Renaming index values in multiindex dataframe - python-2.7

Creating my dataframe:
from pandas import *
arrays = [['bar', 'bar', 'baz', 'baz', 'foo', 'foo', 'qux', 'qux'],
['one', 'two', 'one', 'two', 'one', 'two', 'one', 'two']]
tuples = zip(*arrays)
index = MultiIndex.from_tuples(tuples, names=['first','second'])
data = DataFrame(randn(8,2),index=index,columns=['c1','c2'])
data
Out[68]:
c1 c2
first second
bar one 0.833816 -1.529639
two 0.340150 -1.818052
baz one -1.605051 -0.917619
two -0.021386 -0.222951
foo one 0.143949 -0.406376
two 1.208358 -2.469746
qux one -0.345265 -0.505282
two 0.158928 1.088826
I would like to rename the "first" index values, such as "bar"->"cat", "baz"->"dog", etc. However, every example I have read either operates on a single-level index and/or loops through the entire index to effectively re-create it from scratch. I was thinking something like:
data = data.reindex(index={'bar':'cat','baz':'dog'})
but this does not work, nor do I really expect it to work on multiple indexes. Can I do such a replacement without looping through the entire dataframe index?
Begin edit
I am hesitant to update to 0.13 until release, so I used the following workaround:
index = data.index.tolist()
for r in xrange( len(index) ):
index[r] = (codes[index[r][0]],index[r][1])
index = pd.MultiIndex.from_tuples(index,names=data.index.names)
data.index = index
Where is a previous defined dictionary of code:string pairs. This actually isn't as big of a performance his as I was expecting (takes a couple seconds to operate over ~1.1 million rows). It is not as pretty as a one-liner, but it does work.
End Edit

Use the set_levels method (new in version 0.13.0):
data.index.set_levels([[u'cat', u'dog', u'foo', u'qux'],
[u'one', u'two']], inplace=True)
yields
c1 c2
first second
cat one -0.289649 -0.870716
two -0.062014 -0.410274
dog one 0.030171 -1.091150
two 0.505408 1.531108
foo one 1.375653 -1.377876
two -1.478615 1.351428
qux one 1.075802 0.532416
two 0.865931 -0.765292
To remap a level based on a dict, you could use a function such as this:
def map_level(df, dct, level=0):
index = df.index
index.set_levels([[dct.get(item, item) for item in names] if i==level else names
for i, names in enumerate(index.levels)], inplace=True)
dct = {'bar':'cat', 'baz':'dog'}
map_level(data, dct, level=0)
Here's a runnable example:
import numpy as np
import pandas as pd
arrays = [['bar', 'bar', 'baz', 'baz', 'foo', 'foo', 'qux', 'qux'],
['one', 'two', 'one', 'two', 'one', 'two', 'one', 'two']]
tuples = zip(*arrays)
index = pd.MultiIndex.from_tuples(tuples, names=['first','second'])
data = pd.DataFrame(np.random.randn(8,2),index=index,columns=['c1','c2'])
data2 = data.copy()
data.index.set_levels([[u'cat', u'dog', u'foo', u'qux'],
[u'one', u'two']], inplace=True)
print(data)
# c1 c2
# first second
# cat one 0.939040 -0.748100
# two -0.497006 -1.185966
# dog one -0.368161 0.050339
# two -2.356879 -0.291206
# foo one -0.556261 0.474297
# two 0.647973 0.755983
# qux one -0.017722 1.364244
# two 1.007303 0.004337
def map_level(df, dct, level=0):
index = df.index
index.set_levels([[dct.get(item, item) for item in names] if i==level else names
for i, names in enumerate(index.levels)], inplace=True)
dct = {'bar':'wolf', 'baz':'rabbit'}
map_level(data2, dct, level=0)
print(data2)
# c1 c2
# first second
# wolf one 0.939040 -0.748100
# two -0.497006 -1.185966
# rabbit one -0.368161 0.050339
# two -2.356879 -0.291206
# foo one -0.556261 0.474297
# two 0.647973 0.755983
# qux one -0.017722 1.364244
# two 1.007303 0.004337

The set_levels method was causing my new column names to be out of order. So I found a different solution that isn't very clean, but works well. The method is to print df.index (or equivalently df.columns) and then copy and paste the output with the desired values changed. For example:
print data.index
MultiIndex(levels=[['bar', 'baz', 'foo', 'qux'], ['one', 'two']], labels=[[0, 0, 1, 1, 2, 2, 3, 3], [0, 1, 0, 1, 0, 1, 0, 1]],
names=['first', 'second'])
data.index = MultiIndex(levels=[['new_bar', 'new_baz', 'new_foo', 'new_qux'],
['new_one', 'new_two']],
labels=[[0, 0, 1, 1, 2, 2, 3, 3], [0, 1, 0, 1, 0, 1, 0, 1]],
names=['first', 'second'])
We can have full control over names by editing the labels as well. For example:
data.index = MultiIndex(levels=[['bar', 'baz', 'foo', 'qux'],
['one', 'twooo', 'three', 'four',
'five', 'siz', 'seven', 'eit']],
labels=[[0, 0, 1, 1, 2, 2, 3, 3], [0, 1, 2, 3, 4, 5, 6, 7]],
names=['first', 'second'])
Note that in this example we have already done something like from pandas import MultiIndex or from pandas import *.

Related

Merge generator objects to calculate frequency in NLTK

I am trying to count frequency of various ngrams using ngram and freqDist functions in nltk.
Due to the fact that the ngram function output is a generator object, I would like to merge the output from each ngram before calculating frequency.
However, I am running into problems to merge the various generator objects.
I have tried itertools.chain, which created an itertools object, rather than merge the generators.
I have finally settled on permutations, but to parse the objects afterwards seems redundant.
The working code thus far is:
import nltk
from nltk import word_tokenize, pos_tag
from nltk.collocations import *
from itertools import *
from nltk.util import ngrams
import re
corpus = 'testing sentences to see if if if this works'
token = word_tokenize(corpus)
unigrams = ngrams(token,1)
bigrams = ngrams(token,2)
trigrams = ngrams(token,3)
perms = list(permutations([unigrams,bigrams,trigrams]))
fdist = nltk.FreqDist(perms)
for x,y in fdist.items():
for k in x:
for v in k:
words = '_'.join(v)
print words, y
As you can see in the results, freq dist is not calculating the words from the individual generator objects properly as each has a frequency of 1.
Is there a more pythonic way to do properly do this?
Use everygrams, it returns the all n-grams given a range of n.
>>> from nltk import everygrams
>>> from nltk import FreqDist
>>> corpus = 'testing sentences to see if if if this works'
>>> everygrams(corpus.split(), 1, 3)
<generator object everygrams at 0x7f4e272e9730>
>>> list(everygrams(corpus.split(), 1, 3))
[('testing',), ('sentences',), ('to',), ('see',), ('if',), ('if',), ('if',), ('this',), ('works',), ('testing', 'sentences'), ('sentences', 'to'), ('to', 'see'), ('see', 'if'), ('if', 'if'), ('if', 'if'), ('if', 'this'), ('this', 'works'), ('testing', 'sentences', 'to'), ('sentences', 'to', 'see'), ('to', 'see', 'if'), ('see', 'if', 'if'), ('if', 'if', 'if'), ('if', 'if', 'this'), ('if', 'this', 'works')]
To combine the counting of different orders of ngrams:
>>> from nltk import everygrams
>>> from nltk import FreqDist
>>> corpus = 'testing sentences to see if if if this works'.split()
>>> fd = FreqDist(everygrams(corpus, 1, 3))
>>> fd
FreqDist({('if',): 3, ('if', 'if'): 2, ('to', 'see'): 1, ('sentences', 'to', 'see'): 1, ('if', 'this'): 1, ('to', 'see', 'if'): 1, ('works',): 1, ('testing', 'sentences', 'to'): 1, ('sentences', 'to'): 1, ('sentences',): 1, ...})
Alternatively, FreqDist is essentially a collections.Counter sub-class, so you can combine counters as such:
>>> from collections import Counter
>>> x = Counter([1,2,3,4,4,5,5,5])
>>> y = Counter([1,1,1,2,2])
>>> x + y
Counter({1: 4, 2: 3, 5: 3, 4: 2, 3: 1})
>>> x
>>> from nltk import FreqDist
>>> FreqDist(['a', 'a', 'b'])
FreqDist({'a': 2, 'b': 1})
>>> a = FreqDist(['a', 'a', 'b'])
>>> b = FreqDist(['b', 'b', 'c', 'd', 'e'])
>>> a + b
FreqDist({'b': 3, 'a': 2, 'c': 1, 'e': 1, 'd': 1})
Alvas is right, nltk.everygrams is the perfect tool for this job. But merging several iterators is really not that hard, nor that uncommon, so you should know how to do it. The key is that any iterator can be converted to a list, but it's best to do that only once:
Make a list out of several iterators
Just use lists (simple but inefficient)
allgrams = list(unigrams) + list(bigrams) + list(trigrams)
Or build a single list, properly
allgrams = list(unigrams)
allgrams.extend(bigrams)
allgrams.extend(trigrams)
Or use itertools.chain(), then make a list
allgrams = list(itertools.chain(unigrams, bigrams, trigrams))
The above produce identical results (as long as you don't try to reuse the iterators unigrams etc.-- you need to redefine them between examples).
Use the iterators themselves
Don't fight iterators, learn to work with them. Many Python functions accept them instead of lists, saving you much space and time.
You could form a single iterator and pass it to nltk.FreqDist():
fdist = nltk.FreqDist(itertools.chain(unigrams, bigrams, trigrams))
You can work with multiple iterators. FreqDist, like Counter, has an update() method you can use to count things incrementally:
fdist = nltk.FreqDist(unigrams)
fdist.update(bigrams)
fdist.update(trigrams)

Python 2.7 current row index on 2d array iteration

When iterating on a 2d array, how can I get the current row index? For example:
x = [[ 1. 2. 3. 4.]
[ 5. 6. 7. 8.]
[ 9. 0. 3. 6.]]
Something like:
for rows in x:
print x current index (for example, when iterating on [ 5. 6. 7. 8.], return 1)
Enumerate is a built-in function of Python. It’s usefulness can not be summarized in a single line. Yet most of the newcomers and even some advanced programmers are unaware of it. It allows us to loop over something and have an automatic counter. Here is an example:
for counter, value in enumerate(some_list):
print(counter, value)
And there is more! enumerate also accepts an optional argument which makes it even more useful.
my_list = ['apple', 'banana', 'grapes', 'pear']
for c, value in enumerate(my_list, 1):
print(c, value)
.
# Output:
# 1 apple
# 2 banana
# 3 grapes
# 4 pear
The optional argument allows us to tell enumerate from where to start the index. You can also create tuples containing the index and list item using a list. Here is an example:
my_list = ['apple', 'banana', 'grapes', 'pear']
counter_list = list(enumerate(my_list, 1))
print(counter_list)
.
# Output: [(1, 'apple'), (2, 'banana'), (3, 'grapes'), (4, 'pear')]
enumerate:
In [42]: x = [[ 1, 2, 3, 4],
...: [ 5, 6, 7, 8],
...: [ 9, 0, 3, 6]]
In [43]: for index, rows in enumerate(x):
...: print('current index {}'.format(index))
...: print('current row {}'.format(rows))
...:
current index 0
current row [1, 2, 3, 4]
current index 1
current row [5, 6, 7, 8]
current index 2
current row [9, 0, 3, 6]

Regarding arranging or sorting a dictionary in ascending order using python [duplicate]

This question's answers are a community effort. Edit existing answers to improve this post. It is not currently accepting new answers or interactions.
I have a dictionary of values read from two fields in a database: a string field and a numeric field. The string field is unique, so that is the key of the dictionary.
I can sort on the keys, but how can I sort based on the values?
Note: I have read Stack Overflow question here How do I sort a list of dictionaries by a value of the dictionary? and probably could change my code to have a list of dictionaries, but since I do not really need a list of dictionaries I wanted to know if there is a simpler solution to sort either in ascending or descending order.
Python 3.7+ or CPython 3.6
Dicts preserve insertion order in Python 3.7+. Same in CPython 3.6, but it's an implementation detail.
>>> x = {1: 2, 3: 4, 4: 3, 2: 1, 0: 0}
>>> {k: v for k, v in sorted(x.items(), key=lambda item: item[1])}
{0: 0, 2: 1, 1: 2, 4: 3, 3: 4}
or
>>> dict(sorted(x.items(), key=lambda item: item[1]))
{0: 0, 2: 1, 1: 2, 4: 3, 3: 4}
Older Python
It is not possible to sort a dictionary, only to get a representation of a dictionary that is sorted. Dictionaries are inherently orderless, but other types, such as lists and tuples, are not. So you need an ordered data type to represent sorted values, which will be a list—probably a list of tuples.
For instance,
import operator
x = {1: 2, 3: 4, 4: 3, 2: 1, 0: 0}
sorted_x = sorted(x.items(), key=operator.itemgetter(1))
sorted_x will be a list of tuples sorted by the second element in each tuple. dict(sorted_x) == x.
And for those wishing to sort on keys instead of values:
import operator
x = {1: 2, 3: 4, 4: 3, 2: 1, 0: 0}
sorted_x = sorted(x.items(), key=operator.itemgetter(0))
In Python3 since unpacking is not allowed we can use
x = {1: 2, 3: 4, 4: 3, 2: 1, 0: 0}
sorted_x = sorted(x.items(), key=lambda kv: kv[1])
If you want the output as a dict, you can use collections.OrderedDict:
import collections
sorted_dict = collections.OrderedDict(sorted_x)
As simple as: sorted(dict1, key=dict1.get)
Well, it is actually possible to do a "sort by dictionary values". Recently I had to do that in a Code Golf (Stack Overflow question Code golf: Word frequency chart). Abridged, the problem was of the kind: given a text, count how often each word is encountered and display a list of the top words, sorted by decreasing frequency.
If you construct a dictionary with the words as keys and the number of occurrences of each word as value, simplified here as:
from collections import defaultdict
d = defaultdict(int)
for w in text.split():
d[w] += 1
then you can get a list of the words, ordered by frequency of use with sorted(d, key=d.get) - the sort iterates over the dictionary keys, using the number of word occurrences as a sort key .
for w in sorted(d, key=d.get, reverse=True):
print(w, d[w])
I am writing this detailed explanation to illustrate what people often mean by "I can easily sort a dictionary by key, but how do I sort by value" - and I think the original post was trying to address such an issue. And the solution is to do sort of list of the keys, based on the values, as shown above.
You could use:
sorted(d.items(), key=lambda x: x[1])
This will sort the dictionary by the values of each entry within the dictionary from smallest to largest.
To sort it in descending order just add reverse=True:
sorted(d.items(), key=lambda x: x[1], reverse=True)
Input:
d = {'one':1,'three':3,'five':5,'two':2,'four':4}
a = sorted(d.items(), key=lambda x: x[1])
print(a)
Output:
[('one', 1), ('two', 2), ('three', 3), ('four', 4), ('five', 5)]
Dicts can't be sorted, but you can build a sorted list from them.
A sorted list of dict values:
sorted(d.values())
A list of (key, value) pairs, sorted by value:
from operator import itemgetter
sorted(d.items(), key=itemgetter(1))
In recent Python 2.7, we have the new OrderedDict type, which remembers the order in which the items were added.
>>> d = {"third": 3, "first": 1, "fourth": 4, "second": 2}
>>> for k, v in d.items():
... print "%s: %s" % (k, v)
...
second: 2
fourth: 4
third: 3
first: 1
>>> d
{'second': 2, 'fourth': 4, 'third': 3, 'first': 1}
To make a new ordered dictionary from the original, sorting by the values:
>>> from collections import OrderedDict
>>> d_sorted_by_value = OrderedDict(sorted(d.items(), key=lambda x: x[1]))
The OrderedDict behaves like a normal dict:
>>> for k, v in d_sorted_by_value.items():
... print "%s: %s" % (k, v)
...
first: 1
second: 2
third: 3
fourth: 4
>>> d_sorted_by_value
OrderedDict([('first': 1), ('second': 2), ('third': 3), ('fourth': 4)])
Using Python 3.5
Whilst I found the accepted answer useful, I was also surprised that it hasn't been updated to reference OrderedDict from the standard library collections module as a viable, modern alternative - designed to solve exactly this type of problem.
from operator import itemgetter
from collections import OrderedDict
x = {1: 2, 3: 4, 4: 3, 2: 1, 0: 0}
sorted_x = OrderedDict(sorted(x.items(), key=itemgetter(1)))
# OrderedDict([(0, 0), (2, 1), (1, 2), (4, 3), (3, 4)])
The official OrderedDict documentation offers a very similar example too, but using a lambda for the sort function:
# regular unsorted dictionary
d = {'banana': 3, 'apple':4, 'pear': 1, 'orange': 2}
# dictionary sorted by value
OrderedDict(sorted(d.items(), key=lambda t: t[1]))
# OrderedDict([('pear', 1), ('orange', 2), ('banana', 3), ('apple', 4)])
Pretty much the same as Hank Gay's answer:
sorted([(value,key) for (key,value) in mydict.items()])
Or optimized slightly as suggested by John Fouhy:
sorted((value,key) for (key,value) in mydict.items())
As of Python 3.6 the built-in dict will be ordered
Good news, so the OP's original use case of mapping pairs retrieved from a database with unique string ids as keys and numeric values as values into a built-in Python v3.6+ dict, should now respect the insert order.
If say the resulting two column table expressions from a database query like:
SELECT a_key, a_value FROM a_table ORDER BY a_value;
would be stored in two Python tuples, k_seq and v_seq (aligned by numerical index and with the same length of course), then:
k_seq = ('foo', 'bar', 'baz')
v_seq = (0, 1, 42)
ordered_map = dict(zip(k_seq, v_seq))
Allow to output later as:
for k, v in ordered_map.items():
print(k, v)
yielding in this case (for the new Python 3.6+ built-in dict!):
foo 0
bar 1
baz 42
in the same ordering per value of v.
Where in the Python 3.5 install on my machine it currently yields:
bar 1
foo 0
baz 42
Details:
As proposed in 2012 by Raymond Hettinger (cf. mail on python-dev with subject "More compact dictionaries with faster iteration") and now (in 2016) announced in a mail by Victor Stinner to python-dev with subject "Python 3.6 dict becomes compact and gets a private version; and keywords become ordered" due to the fix/implementation of issue 27350 "Compact and ordered dict" in Python 3.6 we will now be able, to use a built-in dict to maintain insert order!!
Hopefully this will lead to a thin layer OrderedDict implementation as a first step. As #JimFasarakis-Hilliard indicated, some see use cases for the OrderedDict type also in the future. I think the Python community at large will carefully inspect, if this will stand the test of time, and what the next steps will be.
Time to rethink our coding habits to not miss the possibilities opened by stable ordering of:
Keyword arguments and
(intermediate) dict storage
The first because it eases dispatch in the implementation of functions and methods in some cases.
The second as it encourages to more easily use dicts as intermediate storage in processing pipelines.
Raymond Hettinger kindly provided documentation explaining "The Tech Behind Python 3.6 Dictionaries" - from his San Francisco Python Meetup Group presentation 2016-DEC-08.
And maybe quite some Stack Overflow high decorated question and answer pages will receive variants of this information and many high quality answers will require a per version update too.
Caveat Emptor (but also see below update 2017-12-15):
As #ajcr rightfully notes: "The order-preserving aspect of this new implementation is considered an implementation detail and should not be relied upon." (from the whatsnew36) not nit picking, but the citation was cut a bit pessimistic ;-). It continues as " (this may change in the future, but it is desired to have this new dict implementation in the language for a few releases before changing the language spec to mandate order-preserving semantics for all current and future Python implementations; this also helps preserve backwards-compatibility with older versions of the language where random iteration order is still in effect, e.g. Python 3.5)."
So as in some human languages (e.g. German), usage shapes the language, and the will now has been declared ... in whatsnew36.
Update 2017-12-15:
In a mail to the python-dev list, Guido van Rossum declared:
Make it so. "Dict keeps insertion order" is the ruling. Thanks!
So, the version 3.6 CPython side-effect of dict insertion ordering is now becoming part of the language spec (and not anymore only an implementation detail). That mail thread also surfaced some distinguishing design goals for collections.OrderedDict as reminded by Raymond Hettinger during discussion.
It can often be very handy to use namedtuple. For example, you have a dictionary of 'name' as keys and 'score' as values and you want to sort on 'score':
import collections
Player = collections.namedtuple('Player', 'score name')
d = {'John':5, 'Alex':10, 'Richard': 7}
sorting with lowest score first:
worst = sorted(Player(v,k) for (k,v) in d.items())
sorting with highest score first:
best = sorted([Player(v,k) for (k,v) in d.items()], reverse=True)
Now you can get the name and score of, let's say the second-best player (index=1) very Pythonically like this:
player = best[1]
player.name
'Richard'
player.score
7
I had the same problem, and I solved it like this:
WantedOutput = sorted(MyDict, key=lambda x : MyDict[x])
(People who answer "It is not possible to sort a dict" did not read the question! In fact, "I can sort on the keys, but how can I sort based on the values?" clearly means that he wants a list of the keys sorted according to the value of their values.)
Please notice that the order is not well defined (keys with the same value will be in an arbitrary order in the output list).
If values are numeric you may also use Counter from collections.
from collections import Counter
x = {'hello': 1, 'python': 5, 'world': 3}
c = Counter(x)
print(c.most_common())
>> [('python', 5), ('world', 3), ('hello', 1)]
Starting from Python 3.6, dict objects are now ordered by insertion order. It's officially in the specifications of Python 3.7.
>>> words = {"python": 2, "blah": 4, "alice": 3}
>>> dict(sorted(words.items(), key=lambda x: x[1]))
{'python': 2, 'alice': 3, 'blah': 4}
Before that, you had to use OrderedDict.
Python 3.7 documentation says:
Changed in version 3.7: Dictionary order is guaranteed to be insertion
order. This behavior was implementation detail of CPython from 3.6.
In Python 2.7, simply do:
from collections import OrderedDict
# regular unsorted dictionary
d = {'banana': 3, 'apple':4, 'pear': 1, 'orange': 2}
# dictionary sorted by key
OrderedDict(sorted(d.items(), key=lambda t: t[0]))
OrderedDict([('apple', 4), ('banana', 3), ('orange', 2), ('pear', 1)])
# dictionary sorted by value
OrderedDict(sorted(d.items(), key=lambda t: t[1]))
OrderedDict([('pear', 1), ('orange', 2), ('banana', 3), ('apple', 4)])
copy-paste from : http://docs.python.org/dev/library/collections.html#ordereddict-examples-and-recipes
Enjoy ;-)
This is the code:
import operator
origin_list = [
{"name": "foo", "rank": 0, "rofl": 20000},
{"name": "Silly", "rank": 15, "rofl": 1000},
{"name": "Baa", "rank": 300, "rofl": 20},
{"name": "Zoo", "rank": 10, "rofl": 200},
{"name": "Penguin", "rank": -1, "rofl": 10000}
]
print ">> Original >>"
for foo in origin_list:
print foo
print "\n>> Rofl sort >>"
for foo in sorted(origin_list, key=operator.itemgetter("rofl")):
print foo
print "\n>> Rank sort >>"
for foo in sorted(origin_list, key=operator.itemgetter("rank")):
print foo
Here are the results:
Original
{'name': 'foo', 'rank': 0, 'rofl': 20000}
{'name': 'Silly', 'rank': 15, 'rofl': 1000}
{'name': 'Baa', 'rank': 300, 'rofl': 20}
{'name': 'Zoo', 'rank': 10, 'rofl': 200}
{'name': 'Penguin', 'rank': -1, 'rofl': 10000}
Rofl
{'name': 'Baa', 'rank': 300, 'rofl': 20}
{'name': 'Zoo', 'rank': 10, 'rofl': 200}
{'name': 'Silly', 'rank': 15, 'rofl': 1000}
{'name': 'Penguin', 'rank': -1, 'rofl': 10000}
{'name': 'foo', 'rank': 0, 'rofl': 20000}
Rank
{'name': 'Penguin', 'rank': -1, 'rofl': 10000}
{'name': 'foo', 'rank': 0, 'rofl': 20000}
{'name': 'Zoo', 'rank': 10, 'rofl': 200}
{'name': 'Silly', 'rank': 15, 'rofl': 1000}
{'name': 'Baa', 'rank': 300, 'rofl': 20}
Try the following approach. Let us define a dictionary called mydict with the following data:
mydict = {'carl':40,
'alan':2,
'bob':1,
'danny':3}
If one wanted to sort the dictionary by keys, one could do something like:
for key in sorted(mydict.iterkeys()):
print "%s: %s" % (key, mydict[key])
This should return the following output:
alan: 2
bob: 1
carl: 40
danny: 3
On the other hand, if one wanted to sort a dictionary by value (as is asked in the question), one could do the following:
for key, value in sorted(mydict.iteritems(), key=lambda (k,v): (v,k)):
print "%s: %s" % (key, value)
The result of this command (sorting the dictionary by value) should return the following:
bob: 1
alan: 2
danny: 3
carl: 40
You can create an "inverted index", also
from collections import defaultdict
inverse= defaultdict( list )
for k, v in originalDict.items():
inverse[v].append( k )
Now your inverse has the values; each value has a list of applicable keys.
for k in sorted(inverse):
print k, inverse[k]
You can use the collections.Counter. Note, this will work for both numeric and non-numeric values.
>>> x = {1: 2, 3: 4, 4:3, 2:1, 0:0}
>>> from collections import Counter
>>> #To sort in reverse order
>>> Counter(x).most_common()
[(3, 4), (4, 3), (1, 2), (2, 1), (0, 0)]
>>> #To sort in ascending order
>>> Counter(x).most_common()[::-1]
[(0, 0), (2, 1), (1, 2), (4, 3), (3, 4)]
>>> #To get a dictionary sorted by values
>>> from collections import OrderedDict
>>> OrderedDict(Counter(x).most_common()[::-1])
OrderedDict([(0, 0), (2, 1), (1, 2), (4, 3), (3, 4)])
The collections solution mentioned in another answer is absolutely superb, because you retain a connection between the key and value which in the case of dictionaries is extremely important.
I don't agree with the number one choice presented in another answer, because it throws away the keys.
I used the solution mentioned above (code shown below) and retained access to both keys and values and in my case the ordering was on the values, but the importance was the ordering of the keys after ordering the values.
from collections import Counter
x = {'hello':1, 'python':5, 'world':3}
c=Counter(x)
print( c.most_common() )
>> [('python', 5), ('world', 3), ('hello', 1)]
You can also use a custom function that can be passed to parameter key.
def dict_val(x):
return x[1]
x = {1: 2, 3: 4, 4: 3, 2: 1, 0: 0}
sorted_x = sorted(x.items(), key=dict_val)
You can use a skip dict which is a dictionary that's permanently sorted by value.
>>> data = {1: 2, 3: 4, 4: 3, 2: 1, 0: 0}
>>> SkipDict(data)
{0: 0.0, 2: 1.0, 1: 2.0, 4: 3.0, 3: 4.0}
If you use keys(), values() or items() then you'll iterate in sorted order by value.
It's implemented using the skip list datastructure.
Of course, remember, you need to use OrderedDict because regular Python dictionaries don't keep the original order.
from collections import OrderedDict
a = OrderedDict(sorted(originalDict.items(), key=lambda x: x[1]))
If you do not have Python 2.7 or higher, the best you can do is iterate over the values in a generator function. (There is an OrderedDict for 2.4 and 2.6 here, but
a) I don't know about how well it works
and
b) You have to download and install it of course. If you do not have administrative access, then I'm afraid the option's out.)
def gen(originalDict):
for x, y in sorted(zip(originalDict.keys(), originalDict.values()), key=lambda z: z[1]):
yield (x, y)
#Yields as a tuple with (key, value). You can iterate with conditional clauses to get what you want.
for bleh, meh in gen(myDict):
if bleh == "foo":
print(myDict[bleh])
You can also print out every value
for bleh, meh in gen(myDict):
print(bleh, meh)
Please remember to remove the parentheses after print if not using Python 3.0 or above
from django.utils.datastructures import SortedDict
def sortedDictByKey(self,data):
"""Sorted dictionary order by key"""
sortedDict = SortedDict()
if data:
if isinstance(data, dict):
sortedKey = sorted(data.keys())
for k in sortedKey:
sortedDict[k] = data[k]
return sortedDict
Here is a solution using zip on d.values() and d.keys(). A few lines down this link (on Dictionary view objects) is:
This allows the creation of (value, key) pairs using zip(): pairs = zip(d.values(), d.keys()).
So we can do the following:
d = {'key1': 874.7, 'key2': 5, 'key3': 8.1}
d_sorted = sorted(zip(d.values(), d.keys()))
print d_sorted
# prints: [(5, 'key2'), (8.1, 'key3'), (874.7, 'key1')]
As pointed out by Dilettant, Python 3.6 will now keep the order! I thought I'd share a function I wrote that eases the sorting of an iterable (tuple, list, dict). In the latter case, you can sort either on keys or values, and it can take numeric comparison into account. Only for >= 3.6!
When you try using sorted on an iterable that holds e.g. strings as well as ints, sorted() will fail. Of course you can force string comparison with str(). However, in some cases you want to do actual numeric comparison where 12 is smaller than 20 (which is not the case in string comparison). So I came up with the following. When you want explicit numeric comparison you can use the flag num_as_num which will try to do explicit numeric sorting by trying to convert all values to floats. If that succeeds, it will do numeric sorting, otherwise it'll resort to string comparison.
Comments for improvement welcome.
def sort_iterable(iterable, sort_on=None, reverse=False, num_as_num=False):
def _sort(i):
# sort by 0 = keys, 1 values, None for lists and tuples
try:
if num_as_num:
if i is None:
_sorted = sorted(iterable, key=lambda v: float(v), reverse=reverse)
else:
_sorted = dict(sorted(iterable.items(), key=lambda v: float(v[i]), reverse=reverse))
else:
raise TypeError
except (TypeError, ValueError):
if i is None:
_sorted = sorted(iterable, key=lambda v: str(v), reverse=reverse)
else:
_sorted = dict(sorted(iterable.items(), key=lambda v: str(v[i]), reverse=reverse))
return _sorted
if isinstance(iterable, list):
sorted_list = _sort(None)
return sorted_list
elif isinstance(iterable, tuple):
sorted_list = tuple(_sort(None))
return sorted_list
elif isinstance(iterable, dict):
if sort_on == 'keys':
sorted_dict = _sort(0)
return sorted_dict
elif sort_on == 'values':
sorted_dict = _sort(1)
return sorted_dict
elif sort_on is not None:
raise ValueError(f"Unexpected value {sort_on} for sort_on. When sorting a dict, use key or values")
else:
raise TypeError(f"Unexpected type {type(iterable)} for iterable. Expected a list, tuple, or dict")
I just learned a relevant skill from Python for Everybody.
You may use a temporary list to help you to sort the dictionary:
# Assume dictionary to be:
d = {'apple': 500.1, 'banana': 1500.2, 'orange': 1.0, 'pineapple': 789.0}
# Create a temporary list
tmp = []
# Iterate through the dictionary and append each tuple into the temporary list
for key, value in d.items():
tmptuple = (value, key)
tmp.append(tmptuple)
# Sort the list in ascending order
tmp = sorted(tmp)
print (tmp)
If you want to sort the list in descending order, simply change the original sorting line to:
tmp = sorted(tmp, reverse=True)
Using list comprehension, the one-liner would be:
# Assuming the dictionary looks like
d = {'apple': 500.1, 'banana': 1500.2, 'orange': 1.0, 'pineapple': 789.0}
# One-liner for sorting in ascending order
print (sorted([(v, k) for k, v in d.items()]))
# One-liner for sorting in descending order
print (sorted([(v, k) for k, v in d.items()], reverse=True))
Sample Output:
# Ascending order
[(1.0, 'orange'), (500.1, 'apple'), (789.0, 'pineapple'), (1500.2, 'banana')]
# Descending order
[(1500.2, 'banana'), (789.0, 'pineapple'), (500.1, 'apple'), (1.0, 'orange')]
Use ValueSortedDict from dicts:
from dicts.sorteddict import ValueSortedDict
d = {1: 2, 3: 4, 4:3, 2:1, 0:0}
sorted_dict = ValueSortedDict(d)
print sorted_dict.items()
[(0, 0), (2, 1), (1, 2), (4, 3), (3, 4)]
Iterate through a dict and sort it by its values in descending order:
$ python --version
Python 3.2.2
$ cat sort_dict_by_val_desc.py
dictionary = dict(siis = 1, sana = 2, joka = 3, tuli = 4, aina = 5)
for word in sorted(dictionary, key=dictionary.get, reverse=True):
print(word, dictionary[word])
$ python sort_dict_by_val_desc.py
aina 5
tuli 4
joka 3
sana 2
siis 1
If your values are integers, and you use Python 2.7 or newer, you can use collections.Counter instead of dict. The most_common method will give you all items, sorted by the value.
This works in 3.1.x:
import operator
slovar_sorted=sorted(slovar.items(), key=operator.itemgetter(1), reverse=True)
print(slovar_sorted)
For the sake of completeness, I am posting a solution using heapq. Note, this method will work for both numeric and non-numeric values
>>> x = {1: 2, 3: 4, 4:3, 2:1, 0:0}
>>> x_items = x.items()
>>> heapq.heapify(x_items)
>>> #To sort in reverse order
>>> heapq.nlargest(len(x_items),x_items, operator.itemgetter(1))
[(3, 4), (4, 3), (1, 2), (2, 1), (0, 0)]
>>> #To sort in ascending order
>>> heapq.nsmallest(len(x_items),x_items, operator.itemgetter(1))
[(0, 0), (2, 1), (1, 2), (4, 3), (3, 4)]

writing a list with multiple data to a csv file in separate columns in python

import csv
from itertools import izip
if l > 0:
for i in range(0,l):
combined.append(str(questionList[i]).encode('utf-8') + str(viewList[i]).encode('utf-8'))
# viewcsv.append(str(viewList[i]).encode('utf-8'))
# quescsv.append(str(questionList[i]).encode('utf-8'))
with open('collect.csv', 'a') as csvfile:
spamwriter = csv.writer(csvfile, delimiter='\n')
spamwriter.writerow(combined)
# spamwriter.writerows(izip(quescsv, viewcsv))
return 1
else:
return 0
I need to generate a csv file and flood it with data from 2 or more lists into separate columns and not a single column. Currently I'm trying to combine two lists in one list(combined) and use this as input for writing, but I haven't got desired o/p.
I have tried many things including the fieldnames way,izip way, but in vain.
Eg:
questionList viewList
4 3 views
5 0 views
The numbers used are just for example.
Probably, you need something like this:
import csv
X = [1, 2, 3, 4, 5]
Y = [2, 3, 5, 7, 11]
Z = ['two', 'three', 'five', 'seven', 'eleven']
with open('collect.csv', 'w') as csvfile:
writer = csv.writer(csvfile, delimiter=',')
for row in zip(X, Y, Z):
writer.writerow(row)
import csv
X = [1, 2, 3, 4, 5]
Y = [2, 3, 5, 7, 11]
Z = ['two', 'three', 'five', 'seven', 'eleven']
with open('collect.csv', 'w') as csvfile:
writer = csv.writer(csvfile, delimiter=',')
writer.writerow(X)
writer.writerow(Y)
writer.writerow(Z)

Pandas Dataframe ValueError: Shape of passed values is (X, ), indices imply (X, Y)

I am getting an error and I'm not sure how to fix it.
The following seems to work:
def random(row):
return [1,2,3,4]
df = pandas.DataFrame(np.random.randn(5, 4), columns=list('ABCD'))
df.apply(func = random, axis = 1)
and my output is:
[1,2,3,4]
[1,2,3,4]
[1,2,3,4]
[1,2,3,4]
However, when I change one of the of the columns to a value such as 1 or None:
def random(row):
return [1,2,3,4]
df = pandas.DataFrame(np.random.randn(5, 4), columns=list('ABCD'))
df['E'] = 1
df.apply(func = random, axis = 1)
I get the the error:
ValueError: Shape of passed values is (5,), indices imply (5, 5)
I've been wrestling with this for a few days now and nothing seems to work. What is interesting is that when I change
def random(row):
return [1,2,3,4]
to
def random(row):
print [1,2,3,4]
everything seems to work normally.
This question is a clearer way of asking this question, which I feel may have been confusing.
My goal is to compute a list for each row and then create a column out of that.
EDIT: I originally start with a dataframe that hase one column. I add 4 columns in 4 difference apply steps, and then when I try to add another column I get this error.
If your goal is add new column to DataFrame, just write your function as function returning scalar value (not list), something like this:
>>> def random(row):
... return row.mean()
and then use apply:
>>> df['new'] = df.apply(func = random, axis = 1)
>>> df
A B C D new
0 0.201143 -2.345828 -2.186106 -0.784721 -1.278878
1 -0.198460 0.544879 0.554407 -0.161357 0.184867
2 0.269807 1.132344 0.120303 -0.116843 0.351403
3 -1.131396 1.278477 1.567599 0.483912 0.549648
4 0.288147 0.382764 -0.840972 0.838950 0.167222
I don't know if it possible for your new column to contain lists, but it deinitely possible to contain tuples ((...) instead of [...]):
>>> def random(row):
... return (1,2,3,4,5)
...
>>> df['new'] = df.apply(func = random, axis = 1)
>>> df
A B C D new
0 0.201143 -2.345828 -2.186106 -0.784721 (1, 2, 3, 4, 5)
1 -0.198460 0.544879 0.554407 -0.161357 (1, 2, 3, 4, 5)
2 0.269807 1.132344 0.120303 -0.116843 (1, 2, 3, 4, 5)
3 -1.131396 1.278477 1.567599 0.483912 (1, 2, 3, 4, 5)
4 0.288147 0.382764 -0.840972 0.838950 (1, 2, 3, 4, 5)
I use the code below it is just fine
import numpy as np
df = pd.DataFrame(np.array(your_data), columns=columns)