(imageSize, CV_8UC3);
image = cv::Scalar(255,255,255);
drawPoints(image,pointset, cv::Scalar(0,0,0));
// normally we would have to use some nearest neighbor distance computation, but to make it easier here,
// we create a small area around every point, which allows to test for point existence in a small neighborhood very efficiently (for small images)
// in the real application this "inlier" check should be performed by k-nearest neighbor search and threshold the distance,
// efficiently evaluated by a kd-tree
cv::Mat pointImage = cv::Mat::zeros(imageSize,CV_8U);
float maxDist = 3.0f; // how exact must the pattern be recognized, can there be some "noise" in the position of the data points?
drawPoints(pointImage, pointset, cv::Scalar(255),maxDist);
cv::namedWindow("pointImage"); cv::imshow("pointImage", pointImage);
// choose two points from the pattern (can be arbitrary so just take the first two)
cv::Point2f referencePoint1 = pointPattern[0];
cv::Point2f referencePoint2 = pointPattern[1];
cv::Point2f diff1; // difference vector
diff1.x = referencePoint2.x - referencePoint1.x;
diff1.y = referencePoint2.y - referencePoint1.y;
float referenceLength = sqrt(diff1.x*diff1.x + diff1.y*diff1.y);
diff1.x = diff1.x/referenceLength; diff1.y = diff1.y/referenceLength;
std::cout << "reference: " << std::endl;
std::cout << referencePoint1 << std::endl;
// now try to find the pattern
for(unsigned int j=0; j<pointset.size(); ++j)
{
cv::Point2f targetPoint1 = pointset[j];
for(unsigned int i=0; i<pointset.size(); ++i)
{
cv::Point2f targetPoint2 = pointset[i];
cv::Point2f diff2;
diff2.x = targetPoint2.x - targetPoint1.x;
diff2.y = targetPoint2.y - targetPoint1.y;
float targetLength = sqrt(diff2.x*diff2.x + diff2.y*diff2.y);
diff2.x = diff2.x/targetLength; diff2.y = diff2.y/targetLength;
// with nearest-neighborhood search this line will be similar or the maximal neighbor distance must be relative to targetLength!
if(targetLength < maxDist) continue;
// scale:
float s = targetLength/referenceLength;
// rotation:
float r = -180.0f/PI*(atan2(diff2.y,diff2.x) + atan2(diff1.y,diff1.x));
// scale and rotate the reference point to compute the translation needed
std::vector<cv::Point2f> origin;
origin.push_back(referencePoint1);
origin = applyTransformation(origin, composeSimilarityTransformation(s,r,0,0));
// compute the translation which maps the two reference points on the two target points
float tx = targetPoint1.x - origin[0].x;
float ty = targetPoint1.y - origin[0].y;
std::vector<cv::Point2f> transformedPattern = applyTransformation(pointPattern,composeSimilarityTransformation(s,r,tx,ty));
// now test if all transformed pattern points can be found in the dataset
bool found = true;
for(unsigned int i=0; i<transformedPattern.size(); ++i)
{
cv::Point2f curr = transformedPattern[i];
// here we check whether there is a point drawn in the image. If you have no image you will have to perform a nearest neighbor search.
// this can be done with a balanced kd-tree in O(log n) time
// building such a balanced kd-tree has to be done once for the whole dataset and needs O(n*(log n)) afair
if((curr.x >= 0)&&(curr.x <= pointImage.cols-1)&&(curr.y>=0)&&(curr.y <= pointImage.rows-1))
{
if(pointImage.at<unsigned char>(curr.y, curr.x) == 0) found = false;
// if working with kd-tree: if nearest neighbor distance > maxDist => found = false;
}
else found = false;
}
if(found)
{
std::cout << composeSimilarityTransformation(s,r,tx,ty) << std::endl;
cv::Mat currentIteration;
image.copyTo(currentIteration);
cv::circle(currentIteration,targetPoint1,5, cv::Scalar(255,0,0),1);
cv::circle(currentIteration,targetPoint2,5, cv::Scalar(255,0,255),1);
cv::line(currentIteration,targetPoint1,targetPoint2,cv::Scalar(0,0,255));
drawPoints(currentIteration, transformedPattern, cv::Scalar(0,0,255),4);
cv::imwrite("detectedPattern.png", currentIteration);
cv::namedWindow("iteration"); cv::imshow("iteration", currentIteration); cv::waitKey(-1);
}
}
}
}

Related

PCL: Scale two Point-Clouds to the same size

I got two point clouds and try to scale them to the same size. My first approach was to just divide the square roots from the eigenvalues:
pcl::PCA<pcl::PointNormal> pca;
pca.setInputCloud(model_cloud_ptr);
Eigen::Vector3f ev_M = pca.getEigenValues();
pca.setInputCloud(segmented_cloud_ptr);
Eigen::Vector3f ev_S = pca.getEigenValues();
double s = sqrt(ev_M[0])/sqrt(ev_S[0]);
This helps me to scale my model cloud to have approximately the same size as my segmented cloud. But the result is really not that perfect. It is a simple estimation. I tried doing it with TransformationEstimationSVDScale and also with SampleConsensusModelRegistration like in this tutorial. But when doing this I get the message, that the number of source points/indices differs from the number of target points/indices.
What would be the best approach for me to scale the clouds to the same size, when having different numbers of points in them?
Edit I tried doing what #dspeyer proposed but this gives me a scaling factor of almost 1.0
pcl::PCA<pcl::PointNormal> pca;
pca.setInputCloud(model_cloud_ptr);
Eigen::Matrix3f ev_M = pca.getEigenVectors();
Eigen::Vector3f ev_M1 = ev_M.col(0);
Eigen::Vector3f ev_M2 = ev_M.col(1);
auto dist_M1 = ev_M1.maxCoeff()-ev_M1.minCoeff();
auto dist_M2 = ev_M2.maxCoeff()-ev_M2.minCoeff();
auto distM_max = std::max(dist_M1, dist_M2);
pca.setInputCloud(segmented_cloud_ptr);
Eigen::Matrix3f ev_S = pca.getEigenVectors();
Eigen::Vector3f ev_S1 = ev_S.col(0);
Eigen::Vector3f ev_S2 = ev_S.col(1);
auto dist_S1 = ev_S1.maxCoeff()-ev_S1.minCoeff();
auto dist_S2 = ev_S2.maxCoeff()-ev_S2.minCoeff();
auto distS_max = std::max(dist_S1, dist_S2);
double s = distS_max / distM_max;
I would suggest using eigenvectors of each cloud to identify each ones primary axis of variation and then scaling them based on each clouds variation in that axis. In my example I used an oriented bounding box (max min in eigenspace), but mean value or standard deviation in the primary axis (x axis in eigenspace) could be better metrics depending on the application.
I left some debug flags in the function in case they are helpful to you, but gave them the defaults that I expect you will use. I tested for variable axis stretching and variable rotations of sample and golden clouds. This function should be able to handle that all just fine.
One caveat of this method is that if warping is axially variable AND warping causes one axis to overcome another axis as primary axis of variation, this function could improperly scale the clouds. I am not sure if this edge case is relevant to you. As long as you have uniform scaling between your clouds, this case should never occur.
debugFlags: debugOverlay will leave both input clouds scaled and in their respective eigen orientations (allows more easy comparison). primaryAxisOnly will use only the primary axis of variation to perform scaling if true, if false, it will scale all 3 axes of variation independently.
Function:
void rescaleClouds(pcl::PointCloud<pcl::PointXYZ>::Ptr& goldenCloud, pcl::PointCloud<pcl::PointXYZ>::Ptr& sampleCloud, bool debugOverlay = false, bool primaryAxisOnly = true)
{
//analyze golden cloud
pcl::PCA<pcl::PointXYZ> pcaGolden;
pcaGolden.setInputCloud(goldenCloud);
Eigen::Matrix3f goldenEVs_Dir = pcaGolden.getEigenVectors();
Eigen::Vector4f goldenMidPt = pcaGolden.getMean();
Eigen::Matrix4f goldenTransform = Eigen::Matrix4f::Identity();
goldenTransform.block<3, 3>(0, 0) = goldenEVs_Dir;
goldenTransform.block<4, 1>(0, 3) = goldenMidPt;
pcl::PointCloud<pcl::PointXYZ>::Ptr orientedGolden(new pcl::PointCloud<pcl::PointXYZ>);
pcl::transformPointCloud(*goldenCloud, *orientedGolden, goldenTransform.inverse());
pcl::PointXYZ goldenMin, goldenMax;
pcl::getMinMax3D(*orientedGolden, goldenMin, goldenMax);
//analyze sample cloud
pcl::PCA<pcl::PointXYZ> pcaSample;
pcaSample.setInputCloud(sampleCloud);
Eigen::Matrix3f sampleEVs_Dir = pcaSample.getEigenVectors();
Eigen::Vector4f sampleMidPt = pcaSample.getMean();
Eigen::Matrix4f sampleTransform = Eigen::Matrix4f::Identity();
sampleTransform.block<3, 3>(0, 0) = sampleEVs_Dir;
sampleTransform.block<4, 1>(0, 3) = sampleMidPt;
pcl::PointCloud<pcl::PointXYZ>::Ptr orientedSample(new pcl::PointCloud<pcl::PointXYZ>);
pcl::transformPointCloud(*sampleCloud, *orientedSample, sampleTransform.inverse());
pcl::PointXYZ sampleMin, sampleMax;
pcl::getMinMax3D(*orientedSample, sampleMin, sampleMax);
//apply scaling to oriented sample cloud
double xScale = (sampleMax.x - sampleMin.x) / (goldenMax.x - goldenMin.x);
double yScale = (sampleMax.y - sampleMin.y) / (goldenMax.y - goldenMin.y);
double zScale = (sampleMax.z - sampleMin.z) / (goldenMax.z - goldenMin.z);
if (primaryAxisOnly) { std::cout << "scale: " << xScale << std::endl; }
else { std::cout << "xScale: " << xScale << "yScale: " << yScale << "zScale: " << zScale << std::endl; }
for (int i = 0; i < orientedSample->points.size(); i++)
{
if (primaryAxisOnly)
{
orientedSample->points[i].x = orientedSample->points[i].x / xScale;
orientedSample->points[i].y = orientedSample->points[i].y / xScale;
orientedSample->points[i].z = orientedSample->points[i].z / xScale;
}
else
{
orientedSample->points[i].x = orientedSample->points[i].x / xScale;
orientedSample->points[i].y = orientedSample->points[i].y / yScale;
orientedSample->points[i].z = orientedSample->points[i].z / zScale;
}
}
//depending on your next step, it may be reasonable to leave this cloud at its eigen orientation, but this transformation will allow this function to scale in place.
if (debugOverlay)
{
goldenCloud = orientedGolden;
sampleCloud = orientedSample;
}
else
{
pcl::transformPointCloud(*orientedSample, *sampleCloud, sampleTransform);
}
}
Test Code (you will need your own clouds and visualizers):
pcl::PointCloud<pcl::PointXYZ>::Ptr golden(new pcl::PointCloud<pcl::PointXYZ>);
fileIO::loadFromPCD(golden, "CT_Scan_Nov_7_fullSpine.pcd");
CloudVis::simpleVis(golden);
double xStretch = 1.75;
double yStretch = 1.65;
double zStretch = 1.5;
pcl::PointCloud<pcl::PointXYZ>::Ptr stretched(new pcl::PointCloud<pcl::PointXYZ>);
for (int i = 0; i < golden->points.size(); i++)
{
pcl::PointXYZ pt = golden->points[i];
stretched->points.push_back(pcl::PointXYZ(pt.x * xStretch, pt.y * yStretch, pt.z * zStretch));
}
Eigen::Affine3f arbRotation = Eigen::Affine3f::Identity();
arbRotation.rotate(Eigen::AngleAxisf(M_PI / 4.0, Eigen::Vector3f::UnitY()));
pcl::transformPointCloud(*stretched, *stretched, arbRotation);
CloudVis::rgbClusterVis(golden, stretched);
rescaleClouds(golden, stretched,true,false);
CloudVis::rgbClusterVis(golden, stretched);
Seems like you should be able to:
Project everything onto the first two eigenvectors
Take the min and max for each
Subtract max-min for each eigenvector/dataset pair
Take the max of the two ranges (usually, but not always the first eigenvector -- when it isn't you'll want to rotate the final display)
Use the ratio of those maxes as the scaling constant

Generate image from an unorganized Point Cloud in PCL

I have an unorganized point cloud of the scene. Below is a screenshot of the point cloud-
I want to compose an image from this point cloud. Below is the code snippet-
#include <iostream>
#include <pcl/io/pcd_io.h>
#include <pcl/point_types.h>
#include <opencv2/opencv.hpp>
int main(int argc, char** argv)
{
pcl::PointCloud<pcl::PointXYZRGBA>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZRGBA>);
pcl::io::loadPCDFile("file.pcd", *cloud);
cv::Mat image = cv::Mat(cloud->height, cloud->width, CV_8UC3);
for (int i = 0; i < image.rows; i++)
{
for (int j = 0; j < image.cols; j++)
{
pcl::PointXYZRGBA point = cloud->at(j, i);
image.at<cv::Vec3b>(i, j)[0] = point.b;
image.at<cv::Vec3b>(i, j)[1] = point.g;
image.at<cv::Vec3b>(i, j)[2] = point.r;
}
}
cv::imwrite("image.png", image);
return (0);
}
The PCD file can be found here. The above code throws following error at runtime-
terminate called after throwing an instance of 'pcl::IsNotDenseException'
what(): : Can't use 2D indexing with a unorganized point cloud
Since the cloud is unorganized, the HEIGHT field is 1. This makes me confused while defining the dimensions of the image.
Questions
How to compose an image from an unorganized point cloud?
How to convert pixels located in composed image back to point cloud (3D space)?
PS: I am using PCL 1.7 in Ubuntu 14.04 LTS OS.
What Unorganized point cloud means is that the points are NOT assigned to a fixed (organized) grid, therefore ->at(j, i) can't be used (height is always 1, and the width is just the size of the cloud.
If you want to generate an image from your cloud, I suggest the following process:
Project the point cloud to a plane.
Generate a grid (organized point cloud) on that plane.
Interpolate the colors from the unorganized cloud to the grid (organized cloud).
Generate image from your organized grid (your initial attempt).
To be able to convert back to 3D:
When projecting to the plane save the "projection vectors" (vector from original point to the projected point).
Interpolate that as well to the grid.
methods for creating the grid:
Project the point cloud to a plane (unorganized cloud), and optionally save the reconstruction information in the normals:
pcl::PointCloud<pcl::PointXYZINormal>::Ptr ProjectToPlane(pcl::PointCloud<pcl::PointXYZINormal>::Ptr cloud, Eigen::Vector3f origin, Eigen::Vector3f axis_x, Eigen::Vector3f axis_y)
{
PointCloud<PointXYZINormal>::Ptr aux_cloud(new PointCloud<PointXYZINormal>);
copyPointCloud(*cloud, *aux_cloud);
auto normal = axis_x.cross(axis_y);
Eigen::Hyperplane<float, 3> plane(normal, origin);
for (auto itPoint = aux_cloud->begin(); itPoint != aux_cloud->end(); itPoint++)
{
// project point to plane
auto proj = plane.projection(itPoint->getVector3fMap());
itPoint->getVector3fMap() = proj;
// optional: save the reconstruction information as normals in the projected cloud
itPoint->getNormalVector3fMap() = itPoint->getVector3fMap() - proj;
}
return aux_cloud;
}
Generate a grid based on an origin point and two axis vectors (length and image_size can either be predetermined as calculated from your cloud):
pcl::PointCloud<pcl::PointXYZINormal>::Ptr GenerateGrid(Eigen::Vector3f origin, Eigen::Vector3f axis_x , Eigen::Vector3f axis_y, float length, int image_size)
{
auto step = length / image_size;
pcl::PointCloud<pcl::PointXYZINormal>::Ptr image_cloud(new pcl::PointCloud<pcl::PointXYZINormal>(image_size, image_size));
for (auto i = 0; i < image_size; i++)
for (auto j = 0; j < image_size; j++)
{
int x = i - int(image_size / 2);
int y = j - int(image_size / 2);
image_cloud->at(i, j).getVector3fMap() = center + (x * step * axisx) + (y * step * axisy);
}
return image_cloud;
}
Interpolate to an organized grid (where the normals store reconstruction information and the curvature is used as a flag to indicate empty pixel (no corresponding point):
void InterpolateToGrid(pcl::PointCloud<pcl::PointXYZINormal>::Ptr cloud, pcl::PointCloud<pcl::PointXYZINormal>::Ptr grid, float max_resolution, int max_nn_to_consider)
{
pcl::search::KdTree<pcl::PointXYZINormal>::Ptr tree(new pcl::search::KdTree<pcl::PointXYZINormal>);
tree->setInputCloud(cloud);
for (auto idx = 0; idx < grid->points.size(); idx++)
{
std::vector<int> indices;
std::vector<float> distances;
if (tree->radiusSearch(grid->points[idx], max_resolution, indices, distances, max_nn_to_consider) > 0)
{
// Linear Interpolation of:
// Intensity
// Normals- residual vector to inflate(recondtruct) the surface
float intensity(0);
Eigen::Vector3f n(0, 0, 0);
float weight_factor = 1.0F / accumulate(distances.begin(), distances.end(), 0.0F);
for (auto i = 0; i < indices.size(); i++)
{
float w = weight_factor * distances[i];
intensity += w * cloud->points[indices[i]].intensity;
auto res = cloud->points[indices[i]].getVector3fMap() - grid->points[idx].getVector3fMap();
n += w * res;
}
grid->points[idx].intensity = intensity;
grid->points[idx].getNormalVector3fMap() = n;
grid->points[idx].curvature = 1;
}
else
{
grid->points[idx].intensity = 0;
grid->points[idx].curvature = 0;
grid->points[idx].getNormalVector3fMap() = Eigen::Vector3f(0, 0, 0);
}
}
}
Now you have a grid (an organized cloud), which you can easily map to an image. Any changes you make to the images, you can map back to the grid, and use the normals to project back to your original point cloud.
usage example for creating the grid:
pcl::PointCloud<pcl::PointXYZINormal>::Ptr original_cloud = ...;
// reference frame for the projection
// e.g. take XZ plane around 0,0,0 of length 100 and map to 128*128 image
Eigen::Vector3f origin = Eigen::Vector3f(0,0,0);
Eigen::Vector3f axis_x = Eigen::Vector3f(1,0,0);
Eigen::Vector3f axis_y = Eigen::Vector3f(0,0,1);
float length = 100
int image_size = 128
auto aux_cloud = ProjectToPlane(original_cloud, origin, axis_x, axis_y);
// aux_cloud now contains the points of original_cloud, with:
// xyz coordinates projected to XZ plane
// color (intensity) of the original_cloud (remains unchanged)
// normals - we lose the normal information, as we use this field to save the projection information. if you wish to keep the normal data, you should define a custom PointType.
// note: for the sake of projection, the origin is only used to define the plane, so any arbitrary point on the plane can be used
auto grid = GenerateGrid(origin, axis_x , axis_y, length, image_size)
// organized cloud that can be trivially mapped to an image
float max_resolution = 2 * length / image_size;
int max_nn_to_consider = 16;
InterpolateToGrid(aux_cloud, grid, max_resolution, max_nn_to_consider);
// Now you have a grid (an organized cloud), which you can easily map to an image. Any changes you make to the images, you can map back to the grid, and use the normals to project back to your original point cloud.
additional helper methods for how I use the grid:
// Convert an Organized cloud to cv::Mat (an image and a mask)
// point Intensity is used for the image
// if as_float is true => take the raw intensity (image is CV_32F)
// if as_float is false => assume intensity is in range [0, 255] and round it (image is CV_8U)
// point Curvature is used for the mask (assume 1 or 0)
std::pair<cv::Mat, cv::Mat> ConvertGridToImage(pcl::PointCloud<pcl::PointXYZINormal>::Ptr grid, bool as_float)
{
int rows = grid->height;
int cols = grid->width;
if ((rows <= 0) || (cols <= 0))
return pair<Mat, Mat>(Mat(), Mat());
// Initialize
Mat image = Mat(rows, cols, as_float? CV_32F : CV_8U);
Mat mask = Mat(rows, cols, CV_8U);
if (as_float)
{
for (int y = 0; y < image.rows; y++)
{
for (int x = 0; x < image.cols; x++)
{
image.at<float>(y, x) = grid->at(x, image.rows - y - 1).intensity;
mask.at<uchar>(y, x) = 255 * grid->at(x, image.rows - y - 1).curvature;
}
}
}
else
{
for (int y = 0; y < image.rows; y++)
{
for (int x = 0; x < image.cols; x++)
{
image.at<uchar>(y, x) = (int)round(grid->at(x, image.rows - y - 1).intensity);
mask.at<uchar>(y, x) = 255 * grid->at(x, image.rows - y - 1).curvature;
}
}
}
return pair<Mat, Mat>(image, mask);
}
// project image to cloud (using the grid data)
// organized - whether the resulting cloud should be an organized cloud
pcl::PointCloud<pcl::PointXYZI>::Ptr BackProjectImage(cv::Mat image, pcl::PointCloud<pcl::PointXYZINormal>::Ptr grid, bool organized)
{
if ((image.size().height != grid->height) || (image.size().width != grid->width))
{
assert(false);
throw;
}
PointCloud<PointXYZI>::Ptr cloud(new PointCloud<PointXYZI>);
cloud->reserve(grid->height * grid->width);
// order of iteration is critical for organized target cloud
for (auto r = image.size().height - 1; r >= 0; r--)
{
for (auto c = 0; c < image.size().width; c++)
{
PointXYZI point;
auto mask_value = mask.at<uchar>(image.rows - r - 1, c);
if (mask_value > 0) // valid pixel
{
point.intensity = mask_value;
point.getVector3fMap() = grid->at(c, r).getVector3fMap() + grid->at(c, r).getNormalVector3fMap();
}
else // invalid pixel
{
if (organized)
{
point.intensity = 0;
point.x = numeric_limits<float>::quiet_NaN();
point.y = numeric_limits<float>::quiet_NaN();
point.z = numeric_limits<float>::quiet_NaN();
}
else
{
continue;
}
}
cloud->push_back(point);
}
}
if (organized)
{
cloud->width = grid->width;
cloud->height = grid->height;
}
return cloud;
}
usage example for working with the grid:
// image_mask is std::pair<cv::Mat, cv::Mat>
auto image_mask = ConvertGridToImage(grid, false);
...
do some work with the image/mask
...
auto new_cloud = BackProjectImage(image_mask.first, grid, false);
For an unorganized point cloud, height and width have different meanings as you may have noticed. http://pointclouds.org/documentation/tutorials/basic_structures.php
It is not as simple to convert an unorganized point cloud to an image, as the points are represented as floats and there is no defined perspective. However, you can work around that by determining a perspective and creating discrete bins for the points. A similar question and answer can be found here: Converting a pointcloud to a depth/multi channel image

3-D Plane Filtering EVD RANSAC... where am I going wrong?

Background
For a computer vision assignment I've been given the task of implementing RANSAC to fit a plane to a given set of points and filter that input list of points by the consensus model using Eigenvalue Decomposition.
I have spent days trying to tweak my code to achieve correct plane filtering behavior on an input set of test data. All you algorithm junkies, this one's for you.
My implementation uses a vector of a ROS data structure (Point32) as inputs, but this is transparent to the problem at hand.
What I've done
When I test for expected plane filtering behavior (correct elimination of outliers >95-99% of the time), I see in my implementation that I only eliminate outliers and extract the main plane of a test point cloud ~30-40% of the time. Other times, I filter a plane that ~somewhat~ fits the expected model, but leaves a lot of obvious outliers inside the consensus model. The fact that this works at all suggests that I'm doing some things right, and some things wrong.
I've tweaked my constants (distance threshold, max iterations, estimated % points fit) to London and back, and I only see small differences in the consensus model.
Implementation (long)
const float RANSAC_ESTIMATED_FIT_POINTS = .80f; // % points estimated to fit the model
const size_t RANSAC_MAX_ITER = 500; // max RANSAC iterations
const size_t RANDOM_MAX_TRIES = 100; // max RANSAC random point tries per iteration
const float RANSAC_THRESHOLD = 0.0000001f; // threshold to determine what constitutes a close point to a plane
/*
Helper to randomly select an item from a STL container, from stackoverflow.
*/
template <typename I>
I random_element(I begin, I end)
{
const unsigned long n = std::distance(begin, end);
const unsigned long divisor = ((long)RAND_MAX + 1) / n;
unsigned long k;
do { k = std::rand() / divisor; } while (k >= n);
std::advance(begin, k);
return begin;
}
bool run_RANSAC(const std::vector<Point32> all_points,
Vector3f *out_p0, Vector3f *out_n,
std::vector<Point32> *out_inlier_points)
{
for (size_t iterations = 0; iterations < RANSAC_MAX_ITER; iterations ++)
{
Point32 p1,p2,p3;
Vector3f v1;
Vector3f v2;
Vector3f n_hat; // keep track of the current plane model
Vector3f P0;
std::vector<Point32> points_agree; // list of points that agree with model within
bool found = false;
// try RANDOM_MAX_TRIES times to get random 3 points
for (size_t tries = 0; tries < RANDOM_MAX_TRIES; tries ++) // try to get unique random points 100 times
{
// get 3 random points
p1 = *random_element(all_points.begin(), all_points.end());
p2 = *random_element(all_points.begin(), all_points.end());
p3 = *random_element(all_points.begin(), all_points.end());
v1 = Vector3f (p2.x - p1.x,
p2.y - p1.y,
p2.z - p1.z ); //Vector P1P2
v2 = Vector3f (p3.x - p1.x,
p3.y - p1.y,
p3.z - p1.z); //Vector P1P3
if (std::abs(v1.dot(v2)) != 1.f) // dot product != 1 means we've found 3 nonlinear points
{
found = true;
break;
}
} // end try random element loop
if (!found) // could not find 3 random nonlinear points in 100 tries, go to next iteration
{
ROS_ERROR("run_RANSAC(): Could not find 3 random nonlinear points in %ld tries, going on to iteration %ld", RANDOM_MAX_TRIES, iterations + 1);
continue;
}
// nonlinear random points exist past here
// fit a plane to p1, p2, p3
Vector3f n = v1.cross(v2); // calculate normal of plane
n_hat = n / n.norm();
P0 = Vector3f(p1.x, p1.y, p1.z);
// at some point, the original p0, p1, p2 will be iterated over and added to agreed points
// loop over all points, find points that are inliers to plane
for (std::vector<Point32>::const_iterator it = all_points.begin();
it != all_points.end(); it++)
{
Vector3f M (it->x - P0.x(),
it->y - P0.y(),
it->z - P0.z()); // M = (P - P0)
float d = M.dot(n_hat); // calculate distance
if (d <= RANSAC_THRESHOLD)
{ // add to inlier points list
points_agree.push_back(*it);
}
} // end points loop
ROS_DEBUG("run_RANSAC() POINTS AGREED: %li=%f, RANSAC_ESTIMATED_FIT_POINTS: %f", points_agree.size(),
(float) points_agree.size() / all_points.size(), RANSAC_ESTIMATED_FIT_POINTS);
if (((float) points_agree.size()) / all_points.size() > RANSAC_ESTIMATED_FIT_POINTS)
{ // if points agree / total points > estimated % points fitting
// fit to points_agree.size() points
size_t n = points_agree.size();
Vector3f sum(0.0f, 0.0f, 0.0f);
for (std::vector<Point32>::iterator iter = points_agree.begin();
iter != points_agree.end(); iter++)
{
sum += Vector3f(iter->x, iter->y, iter->z);
}
Vector3f centroid = sum / n; // calculate centroid
Eigen::MatrixXf M(points_agree.size(), 3);
for (size_t row = 0; row < points_agree.size(); row++)
{ // build distance vector matrix
Vector3f point(points_agree[row].x,
points_agree[row].y,
points_agree[row].z);
for (size_t col = 0; col < 3; col ++)
{
M(row, col) = point(col) - centroid(col);
}
}
Matrix3f covariance_matrix = M.transpose() * M;
Eigen::EigenSolver<Matrix3f> eigen_solver;
eigen_solver.compute(covariance_matrix);
Vector3f eigen_values = eigen_solver.eigenvalues().real();
Matrix3f eigen_vectors = eigen_solver.eigenvectors().real();
// find eigenvalue that is closest to 0
size_t idx;
// find minimum eigenvalue, get index
float closest_eval = eigen_values.cwiseAbs().minCoeff(&idx);
// find corresponding eigenvector
Vector3f closest_evec = eigen_vectors.col(idx);
std::stringstream logstr;
logstr << "Closest eigenvalue : " << closest_eval << std::endl <<
"Corresponding eigenvector : " << std::endl << closest_evec << std::endl <<
"Centroid : " << std::endl << centroid;
ROS_DEBUG("run_RANSAC(): %s", logstr.str().c_str());
Vector3f all_fitted_n_hat = closest_evec / closest_evec.norm();
// invoke copy constructors for outbound
*out_n = Vector3f(all_fitted_n_hat);
*out_p0 = Vector3f(centroid);
*out_inlier_points = std::vector<Point32>(points_agree);
ROS_DEBUG("run_RANSAC():: Success, total_size: %li, inlier_size: %li, %% agreement %f",
all_points.size(), out_inlier_points->size(), (float) out_inlier_points->size() / all_points.size());
return true;
}
} // end iterations loop
return false;
}
Pseudocode from wikipedia for reference:
Given:
data – a set of observed data points
model – a model that can be fitted to data points
n – minimum number of data points required to fit the model
k – maximum number of iterations allowed in the algorithm
t – threshold value to determine when a data point fits a model
d – number of close data points required to assert that a model fits well to data
Return:
bestfit – model parameters which best fit the data (or nul if no good model is found)
iterations = 0
bestfit = nul
besterr = something really large
while iterations < k {
maybeinliers = n randomly selected values from data
maybemodel = model parameters fitted to maybeinliers
alsoinliers = empty set
for every point in data not in maybeinliers {
if point fits maybemodel with an error smaller than t
add point to alsoinliers
}
if the number of elements in alsoinliers is > d {
% this implies that we may have found a good model
% now test how good it is
bettermodel = model parameters fitted to all points in maybeinliers and alsoinliers
thiserr = a measure of how well model fits these points
if thiserr < besterr {
bestfit = bettermodel
besterr = thiserr
}
}
increment iterations
}
return bestfit
The only difference between my implementation and the wikipedia pseudocode is the following:
thiserr = a measure of how well model fits these points
if thiserr < besterr {
bestfit = bettermodel
besterr = thiserr
}
My guess is that I need to do something related to comparing the (closest_eval) with some sentinel value for the expected minimum eigenvalue corresponding to a normal for planes that tend to fit the model. However this was not covered in class and I have no idea where to start figuring out what's wrong.
Heh, it's funny how thinking about how to present the problem to others can actually solve the problem I'm having.
Solved by simply implementing this with a std::numeric_limits::max() starting best fit eigenvalue. This is because the best fit plane extracted on any n-th iteration of RANSAC is not guaranteed to be THE best fit plane and may have a huge error in consensus amongst each constituent point, so I need to converge on that for each iteration. Woops.
thiserr = a measure of how well model fits these points
if thiserr < besterr {
bestfit = bettermodel
besterr = thiserr
}

How to find euclidean distance between keypoints of a single image in opencv

I want to get a distance vector d for each key point in the image. The distance vector should consist of distances from that keypoint to all other keypoints in that image.
Note: Keypoints are found using SIFT.
Im pretty new to opencv. Is there a library function in C++ that can make my task easy?
If you aren't interested int the position-distance but the descriptor-distance you can use this:
cv::Mat SelfDescriptorDistances(cv::Mat descr)
{
cv::Mat selfDistances = cv::Mat::zeros(descr.rows,descr.rows, CV_64FC1);
for(int keyptNr = 0; keyptNr < descr.rows; ++keyptNr)
{
for(int keyptNr2 = 0; keyptNr2 < descr.rows; ++keyptNr2)
{
double euclideanDistance = 0;
for(int descrDim = 0; descrDim < descr.cols; ++descrDim)
{
double tmp = descr.at<float>(keyptNr,descrDim) - descr.at<float>(keyptNr2, descrDim);
euclideanDistance += tmp*tmp;
}
euclideanDistance = sqrt(euclideanDistance);
selfDistances.at<double>(keyptNr, keyptNr2) = euclideanDistance;
}
}
return selfDistances;
}
which will give you a N x N matrix (N = number of keypoints) where Mat_i,j = euclidean distance between keypoint i and j.
with this input:
I get these outputs:
image where keypoints are marked which have a distance of less than 0.05
image that corresponds to the matrix. white pixels are dist < 0.05.
REMARK: you can optimize many things in the computation of the matrix, since distances are symmetric!
UPDATE:
Here is another way to do it:
From your chat I know that you would need 13GB memory to hold those distance information for 41381 keypoints (which you tried). If you want instead only the N best matches, try this code:
// choose double here if you are worried about precision!
#define intermediatePrecision float
//#define intermediatePrecision double
//
void NBestMatches(cv::Mat descriptors1, cv::Mat descriptors2, unsigned int n, std::vector<std::vector<float> > & distances, std::vector<std::vector<int> > & indices)
{
// TODO: check whether descriptor dimensions and types are the same for both!
// clear vector
// get enough space to create n best matches
distances.clear();
distances.resize(descriptors1.rows);
indices.clear();
indices.resize(descriptors1.rows);
for(int i=0; i<descriptors1.rows; ++i)
{
// references to current elements:
std::vector<float> & cDistances = distances.at(i);
std::vector<int> & cIndices = indices.at(i);
// initialize:
cDistances.resize(n,FLT_MAX);
cIndices.resize(n,-1); // for -1 = "no match found"
// now find the 3 best matches for descriptor i:
for(int j=0; j<descriptors2.rows; ++j)
{
intermediatePrecision euclideanDistance = 0;
for( int dim = 0; dim < descriptors1.cols; ++dim)
{
intermediatePrecision tmp = descriptors1.at<float>(i,dim) - descriptors2.at<float>(j, dim);
euclideanDistance += tmp*tmp;
}
euclideanDistance = sqrt(euclideanDistance);
float tmpCurrentDist = euclideanDistance;
int tmpCurrentIndex = j;
// update current best n matches:
for(unsigned int k=0; k<n; ++k)
{
if(tmpCurrentDist < cDistances.at(k))
{
int tmpI2 = cIndices.at(k);
float tmpD2 = cDistances.at(k);
// update current k-th best match
cDistances.at(k) = tmpCurrentDist;
cIndices.at(k) = tmpCurrentIndex;
// previous k-th best should be better than k+1-th best //TODO: a simple memcpy would be faster I guess.
tmpCurrentDist = tmpD2;
tmpCurrentIndex =tmpI2;
}
}
}
}
}
It computes the N best matches for each keypoint of the first descriptors to the second descriptors. So if you want to do that for the same keypoints you'll set to be descriptors1 = descriptors2 ion your call as shown below. Remember: the function doesnt know that both descriptor sets are identical, so the first best match (or at least one) will be the keypoint itself with distance 0 always! Keep that in mind if using the results!
Here's sample code to generate an image similar to the one above:
int main()
{
cv::Mat input = cv::imread("../inputData/MultiLena.png");
cv::Mat gray;
cv::cvtColor(input, gray, CV_BGR2GRAY);
cv::SiftFeatureDetector detector( 7500 );
cv::SiftDescriptorExtractor describer;
std::vector<cv::KeyPoint> keypoints;
detector.detect( gray, keypoints );
// draw keypoints
cv::drawKeypoints(input,keypoints,input);
cv::Mat descriptors;
describer.compute(gray, keypoints, descriptors);
int n = 4;
std::vector<std::vector<float> > dists;
std::vector<std::vector<int> > indices;
// compute the N best matches between the descriptors and themselves.
// REMIND: ONE best match will always be the keypoint itself in this setting!
NBestMatches(descriptors, descriptors, n, dists, indices);
for(unsigned int i=0; i<dists.size(); ++i)
{
for(unsigned int j=0; j<dists.at(i).size(); ++j)
{
if(dists.at(i).at(j) < 0.05)
cv::line(input, keypoints[i].pt, keypoints[indices.at(i).at(j)].pt, cv::Scalar(255,255,255) );
}
}
cv::imshow("input", input);
cv::waitKey(0);
return 0;
}
Create a 2D vector (size of which would be NXN) -->
std::vector< std::vector< float > > item;
Create 2 for loops to go till the number of keypoints (N) you have
Calculate distances as suggested by a-Jays
Point diff = kp1.pt - kp2.pt;
float dist = std::sqrt( diff.x * diff.x + diff.y * diff.y );
Add this to vector using push_back for each keypoint --> N times.
The keypoint class has a member called pt which in turn has x and y [the (x,y) location of the point] as its own members.
Given two keypoints kp1 and kp2, it's then easy to calculate the euclidean distance as:
Point diff = kp1.pt - kp2.pt;
float dist = std::sqrt( diff.x * diff.x + diff.y * diff.y )
In your case, it is going to be a double loop iterating over all the keypoints.

Is there an easy way/algorithm to match 2 clouds of 2D points?

I am wondering if there is an easy way to match (register) 2 clouds of 2d points.
Let's say I have an object represented by points and an cluttered 2nd image with the object points and noise (noise in a way of points that are useless).
Basically the object can be 2d rotated as well as translated and scaled.
I know there is the ICP - Algorithm but I think that this is not a good approach due to high noise.
I hope that you understand what i mean. please ask if (im sure it is) anything is unclear.
cheers
Here is the function that finds translation and rotation. Generalization to scaling, weighted points, and RANSAC are straight forward. I used openCV library for visualization and SVD. The function below combines data generation, Unit Test , and actual solution.
// rotation and translation in 2D from point correspondences
void rigidTransform2D(const int N) {
// Algorithm: http://igl.ethz.ch/projects/ARAP/svd_rot.pdf
const bool debug = false; // print more debug info
const bool add_noise = true; // add noise to imput and output
srand(time(NULL)); // randomize each time
/*********************************
* Creat data with some noise
**********************************/
// Simulated transformation
Point2f T(1.0f, -2.0f);
float a = 30.0; // [-180, 180], see atan2(y, x)
float noise_level = 0.1f;
cout<<"True parameters: rot = "<<a<<"deg., T = "<<T<<
"; noise level = "<<noise_level<<endl;
// noise
vector<Point2f> noise_src(N), noise_dst(N);
for (int i=0; i<N; i++) {
noise_src[i] = Point2f(randf(noise_level), randf(noise_level));
noise_dst[i] = Point2f(randf(noise_level), randf(noise_level));
}
// create data with noise
vector<Point2f> src(N), dst(N);
float Rdata = 10.0f; // radius of data
float cosa = cos(a*DEG2RAD);
float sina = sin(a*DEG2RAD);
for (int i=0; i<N; i++) {
// src
float x1 = randf(Rdata);
float y1 = randf(Rdata);
src[i] = Point2f(x1,y1);
if (add_noise)
src[i] += noise_src[i];
// dst
float x2 = x1*cosa - y1*sina;
float y2 = x1*sina + y1*cosa;
dst[i] = Point2f(x2,y2) + T;
if (add_noise)
dst[i] += noise_dst[i];
if (debug)
cout<<i<<": "<<src[i]<<"---"<<dst[i]<<endl;
}
// Calculate data centroids
Scalar centroid_src = mean(src);
Scalar centroid_dst = mean(dst);
Point2f center_src(centroid_src[0], centroid_src[1]);
Point2f center_dst(centroid_dst[0], centroid_dst[1]);
if (debug)
cout<<"Centers: "<<center_src<<", "<<center_dst<<endl;
/*********************************
* Visualize data
**********************************/
// Visualization
namedWindow("data", 1);
float w = 400, h = 400;
Mat Mdata(w, h, CV_8UC3); Mdata = Scalar(0);
Point2f center_img(w/2, h/2);
float scl = 0.4*min(w/Rdata, h/Rdata); // compensate for noise
scl/=sqrt(2); // compensate for rotation effect
Point2f dT = (center_src+center_dst)*0.5; // compensate for translation
for (int i=0; i<N; i++) {
Point2f p1(scl*(src[i] - dT));
Point2f p2(scl*(dst[i] - dT));
// invert Y axis
p1.y = -p1.y; p2.y = -p2.y;
// add image center
p1+=center_img; p2+=center_img;
circle(Mdata, p1, 1, Scalar(0, 255, 0));
circle(Mdata, p2, 1, Scalar(0, 0, 255));
line(Mdata, p1, p2, Scalar(100, 100, 100));
}
/*********************************
* Get 2D rotation and translation
**********************************/
markTime();
// subtract centroids from data
for (int i=0; i<N; i++) {
src[i] -= center_src;
dst[i] -= center_dst;
}
// compute a covariance matrix
float Cxx = 0.0, Cxy = 0.0, Cyx = 0.0, Cyy = 0.0;
for (int i=0; i<N; i++) {
Cxx += src[i].x*dst[i].x;
Cxy += src[i].x*dst[i].y;
Cyx += src[i].y*dst[i].x;
Cyy += src[i].y*dst[i].y;
}
Mat Mcov = (Mat_<float>(2, 2)<<Cxx, Cxy, Cyx, Cyy);
if (debug)
cout<<"Covariance Matrix "<<Mcov<<endl;
// SVD
cv::SVD svd;
svd = SVD(Mcov, SVD::FULL_UV);
if (debug) {
cout<<"U = "<<svd.u<<endl;
cout<<"W = "<<svd.w<<endl;
cout<<"V transposed = "<<svd.vt<<endl;
}
// rotation = V*Ut
Mat V = svd.vt.t();
Mat Ut = svd.u.t();
float det_VUt = determinant(V*Ut);
Mat W = (Mat_<float>(2, 2)<<1.0, 0.0, 0.0, det_VUt);
float rot[4];
Mat R_est(2, 2, CV_32F, rot);
R_est = V*W*Ut;
if (debug)
cout<<"Rotation matrix: "<<R_est<<endl;
float cos_est = rot[0];
float sin_est = rot[2];
float ang = atan2(sin_est, cos_est);
// translation = mean_dst - R*mean_src
Point2f center_srcRot = Point2f(
cos_est*center_src.x - sin_est*center_src.y,
sin_est*center_src.x + cos_est*center_src.y);
Point2f T_est = center_dst - center_srcRot;
// RMSE
double RMSE = 0.0;
for (int i=0; i<N; i++) {
Point2f dst_est(
cos_est*src[i].x - sin_est*src[i].y,
sin_est*src[i].x + cos_est*src[i].y);
RMSE += SQR(dst[i].x - dst_est.x) + SQR(dst[i].y - dst_est.y);
}
if (N>0)
RMSE = sqrt(RMSE/N);
// Final estimate msg
cout<<"Estimate = "<<ang*RAD2DEG<<"deg., T = "<<T_est<<"; RMSE = "<<RMSE<<endl;
// show image
printTime(1);
imshow("data", Mdata);
waitKey(-1);
return;
} // rigidTransform2D()
// --------------------------- 3DOF
// calculates squared error from two point mapping; assumes rotation around Origin.
inline float sqErr_3Dof(Point2f p1, Point2f p2,
float cos_alpha, float sin_alpha, Point2f T) {
float x2_est = T.x + cos_alpha * p1.x - sin_alpha * p1.y;
float y2_est = T.y + sin_alpha * p1.x + cos_alpha * p1.y;
Point2f p2_est(x2_est, y2_est);
Point2f dp = p2_est-p2;
float sq_er = dp.dot(dp); // squared distance
//cout<<dp<<endl;
return sq_er;
}
// calculate RMSE for point-to-point metrics
float RMSE_3Dof(const vector<Point2f>& src, const vector<Point2f>& dst,
const float* param, const bool* inliers, const Point2f center) {
const bool all_inliers = (inliers==NULL); // handy when we run QUADRTATIC will all inliers
unsigned int n = src.size();
assert(n>0 && n==dst.size());
float ang_rad = param[0];
Point2f T(param[1], param[2]);
float cos_alpha = cos(ang_rad);
float sin_alpha = sin(ang_rad);
double RMSE = 0.0;
int ninliers = 0;
for (unsigned int i=0; i<n; i++) {
if (all_inliers || inliers[i]) {
RMSE += sqErr_3Dof(src[i]-center, dst[i]-center, cos_alpha, sin_alpha, T);
ninliers++;
}
}
//cout<<"RMSE = "<<RMSE<<endl;
if (ninliers>0)
return sqrt(RMSE/ninliers);
else
return LARGE_NUMBER;
}
// Sets inliers and returns their count
inline int setInliers3Dof(const vector<Point2f>& src, const vector <Point2f>& dst,
bool* inliers,
const float* param,
const float max_er,
const Point2f center) {
float ang_rad = param[0];
Point2f T(param[1], param[2]);
// set inliers
unsigned int ninliers = 0;
unsigned int n = src.size();
assert(n>0 && n==dst.size());
float cos_ang = cos(ang_rad);
float sin_ang = sin(ang_rad);
float max_sqErr = max_er*max_er; // comparing squared values
if (inliers==NULL) {
// just get the number of inliers (e.g. after QUADRATIC fit only)
for (unsigned int i=0; i<n; i++) {
float sqErr = sqErr_3Dof(src[i]-center, dst[i]-center, cos_ang, sin_ang, T);
if ( sqErr < max_sqErr)
ninliers++;
}
} else {
// get the number of inliers and set them (e.g. for RANSAC)
for (unsigned int i=0; i<n; i++) {
float sqErr = sqErr_3Dof(src[i]-center, dst[i]-center, cos_ang, sin_ang, T);
if ( sqErr < max_sqErr) {
inliers[i] = 1;
ninliers++;
} else {
inliers[i] = 0;
}
}
}
return ninliers;
}
// fits 3DOF (rotation and translation in 2D) with least squares.
float fit3DofQUADRATICold(const vector<Point2f>& src, const vector<Point2f>& dst,
float* param, const bool* inliers, const Point2f center) {
const bool all_inliers = (inliers==NULL); // handy when we run QUADRTATIC will all inliers
unsigned int n = src.size();
assert(dst.size() == n);
// count inliers
int ninliers;
if (all_inliers) {
ninliers = n;
} else {
ninliers = 0;
for (unsigned int i=0; i<n; i++){
if (inliers[i])
ninliers++;
}
}
// under-dermined system
if (ninliers<2) {
// param[0] = 0.0f; // ?
// param[1] = 0.0f;
// param[2] = 0.0f;
return LARGE_NUMBER;
}
/*
* x1*cosx(a)-y1*sin(a) + Tx = X1
* x1*sin(a)+y1*cos(a) + Ty = Y1
*
* approximation for small angle a (radians) sin(a)=a, cos(a)=1;
*
* x1*1 - y1*a + Tx = X1
* x1*a + y1*1 + Ty = Y1
*
* in matrix form M1*h=M2
*
* 2n x 4 4 x 1 2n x 1
*
* -y1 1 0 x1 * a = X1
* x1 0 1 y1 Tx Y1
* Ty
* 1=Z
* ----------------------------
* src1 res src2
*/
// 4 x 1
float res_ar[4]; // alpha, Tx, Ty, 1
Mat res(4, 1, CV_32F, res_ar); // 4 x 1
// 2n x 4
Mat src1(2*ninliers, 4, CV_32F); // 2n x 4
// 2n x 1
Mat src2(2*ninliers, 1, CV_32F); // 2n x 1: [X1, Y1, X2, Y2, X3, Y3]'
for (unsigned int i=0, row_cnt = 0; i<n; i++) {
// use inliers only
if (all_inliers || inliers[i]) {
float x = src[i].x - center.x;
float y = src[i].y - center.y;
// first row
// src1
float* rowPtr = src1.ptr<float>(row_cnt);
rowPtr[0] = -y;
rowPtr[1] = 1.0f;
rowPtr[2] = 0.0f;
rowPtr[3] = x;
// src2
src2.at<float> (0, row_cnt) = dst[i].x - center.x;
// second row
row_cnt++;
// src1
rowPtr = src1.ptr<float>(row_cnt);
rowPtr[0] = x;
rowPtr[1] = 0.0f;
rowPtr[2] = 1.0f;
rowPtr[3] = y;
// src2
src2.at<float> (0, row_cnt) = dst[i].y - center.y;
}
}
cv::solve(src1, src2, res, DECOMP_SVD);
// estimators
float alpha_est;
Point2f T_est;
// original
alpha_est = res.at<float>(0, 0);
T_est = Point2f(res.at<float>(1, 0), res.at<float>(2, 0));
float Z = res.at<float>(3, 0);
if (abs(Z-1.0) > 0.1) {
//cout<<"Bad Z in fit3DOF(), Z should be close to 1.0 = "<<Z<<endl;
//return LARGE_NUMBER;
}
param[0] = alpha_est; // rad
param[1] = T_est.x;
param[2] = T_est.y;
// calculate RMSE
float RMSE = RMSE_3Dof(src, dst, param, inliers, center);
return RMSE;
} // fit3DofQUADRATICOLd()
// fits 3DOF (rotation and translation in 2D) with least squares.
float fit3DofQUADRATIC(const vector<Point2f>& src_, const vector<Point2f>& dst_,
float* param, const bool* inliers, const Point2f center) {
const bool debug = false; // print more debug info
const bool all_inliers = (inliers==NULL); // handy when we run QUADRTATIC will all inliers
assert(dst_.size() == src_.size());
int N = src_.size();
// collect inliers
vector<Point2f> src, dst;
int ninliers;
if (all_inliers) {
ninliers = N;
src = src_; // copy constructor
dst = dst_;
} else {
ninliers = 0;
for (int i=0; i<N; i++){
if (inliers[i]) {
ninliers++;
src.push_back(src_[i]);
dst.push_back(dst_[i]);
}
}
}
if (ninliers<2) {
param[0] = 0.0f; // default return when there is not enough points
param[1] = 0.0f;
param[2] = 0.0f;
return LARGE_NUMBER;
}
/* Algorithm: Least-Square Rigid Motion Using SVD by Olga Sorkine
* http://igl.ethz.ch/projects/ARAP/svd_rot.pdf
*
* Subtract centroids, calculate SVD(cov),
* R = V[1, det(VU')]'U', T = mean_q-R*mean_p
*/
// Calculate data centroids
Scalar centroid_src = mean(src);
Scalar centroid_dst = mean(dst);
Point2f center_src(centroid_src[0], centroid_src[1]);
Point2f center_dst(centroid_dst[0], centroid_dst[1]);
if (debug)
cout<<"Centers: "<<center_src<<", "<<center_dst<<endl;
// subtract centroids from data
for (int i=0; i<ninliers; i++) {
src[i] -= center_src;
dst[i] -= center_dst;
}
// compute a covariance matrix
float Cxx = 0.0, Cxy = 0.0, Cyx = 0.0, Cyy = 0.0;
for (int i=0; i<ninliers; i++) {
Cxx += src[i].x*dst[i].x;
Cxy += src[i].x*dst[i].y;
Cyx += src[i].y*dst[i].x;
Cyy += src[i].y*dst[i].y;
}
Mat Mcov = (Mat_<float>(2, 2)<<Cxx, Cxy, Cyx, Cyy);
Mcov /= (ninliers-1);
if (debug)
cout<<"Covariance-like Matrix "<<Mcov<<endl;
// SVD of covariance
cv::SVD svd;
svd = SVD(Mcov, SVD::FULL_UV);
if (debug) {
cout<<"U = "<<svd.u<<endl;
cout<<"W = "<<svd.w<<endl;
cout<<"V transposed = "<<svd.vt<<endl;
}
// rotation (V*Ut)
Mat V = svd.vt.t();
Mat Ut = svd.u.t();
float det_VUt = determinant(V*Ut);
Mat W = (Mat_<float>(2, 2)<<1.0, 0.0, 0.0, det_VUt);
float rot[4];
Mat R_est(2, 2, CV_32F, rot);
R_est = V*W*Ut;
if (debug)
cout<<"Rotation matrix: "<<R_est<<endl;
float cos_est = rot[0];
float sin_est = rot[2];
float ang = atan2(sin_est, cos_est);
// translation (mean_dst - R*mean_src)
Point2f center_srcRot = Point2f(
cos_est*center_src.x - sin_est*center_src.y,
sin_est*center_src.x + cos_est*center_src.y);
Point2f T_est = center_dst - center_srcRot;
// Final estimate msg
if (debug)
cout<<"Estimate = "<<ang*RAD2DEG<<"deg., T = "<<T_est<<endl;
param[0] = ang; // rad
param[1] = T_est.x;
param[2] = T_est.y;
// calculate RMSE
float RMSE = RMSE_3Dof(src_, dst_, param, inliers, center);
return RMSE;
} // fit3DofQUADRATIC()
// RANSAC fit in 3DOF: 1D rot and 2D translation (maximizes the number of inliers)
// NOTE: no data normalization is currently performed
float fit3DofRANSAC(const vector<Point2f>& src, const vector<Point2f>& dst,
float* best_param, bool* inliers,
const Point2f center ,
const float inlierMaxEr,
const int niter) {
const int ITERATION_TO_SETTLE = 2; // iterations to settle inliers and param
const float INLIERS_RATIO_OK = 0.95f; // stopping criterion
// size of data vector
unsigned int N = src.size();
assert(N==dst.size());
// unrealistic case
if(N<2) {
best_param[0] = 0.0f; // ?
best_param[1] = 0.0f;
best_param[2] = 0.0f;
return LARGE_NUMBER;
}
unsigned int ninliers; // current number of inliers
unsigned int best_ninliers = 0; // number of inliers
float best_rmse = LARGE_NUMBER; // error
float cur_rmse; // current distance error
float param[3]; // rad, Tx, Ty
vector <Point2f> src_2pt(2), dst_2pt(2);// min set of 2 points (1 correspondence generates 2 equations)
srand (time(NULL));
// iterations
for (int iter = 0; iter<niter; iter++) {
#ifdef DEBUG_RANSAC
cout<<"iteration "<<iter<<": ";
#endif
// 1. Select a random set of 2 points (not obligatory inliers but valid)
int i1, i2;
i1 = rand() % N; // [0, N[
i2 = i1;
while (i2==i1) {
i2 = rand() % N;
}
src_2pt[0] = src[i1]; // corresponding points
src_2pt[1] = src[i2];
dst_2pt[0] = dst[i1];
dst_2pt[1] = dst[i2];
bool two_inliers[] = {true, true};
// 2. Quadratic fit for 2 points
cur_rmse = fit3DofQUADRATIC(src_2pt, dst_2pt, param, two_inliers, center);
// 3. Recalculate to settle params and inliers using a larger set
for (int iter2=0; iter2<ITERATION_TO_SETTLE; iter2++) {
ninliers = setInliers3Dof(src, dst, inliers, param, inlierMaxEr, center); // changes inliers
cur_rmse = fit3DofQUADRATIC(src, dst, param, inliers, center); // changes cur_param
}
// potential ill-condition or large error
if (ninliers<2) {
#ifdef DEBUG_RANSAC
cout<<" !!! less than 2 inliers "<<endl;
#endif
continue;
} else {
#ifdef DEBUG_RANSAC
cout<<" "<<ninliers<<" inliers; ";
#endif
}
#ifdef DEBUG_RANSAC
cout<<"; recalculate: RMSE = "<<cur_rmse<<", "<<ninliers <<" inliers";
#endif
// 4. found a better solution?
if (ninliers > best_ninliers) {
best_ninliers = ninliers;
best_param[0] = param[0];
best_param[1] = param[1];
best_param[2] = param[2];
best_rmse = cur_rmse;
#ifdef DEBUG_RANSAC
cout<<" --- Solution improved: "<<
best_param[0]<<", "<<best_param[1]<<", "<<param[2]<<endl;
#endif
// exit condition
float inlier_ratio = (float)best_ninliers/N;
if (inlier_ratio > INLIERS_RATIO_OK) {
#ifdef DEBUG_RANSAC
cout<<"Breaking early after "<< iter+1<<
" iterations; inlier ratio = "<<inlier_ratio<<endl;
#endif
break;
}
} else {
#ifdef DEBUG_RANSAC
cout<<endl;
#endif
}
} // iterations
// 5. recreate inliers for the best parameters
ninliers = setInliers3Dof(src, dst, inliers, best_param, inlierMaxEr, center);
return best_rmse;
} // fit3DofRANSAC()
Let me first make sure I'm interpreting your question correctly. You have two sets of 2D points, one of which contains all "good" points corresponding to some object of interest, and one of which contains those points under an affine transformation with noisy points added. Right?
If that's correct, then there is a fairly reliable and efficient way to both reject noisy points and determine the transformation between your points of interest. The algorithm that is usually used to reject noisy points ("outliers") is known as RANSAC, and the algorithm used to determine the transformation can take several forms, but the most current state of the art is known as the five-point algorithm and can be found here -- a MATLAB implementation can be found here.
Unfortunately I don't know of a mature implementation of both of those combined; you'll probably have to do some work of your own to implement RANSAC and integrate it with the five point algorithm.
Edit:
Actually, OpenCV has an implementation that is overkill for your task (meaning it will work but will take more time than necessary) but is ready to work out of the box. The function of interest is called cv::findFundamentalMat.
I believe you are looking for something like David Lowe's SIFT (Scale Invariant Feature Transform). Other option is SURF (SIFT is patent protected). The OpenCV computer library presents a SURF implementation
I would try and use distance geometry (http://en.wikipedia.org/wiki/Distance_geometry) for this
Generate a scalar for each point by summing its distances to all neighbors within a certain radius. Though not perfect, this will be good discriminator for each point.
Then put all the scalars in a map that allows a point (p) to be retrieve by its scalar (s) plus/minus some delta
M(s+delta) = p (e.g K-D Tree) (http://en.wikipedia.org/wiki/Kd-tree)
Put all the reference set of 2D points in the map
On the other (test) set of 2D points:
foreach test scaling (esp if you have a good idea what typical scaling values are)
...scale each point by S
...recompute the scalars of the test set of points
......for each point P in test set (or perhaps a sample for faster method)
.........lookup point in reference scalar map within some delta
.........discard P if no mapping found
.........else foreach P' point found
............examine neighbors of P and see if they have corresponding scalars in the reference map within some delta (i.e reference point has neighbors with approx same value)
......... if all points tested have a mapping in the reference set, you have found a mapping of test point P onto reference point P' -> record mapping of test point to reference point
......discard scaling if no mappings recorded
Note this is trivially parallelized in several different places
This is off the top of my head, drawing from research I did years ago. It lacks fine details but the general idea is clear: find points in the noisy (test) graph whose distances to their closest neighbors are roughly the same as the reference set. Noisy graphs will have to measure the distances with a larger allowed error that less noisy graphs.
The algorithm works perfectly for graphs with no noise.
Edit: there is a refinement for the algorithm that doesn't require looking at different scalings. When computing the scalar for each point, use a relative distance measure instead. This will be invariant of transform
From C++, you could use ITK to do the image registration. It includes many registration functions that will work in the presence of noise.
The KLT (Kanade Lucas Tomasi) Feature Tracker makes a Affine Consistency Check of tracked features. The Affine Consistency Check takes into account translation, rotation and scaling. I don't know if it is of help to you, because you can't use the function (which calculates the affine transformation of a rectangular region) directly. But maybe you can learn from the documentation and source-code, how the affine transformation can be calculated and adapt it to your problem (clouds of points instead of a rectangular region).
You want want the Denton-Beveridge point matching algorithm. Source code at the bottom of the page linked below, and there is also a paper that explain the algorithm and why Ransac is a bad choice for this problem.
http://jasondenton.me/pntmatch.html