declaration of reference and pointer in c++ - c++

For example, if F is a reference to an integer, where the reference is not permitted to be pointed to a new object once it is initially pointed to one.
Can I write to declaration like: const int & F?
I am confused about reference and pointer, because they both represent the address of something, but we always write parameter use reference as: const & F, I understand that this is to reduce the copy and does not allow others to change it, but are there any other meanings? and why do we need "const" after a function declaration like: int F(int z) const; this const makes the return type const or everything in the function const?
One more example,
void F(int* p)
{
p+=3;
}
int z=8;
F(&z);
std::cout<<z<<std::endl;
What is the output for z since z is a reference, and I pass it as a pointer who points to an integer.Increasing p by 3 just makes the address different and does not change its value?

Just a first pass at some answers - if anything is unclear please comment and I'll try to elaborate.
int a = 3;
declares an integer, a, with the initial value 3, but you are allowed to change it. For example, later you can do
a = 5; // (*)
and a will have the value 5. If you want to prevent this, you can instead write
const int a = 3;
which will make the assignment (*) illegal - the compiler will issue an error.
If you create a reference to an integer, you are basically creating an alias:
int& b = a;
, despite appearances, does not create a new integer b. Instead, it declares b as an alias for a. If a had the value 3 before, so will b, if you write b = 6 and print the value of a, you will get 6 as well. Just as for a, you can make the assignment b = 6 illegal by declaring it as const:
const int& b = a;
means that b is still an alias for a, but it will not be used to assign a different value to a. It will only be used to read the value of a. Note that a itself still may or may not be constant - if you declared it as non-const you can still write a = 6 and b will also be 6.
As for the question about the pointers: the snippet
void F(int* p) {
p += 3;
}
int z = 8;
F(&z);
does not do what you expected. You pass the address of z into the function F, so inside F, the pointer p will point to z. However, what you are doing then, is adding 3 to the value of p, i.e. to the address that p points to. So you will change to pointer to point at some (semi)random memory address. Luckily, it's just a copy, and it will be discarded. What you probably wanted to do, is increment the value of the integer that p points to, which would be *p += 3. You could have prevented this mistake by making the argument a int* const, meaning: the value of p (i.e. address pointed to) cannot be changed, but the value it points to (i.e. the value of z, in this case) can. This would have made *p += 3 legal but not the "erroneous" (unintended) p += 3. Other versions would be const int* p which would make p += 3 legal but not *p += 3, and const int* const` which would have allowed neither.
Actually, the way you have written F is dangerous: suppose that you expand the function and later you write (correctly) *p += 3. You think that you are updating the value of z whose address you passed in, while actually you are updating the value of a more-or-less random memory address. In fact, when I tried compiling the following:
// WARNING WARNING WARNING
// DANGEROUS CODE - This will probably produce a segfault - don't run it!
void F(int* p) {
p += 3; // I thought I wrote *p += 3
// ... Lots of other code in between, I forgot I accidentally changed p
*p += 3; // NOOOOOOOOOOO!
}
int main()
{
int z=8;
F(&z);
std::cout << z;
return 0;
}
I got a segmentation fault, because I'm writing at an address where I haven't allocated a variable (for all I know I could have just screwed up my boot sector).
Finally, about const after a function declaration: it makes the this pointer a const pointer - basically the compiler emits const A* this instead of just A* this. Conceptually, it states your intention that the function will not change the state of the class, which usually means it won't change any of the (internal) variables. For example, it would make the following code illegal:
class A {
int a;
void f() const {
a = 3; // f is const, so it cannot change a!
}
};
A a;
a.f();
Of course, if the function returns something, this value can have its own type, for example
void f();
int f();
int& f();
const int f();
const int& f();
are functions that return nothing, a (copy of) an integer, a (reference to) an integer, a constant (copy of) an integer, and a constant reference of an integer. If in addition f is guaranteed not to change any class fields, you can also add const after the brackets:
void f() const;
int f() const;
int& f() const;
const int f() const;
const int& f() const;

The way I remember the difference between references and pointers is that a reference must exist and the reference cannot change.
A pointer can be changed, and usually needs to be checked against NULL or tested to verify it points to a valid object.
Also, an object passed by reference can be treated syntactically like it was declared in the function. Pointers must use deferencing syntax.
Hope that helps.

You are confusing things.
First of all int z=8; F(&z); here z IS NOT a reference.
So let me start with the basics:
when found in a type declaration the symbol & denotes a reference, but in any other context, the symbol & means address of.
Similar, in a type declaration * has the meaning of declaring a pointer, anywhere else it it the dereferencing operator, denoting you use the value at an address.
For instance:
int *p : p is a pointer of type int.
x = *p : x is assigned the value found at address p.
int &r = a : r is reference of type int, and r refers the variable a.
p = &a : p is assigned the address of variable a.
Another question you have: the const at the end of a function, like int f(int x) const. This can be used only on non-static class methods and specifies that the function does not modify the object. It has nothing to do with the return value.

Related

C++: What is a de-reference actually doing?

I am reading through Stroustrup's 4th edition : The C++ Programming Language. I have a python/java background so the first 4 chapters are fine so far.
In Chapter 3 I saw:
complex& operator+=(complex z) { re+=z.re , im+=z.im; return ∗this; }
That began a day long attempt to write this question:
First I figured out that it is returning a reference to the object and not a copy. As I was able to confirm in this question.
And I was able to understand the difference between returning a reference into a reference variable vs. a regular variable from this question
And I did my own trial
class Test {
public:
Test():x{5}{}
int x;
void setX(int a) {x = a;}
Test& operator+=(Test z) {x+=z.x; return *this;}
// the keyword this is a pointer
Test* getTest() {return this;}
// but I can return the reference by *this
Test& getTest1() {return *this;}
// or I can return a copy
Test getTest2() {return *this;}
};
That lead me to question why it is called de-reference, so I did this trial
int x = 8;
int* p = &x;
int y = *p;
int& z = *p;
x++; // let's have some fun
std::cout << y << std::endl;
std::cout << z << std::endl;
As expected y = 8 and z = 9, so how did the de-reference return the address in one case, and the value in the other? More importantly how is C++ making that distinction?
It's exactly like in your Test class functions.
int y = *p;
int& z = *p;
y is a copy of what p points to.
z is a reference to (not an address) what p points to. So changing z changes *p and vice-versa. But changing y has no effect on *p.
As expected y = 8 and z = 9, so how did the de-reference return the address in one case, and the value in the other? More importantly how is C++ making that distinction?
The de-reference returned the actual thing referenced in both cases. So there is no distinction for C++ to make. The difference is in what was done with the result of the dereference.
If you do int j = <something>; then the result of the something is used to initialize j. Since j is an integer, the <something> must be an integer value.
If you do int &j = <something>; then the result of the something is still used to initialize j. But now, j is a reference to an integer, and the <something> must be an integer, not just an integer value.
So, what *this does is the same in both cases. How you use a value doesn't affect how that value is computed. But how you use it does affect what happens when you use it. And these two pieces of code use the dereferenced object differently. In one case, its value is taken. In the other case, a reference is bound to it.
It's possible to consider a pointer int* p as pointing to an address where data of type int resides. When you de-reference this, the system retrieves the value at that memory address (the address is the actual value of p itself). In the case of int y = *p; you put a copy of that int value on the stack as the locator value y.
On the other hand, de-referencing on the left-hand side in *p = 13; means you are replacing the int value *p stored at the memory address denoted by the value of p with the right-hand-side value 13.
The reference lvalue int& z in int& z = *p; is not a copy of the int value pointed to by p but rather a left-hand side reference to whatever is at the particular memory address returned by *p (i.e. the actual value held by p itself).
This doesn't mean much difference in your contrived case, but e.g. given a Foo class with a Foo::incrementCount() value,
Foo* p = new Foo();
p->incrementCount();
Foo& ref = *p;
ref.incrementCount();
The same method for the same instance will be called twice. In contrast, Foo foo = *p will actually copy the entire Foo instance, creating a separate copy on the stack. Thus, calling foo.incrementValue() won't affect the separate object still pointed to by p.

What's the difference between * and & in C?

I'm learning C and I'm still not sure if I understood the difference between & and * yet.
Allow me to try to explain it:
int a; // Declares a variable
int *b; // Declares a pointer
int &c; // Not possible
a = 10;
b = &a; // b gets the address of a
*b = 20; // a now has the value 20
I got these, but then it becomes confusing.
void funct(int a) // A declaration of a function, a is declared
void funct(int *a) // a is declared as a pointer
void funct(int &a) // a now receives only pointers (address)
funct(a) // Creates a copy of a
funct(*a) // Uses a pointer, can create a pointer of a pointer in some cases
funct(&a) // Sends an address of a pointer
So, both funct(*a) and funct(&a) are correct, right? What's the difference?
* and & as type modifiers
int i declares an int.
int* p declares a pointer to an int.
int& r = i declares a reference to an int, and initializes it to refer to i.
C++ only. Note that references must be assigned at initialization, therefore int& r; is not possible.
Similarly:
void foo(int i) declares a function taking an int (by value, i.e. as a copy).
void foo(int* p) declares a function taking a pointer to an int.
void foo(int& r) declares a function taking an int by reference. (C++ only)
* and & as operators
foo(i) calls foo(int). The parameter is passed as a copy.
foo(*p) dereferences the int pointer p and calls foo(int) with the int pointed to by p.
foo(&i) takes the address of the int i and calls foo(int*) with that address.
(tl;dr) So in conclusion, depending on the context:
* can be either the dereference operator or part of the pointer declaration syntax.
& can be either the address-of operator or (in C++) part of the reference declaration syntax.
Note that * may also be the multiplication operator, and & may also be the bitwise AND operator.
funct(int a)
Creates a copy of a
funct(int* a)
Takes a pointer to an int as input. But makes a copy of the pointer.
funct(int& a)
Takes an int, but by reference. a is now the exact same int that was given. Not a copy. Not a pointer.
void funct(int &a) declares a function that takes a reference. A reference is conceptually a pointer in that the function can modify the variable that's passed in, but is syntactically used like a value (so you don't have to de-reference it all the time to use it).
Originally in C there were pointers and no references. Very often though we just want to access a value without copying it and the fact that we're passing around an address and not the actual value is an unimportant detail.
C++ introduced references to abstract away the plumbing of pointers. If you want to "show" a value to a function in C++ then references are preferable. The function is guaranteed that a reference is not null and can access it as if it were the value itself. Pointers are still necessary for other purposes, for example, you can "re-aim" a pointer or delete with a pointer but you can't do so with a reference.
Their functionality does overlap and without a bit of history it should confuse you that we have both.
So the answer to your direct question is that very often there is no difference. That said, f(int*) can be useful if you want the function to be able to check if the pointer is null. If you're using C then pointers are the only option.
The meaning of * is dependent on context. When in a data or function argument declaration, it is a datatype qualifier, not an operator int* is a datatype in itself. For this reason it is useful perhaps to write:
int* x ;
rather than:
int *x ;
They are identical, but the first form emphasises that it the * is part of the type name, and visually distinguishes it from usage as dereference operator.
When applied to an instantiated pointer variable, it is the dereference operator, and yields the the value pointed to.
& in C is only an operator, it yields the address (or pointer to) of an object. It cannot be used in a declaration. In C++ it is a type qualifier for a reference which is similar to a pointer but has more restrictive behaviour and is therefore often safer.
Your suggestion in the comment here:
funct(&a) // Sends an address of a pointer
is not correct. The address of a is passed; that would only be "address of a pointer" is a itself is a pointer. A pointer is an address. The type of an address of a pointer to int would be int** (a pointer to a pointer).
Perhaps it is necessary to explain the fundamentals of pointer and value variables? A pointer describes the location in memory of a variable, while a value describes the content of a memory location.
<typename>* is a pointer-to-<typename> data type.
&*<value-variable> yields the address or location of <variable> (i.e. a pointer to <variable>),
**<pointer-variable> dereferences a pointer to yield the the value at the address represented by the pointer.
So given for example:
int a = 10 ;
int* pa = &a ;
then
*pa == 10
When you do func(&a) that's called a "call by reference" that means your parameter "a" can actually be modified within the function and any changes made will be visible to the calling program.
This is a useful way if you want to return multiple values from a function for example:
int twoValues(int &x)
{
int y = x * 2;
x = x + 10;
return y;
}
now if you call this function from your main program like this:
int A, B;
B = 5;
A = twoValues(B);
This will result in:
A holding the value 10 (which is 5 * 2)
and B will hold the value 15 (which is 5 + 10).
If you didn't have the & sign in the function signature, any changes you make to the parameter passed to the function "twoValues" would only be visible inside that function but as far as the calling program (e.g. main) is concerned, they will be the same.
Now calling a function with a pointer parameter is most useful when you want to pass an array of values or a list. Example:
float average ( int *list, int size_of_list)
{
float sum = 0;
for(int i = 0; i < size_of_list; i++)
{
sum += list[i];
}
return (sum/size_of_list);
}
note that the size_of_list parameter is simply the number of elements in the array you are passing (not size in bytes).
I hope this helps.
C++ is different from c in many aspects and references is a part of it.
In terms of c++ context:
void funct(int *a) // a is declared as a pointer
This corelates to the use of pointers in c..so, you can compare this feature to that of c.
void funct(int &a) // a now receives only pointers (address)
This would lead to the reference usage in c++...
you cannot corelate this to that of c..
Here is a good q&a clarifying differences between these two.
What are the differences between a pointer variable and a reference variable in C++?

Assigning int value to an address

I thought the following codes were correct but it is not working.
int x, *ra;
&ra = x;
and
int x, ra;
&ra = x;
Please help me if both of these code snippets are correct. If not, what errors do you see in them?
Your both expressions are incorrect, It should be:
int x, *ra;
ra = &x; // pointer variable assigning address of x
& is ampersand is an address of operator (in unary syntax), using & you can assign address of variable x into pointer variable ra.
Moreover, as your question title suggests: Assigning int value to an address.
ra is a pointer contains address of variable x so you can assign a new value to x via ra
*ra = 20;
Here * before pointer variable (in unary syntax) is deference operator gives value at the address.
Because you have also tagged question to c++ so I think you are confuse with reference variable declaration, that is:
int x = 10;
int &ra = x; // reference at time of declaration
Accordingly in case of the reference variable, if you want to assign a new value to x it is very simply in syntax as we do with value variable:
ra = 20;
(notice even ra is reference variable we assign to x without & or * still change reflects, this is the benefit of reference variable: simple to use capable as pointers!)
Remember reference binding given at the time of declaration and it can't change where pointer variable can point to the new variable later in the program.
In C we only have pointer and value variables, whereas in C++ we have a pointer, reference and value variables. In my linked answer I tried to explain differences between pointer and reference variable.
Both are incorrect.
When you declare a pointer, you assign it the address of a variable. You are attempting the other way round. The correct way would be:
int x,*ra;
ra = &x;
Both of those causes, in the way you have them in your question, undefined behavior.
For the first, you don't initialize the pointer, meaning it points to a random location (or NULL if the variable is global).
For the second, you try to change the address the variable is located at, which (if it even would compile) is not allowed.
Here's some annotated code:
int main () {
// declare an int variable
int x = 0;
// declare a pointer to an int variable
int *p;
// get the memory address of `x`
// using the address-of operator
&x;
// let `p` point to `x` by assigning the address of `x` to `p`
p = &x;
// assign `x` a value directly
x = 42;
// assign `x` a value indirectly via `p`
// using the dereference operator
*p = 0;
// get the value of `x` directly
x;
// get the value of `x` indirectly via `p`
// using the dereference operator
*p;
}
Note that dereferencing a pointer that doesn't point to a valid object of the specified type is not allowed.
So you normally shouldn't do things like the following (unless you really know what you are doing):
*(int*)(12345) = 42; // assign an integer value to an arbitrary memory address
Here is my 2 cent.
If you are going onto understanding pointer in C. First make the distinction between * the operator and * the type qualifier/specifier.
See that in C * is a syntaxique element that can plays both role but never at the same time. A type qualifier:
int a;
int * c = &a;
int * my_function_returning_pointer();
And for getting the proper int. As an operator. ( *c is an alias of a)
*c = 9;
I admit that is quite confusing and can trap a lot of beginner. Make sure that you recognize when * is used as an operator or when it is used as a type qualifier.
The same things apply to & although it is less often used as type qualifier.
int & f = returning_a_reference();
int my_function( int & refParam);
It is more often use for getting the address of an object. Thus it is used as an operator.
c = &f;
case 1:
int x,*ra;
&ra = x;
it is wrong in c, because in c we can point to a memory location by using a pointer ( i.e *ra in your case ). this can be done as fallows
int x, *ra; x ---------
ra=&x; ra --->1000 | value |
----------
NOTE : with out initializing a variable we can't use pointer to hold the address of that variable, so you better to first initialize variable, then set pointer to that memory location.
int x, *ra;
x=7;
ra=&x;
Fallowing may be helpful to you:
problems(mistake we do ) in handling pointers :
1.)
int a ,*p;
p=a; // assigning value instead of address. that leads to segmentation fault at run time.
2)
int a, *p;
&p=a; // look at here wrong assignment
3)
char *p="srinivas"
strcat(p, "helo" ) ; // we cant add a substring to the constant string.
4) int a=5, *p;
p=5; // the pointer here will points to location 5 in the memory, that may damage whole system, be care full in these type of assignments.

Changing constant pointer's address

I'm trying to understand one thing.
I know I can't change constant pointer's value, but I can change its address, if I initialize a pointer the following way:
int foo = 3;
const int *ptr = &foo;
*ptr = 6; // throws an error
int bar = 0;
ptr = &bar; // foo == 0
Now, let's say I declare (/define, I never remember which one) a function:
void change(const int arr[], int size);
int main() {
int foo[2] = {};
change(foo, 2);
std::cout << foo[0];
}
void change(const int arr[], int size) {
// arr[0] = 5 - throws an error
int bar = 5;
arr = &bar;
}
The last line in the code above doesn't throw any errors. However, when the function is over and I display the first element, it shows 0 - so nothing has changed.
Why is that so?
In both situations I have constant pointers, and I try to change its address. In the first example it works. In the second one it doesn't.
I also have another question. I've been told that if I want to pass two-pointers type to the function, const keyword won't work as expected. Is that true? And if so, then what's the reason?
You're screwing up the terminology a lot, so I'm going to start there because I think it is a major cause of your confusion. Consider:
int x;
int* p = &x;
x is an int and p is a "pointer to int". To modify the value of p means to change p itself to point somewhere else. A pointers value is the address it holds. This pointer p holds an address of an int object. To change the pointer's value doesn't mean to change the int object. For example, p = 0; would be modifying p's value.
In addition to that, the address of p is not the address it holds. The address of p would be what you get if you did &p and would be of type "pointer to pointer to int". That is, the address of p is where you would find the pointer p in memory. Since an object doesn't move around in memory, there's no such thing as "changing its address".
So now that's out of the way, let's understand what a constant pointer is. const int* is not a constant pointer. It's a pointer to a constant object. The object it points to is constant, not the pointer itself. A constant pointer type would look more like int* const. Here the const applies to the pointer, so it is of type "const pointer to int".
Okay, now I'll quickly give you an easy way to remember the difference between declaration and definition. If you bought a dictionary and all it had was a list of words in it, would you really call it a dictionary? No, a dictionary is supposed to filled with definitions of words. It should tell you what those words mean. The dictionary with no definition is only declaring that such words exist in the given language. So a declaration says that something exists, and a definition gives the meaning of it. In your case:
// Declaration
void change(const int arr[], int size);
// Definition
void change(const int arr[], int size) {
// arr[0] = 5 - throws an error
int bar = 5;
arr = &bar;
}
Now to explain the issue here. There's no such thing as an array argument type. Any array type argument is converted to a pointer. So the declaration of change is actually identical to:
void change(const int arr*, int size);
when you do arr = &bar; you are simply assigning the address of bar to the pointer arr. That has no effect on the array elements that arr is pointing to. Why should it? You are simply changing where arr points to, not the objects it points at. And in fact you can't change the objects it points at because they are const ints.
I know I can't change constant pointer's value, but I can change its address
Nah. You can't change the address of anything. Did you mean that you can't change the object it points to, but you can change the pointer itself? Because that's what is the truth - in the case of a pointer-to-const type. However, if you have a const pointer to a non-const object, then you can't change the pointer, you can only change whatever it points to.
Addendum (edit): a handy rule of thumb is that const applies to what stands on its left side, except when nothing stands on its left side, because then it applies to the type that is on its right side. Examples:
const int *ptr;
int const *ptr; // these two are equivalent: non-const pointer to const int
int *const ptr; // const pointer to non-const int
int const *const ptr; // const pointer to const int
const int *const ptr; // same as above
However, when the function is over and I display the first element, it shows 0 - so nothing has changed.
Scope. arr is a function argument - so it's local to the function. Whatever you do with it, it won't be effective outside of the function. To achieve what you want, declare it as a reference:
void change(const int *&arr, int size)
I've been told that if I want to pass two-pointers type to the function, const keyword won't work as expected. Is that true?
This depends on what your expectations are. If you read the standard attentively and have proper expectations, then it will indeed work as expected. Examples:
const int **ptr; // pointer to pointer to const int
int const **ptr; // same as above
const int *const *ptr; // pointer to const pointer to const int
etc. You can generate more of these funky declarations using CDecl
The first thing is using the proper terms, which actually helps in understanding:
const int *ptr = &foo;
That is a pointer to a constant integer, not a constant pointer to an integer. You cannot change the object pointed, but you can change the pointer to refer to a different object.
void change(const int arr[], int size);
That signature is processed by the compiler as void change( const int *arr, int size ), and I'd recommend that you type it as that, as it will reduce confusions. Where the function is called, change(foo,2), the compiler will transform the argument foo (type is int[2]) to &foo[0] which has type const int* (both transformations are commonly called decay of the array to a pointer).
Now as in the first block of code, you cannot change the pointed memory, but you can change the pointer to refer to a different object.
Additionally, in C++ the default mode is pass-by-value. The pointer arr inside change is a copy of the value &foo[0]. Inside the function you are changing that copy, but that will not affect anything outside of the function context.
const int * is doing what it's supposed to do, what's confusing you is its purpose.
Think of it as a pointer to a readonly int. You can point to any int you want, but it's going to be readonly no matter what.
You might use this to loop through an array of type const int, for example.

C++ passage by pointer and modification of values

until there I trusted that method like
bool solverMethod::buildSimplex(double** simplex_ , double* funcEvals_, double* initPt_)
{
// things
}
would change values for simplex, funcEvals_, initPt_ in the method where it is called (passage by pointer). Am I wrong? How to put it then?
thanks and regards and apologizes for simple question.
This is maybe not as much an answer as it is a general explanation of pointers, references and reference semantics.
A function is said to have reference semantics if it can change the argument objects that are passed to it. For example, the following swap function has reference semantics if it exchanges the values:
int x = 4;
int y = 8;
swap(x, y);
assert(x == 8 && y == 4);
The question is how you implement reference semantics. C++ has a native reference type that makes this very natural:
void swap(int & a, int & b) { int t = a; a = b; b = t; }
By contrast, C does not have such a native feature, and every object in C is passed by value. However, C has a different feature that can be used to implement reference semantics, namely pointers: For every type T, there is a related type T*, a value of which can be obtained by taking the address-of an object of type T: int x; int * p = &x;. Now you can pass those pointer objects around by value and use them to access the original object to which they point. Notice that we are passing the pointers by value!
void c_swap(int * p, int * q) { int t = *p; *p = *q; *q = t; }
We have to call the function differently: swap(&x, &y). Thus in C you can always tell whether an argument is being modified, because the only way to do this is by passing its address to a function. In C++, you have to know the actual function signature to know whether reference or value semantics are in place.