Vector memory on Program close c++ - c++

I just had a quick question about using vectors when programming in c++. If you create a vector do you need to clear it or delete it before the program closes or will the vector be deleted and the memory freed when you close the program?
Thanks
Steven

This depends on how you declared your vector.
If you use RAII (your vector is a stack object, std::vector<...> myVec;)
Or if you created it on the heap (std::vector<...>* myVec = new std::vector<...>();)
In the first case you will not have to do anything, because as soon as the vector runs out of scope (which is always the case when the application terminates), its desctructor will be called and it will clean up its ressoruces.
In the second case youll have to call delete myVec; so 1) the vector becomes uninitialized (the same as in the first case, destructor gets called etc.) and 2) the memory of your vector becomes freed.

If you simply declare a vector, eg.
std::vector<int> vec;
It has automatic storage duration and the destructor will be called when it goes out of scope.
If you have used new, then you should use delete.

If you didn't create it with new (which, usually, you shouldn't), then there's no need to do anything. It will be destroyed automatically according at the end of its lifetime, and the destructor will automatically release its memory.
If you created it with new then, for good order, you should make sure you delete it before the program ends. If you don't, then most modern operating systems will release the memory anyway; but allowing it to leak might make it harder to track down problematic leaks, and could cause issues on exotic operating systems.
In either case, there's no need to clear it; the destructor will do that for you.

Your question touches two different things. OS and life of object within the program
OS part: Generally speaking, in modern OSes you do not have to do anything. Any decent modern operating system dealloactes memory after process ends. Even the dynamically allocated/requested.
This is one of the reasons why windows 95 was so faulty and unstable over time. It did not do it. So if the application would leak out memory (and apps did and do it pretty much all the time), it would be hogged permanently.
c++: Now when you have modern c++ containers and well designed and implemented objects, they all have written destructors. So they are polite and nice and they free their own memory. And they are destructed basically on two conditions. If you do not allocate it dynamically e.g. via new compiler knows when the life of object ends. It goes out of scope. And it calls the destructor automatically. If you use new you need to call delete afterwards.
So the answer is. The object can clean up after it self not only when application closes, but when the object dies. If you however leak memory, you still should be safe, then the process finishes.

When you "close a program" it is the responsibility of the operating system to free any memory the program was using. No matter how you created your vector, when you "close the program" all the memory will be restored. You do not have to worry about anything.
However, in large programs, you should not rely on a user "closing the program" to free up memory used. If you use the keyword "new" you are responsible for calling "delete." If you declared a vector without "new" you do not have to do anything as the destructor will automatically handle memory deallocation for you.

It is far more common to see something like this:
std::vector<MyType*> container;
Rather than something like this:
std::vector<MyType> *container = new std::vector<MyType>;
In fact, I have never in my 15+ years of programming seen the latter. The latter would defeat the purpose of an STL container in my opinion. I guess it is possible that someone might still be doing some programming for windows 95, but that seems highly unlikely. The most common issue with any STL container is when you have a container of pointers. Since containers cannot be heterogeneous, it is fairly common to see or use containers of pointers to the base, interface class of objects. In that case, you would have to loop and delete every object prior to erasing things from the vector. If the vector loses scope it will not know how to delete the objects that are pointed to. It will only clean up the memory for the pointers that have been added.
If you do the following, in a function or in a class declaration then you have no memory cleanup obligations. The STL implementation either works properly or it doesn't. Either way, there is nothing more that the programmer could do except to define your own custom allocator:
std::vector<MyType> container; // then add some stuff to it
I'm not going to get into boost or C++11, but FYI there are special container types within boost that are designed to make the user of containers of pointers easier. I'm not sure if there are any new C++ 11 features that provide that capability. Personally, I would recommend that you not worry about whether OSs will do the right thing when a program leaks memory. Don't leak memory. If you are working with an embedded OS, read the documentation and make sure you know whether its STL implementation has any limitations.

Related

Why should C++ programmers minimize use of 'new'?

I stumbled upon Stack Overflow question Memory leak with std::string when using std::list<std::string>, and one of the comments says this:
Stop using new so much. I can't see any reason you used new anywhere you did. You can create objects by value in C++ and it's one of the huge advantages to using the language. You do not have to allocate everything on the heap. Stop thinking like a Java programmer.
I'm not really sure what he means by that.
Why should objects be created by value in C++ as often as possible, and what difference does it make internally? Did I misinterpret the answer?
There are two widely-used memory allocation techniques: automatic allocation and dynamic allocation. Commonly, there is a corresponding region of memory for each: the stack and the heap.
Stack
The stack always allocates memory in a sequential fashion. It can do so because it requires you to release the memory in the reverse order (First-In, Last-Out: FILO). This is the memory allocation technique for local variables in many programming languages. It is very, very fast because it requires minimal bookkeeping and the next address to allocate is implicit.
In C++, this is called automatic storage because the storage is claimed automatically at the end of scope. As soon as execution of current code block (delimited using {}) is completed, memory for all variables in that block is automatically collected. This is also the moment where destructors are invoked to clean up resources.
Heap
The heap allows for a more flexible memory allocation mode. Bookkeeping is more complex and allocation is slower. Because there is no implicit release point, you must release the memory manually, using delete or delete[] (free in C). However, the absence of an implicit release point is the key to the heap's flexibility.
Reasons to use dynamic allocation
Even if using the heap is slower and potentially leads to memory leaks or memory fragmentation, there are perfectly good use cases for dynamic allocation, as it's less limited.
Two key reasons to use dynamic allocation:
You don't know how much memory you need at compile time. For instance, when reading a text file into a string, you usually don't know what size the file has, so you can't decide how much memory to allocate until you run the program.
You want to allocate memory which will persist after leaving the current block. For instance, you may want to write a function string readfile(string path) that returns the contents of a file. In this case, even if the stack could hold the entire file contents, you could not return from a function and keep the allocated memory block.
Why dynamic allocation is often unnecessary
In C++ there's a neat construct called a destructor. This mechanism allows you to manage resources by aligning the lifetime of the resource with the lifetime of a variable. This technique is called RAII and is the distinguishing point of C++. It "wraps" resources into objects. std::string is a perfect example. This snippet:
int main ( int argc, char* argv[] )
{
std::string program(argv[0]);
}
actually allocates a variable amount of memory. The std::string object allocates memory using the heap and releases it in its destructor. In this case, you did not need to manually manage any resources and still got the benefits of dynamic memory allocation.
In particular, it implies that in this snippet:
int main ( int argc, char* argv[] )
{
std::string * program = new std::string(argv[0]); // Bad!
delete program;
}
there is unneeded dynamic memory allocation. The program requires more typing (!) and introduces the risk of forgetting to deallocate the memory. It does this with no apparent benefit.
Why you should use automatic storage as often as possible
Basically, the last paragraph sums it up. Using automatic storage as often as possible makes your programs:
faster to type;
faster when run;
less prone to memory/resource leaks.
Bonus points
In the referenced question, there are additional concerns. In particular, the following class:
class Line {
public:
Line();
~Line();
std::string* mString;
};
Line::Line() {
mString = new std::string("foo_bar");
}
Line::~Line() {
delete mString;
}
Is actually a lot more risky to use than the following one:
class Line {
public:
Line();
std::string mString;
};
Line::Line() {
mString = "foo_bar";
// note: there is a cleaner way to write this.
}
The reason is that std::string properly defines a copy constructor. Consider the following program:
int main ()
{
Line l1;
Line l2 = l1;
}
Using the original version, this program will likely crash, as it uses delete on the same string twice. Using the modified version, each Line instance will own its own string instance, each with its own memory and both will be released at the end of the program.
Other notes
Extensive use of RAII is considered a best practice in C++ because of all the reasons above. However, there is an additional benefit which is not immediately obvious. Basically, it's better than the sum of its parts. The whole mechanism composes. It scales.
If you use the Line class as a building block:
class Table
{
Line borders[4];
};
Then
int main ()
{
Table table;
}
allocates four std::string instances, four Line instances, one Table instance and all the string's contents and everything is freed automagically.
Because the stack is faster and leak-proof
In C++, it takes but a single instruction to allocate space—on the stack—for every local scope object in a given function, and it's impossible to leak any of that memory. That comment intended (or should have intended) to say something like "use the stack and not the heap".
The reason why is complicated.
First, C++ is not garbage collected. Therefore, for every new, there must be a corresponding delete. If you fail to put this delete in, then you have a memory leak. Now, for a simple case like this:
std::string *someString = new std::string(...);
//Do stuff
delete someString;
This is simple. But what happens if "Do stuff" throws an exception? Oops: memory leak. What happens if "Do stuff" issues return early? Oops: memory leak.
And this is for the simplest case. If you happen to return that string to someone, now they have to delete it. And if they pass it as an argument, does the person receiving it need to delete it? When should they delete it?
Or, you can just do this:
std::string someString(...);
//Do stuff
No delete. The object was created on the "stack", and it will be destroyed once it goes out of scope. You can even return the object, thus transfering its contents to the calling function. You can pass the object to functions (typically as a reference or const-reference: void SomeFunc(std::string &iCanModifyThis, const std::string &iCantModifyThis). And so forth.
All without new and delete. There's no question of who owns the memory or who's responsible for deleting it. If you do:
std::string someString(...);
std::string otherString;
otherString = someString;
It is understood that otherString has a copy of the data of someString. It isn't a pointer; it is a separate object. They may happen to have the same contents, but you can change one without affecting the other:
someString += "More text.";
if(otherString == someString) { /*Will never get here */ }
See the idea?
Objects created by new must be eventually deleted lest they leak. The destructor won't be called, memory won't be freed, the whole bit. Since C++ has no garbage collection, it's a problem.
Objects created by value (i. e. on stack) automatically die when they go out of scope. The destructor call is inserted by the compiler, and the memory is auto-freed upon function return.
Smart pointers like unique_ptr, shared_ptr solve the dangling reference problem, but they require coding discipline and have other potential issues (copyability, reference loops, etc.).
Also, in heavily multithreaded scenarios, new is a point of contention between threads; there can be a performance impact for overusing new. Stack object creation is by definition thread-local, since each thread has its own stack.
The downside of value objects is that they die once the host function returns - you cannot pass a reference to those back to the caller, only by copying, returning or moving by value.
C++ doesn't employ any memory manager by its own. Other languages like C# and Java have a garbage collector to handle the memory
C++ implementations typically use operating system routines to allocate the memory and too much new/delete could fragment the available memory
With any application, if the memory is frequently being used it's advisable to preallocate it and release when not required.
Improper memory management could lead memory leaks and it's really hard to track. So using stack objects within the scope of function is a proven technique
The downside of using stack objects are, it creates multiple copies of objects on returning, passing to functions, etc. However, smart compilers are well aware of these situations and they've been optimized well for performance
It's really tedious in C++ if the memory being allocated and released in two different places. The responsibility for release is always a question and mostly we rely on some commonly accessible pointers, stack objects (maximum possible) and techniques like auto_ptr (RAII objects)
The best thing is that, you've control over the memory and the worst thing is that you will not have any control over the memory if we employ an improper memory management for the application. The crashes caused due to memory corruptions are the nastiest and hard to trace.
I see that a few important reasons for doing as few new's as possible are missed:
Operator new has a non-deterministic execution time
Calling new may or may not cause the OS to allocate a new physical page to your process. This can be quite slow if you do it often. Or it may already have a suitable memory location ready; we don't know. If your program needs to have consistent and predictable execution time (like in a real-time system or game/physics simulation), you need to avoid new in your time-critical loops.
Operator new is an implicit thread synchronization
Yes, you heard me. Your OS needs to make sure your page tables are consistent and as such calling new will cause your thread to acquire an implicit mutex lock. If you are consistently calling new from many threads you are actually serialising your threads (I've done this with 32 CPUs, each hitting on new to get a few hundred bytes each, ouch! That was a royal p.i.t.a. to debug.)
The rest, such as slow, fragmentation, error prone, etc., have already been mentioned by other answers.
Pre-C++17:
Because it is prone to subtle leaks even if you wrap the result in a smart pointer.
Consider a "careful" user who remembers to wrap objects in smart pointers:
foo(shared_ptr<T1>(new T1()), shared_ptr<T2>(new T2()));
This code is dangerous because there is no guarantee that either shared_ptr is constructed before either T1 or T2. Hence, if one of new T1() or new T2() fails after the other succeeds, then the first object will be leaked because no shared_ptr exists to destroy and deallocate it.
Solution: use make_shared.
Post-C++17:
This is no longer a problem: C++17 imposes a constraint on the order of these operations, in this case ensuring that each call to new() must be immediately followed by the construction of the corresponding smart pointer, with no other operation in between. This implies that, by the time the second new() is called, it is guaranteed that the first object has already been wrapped in its smart pointer, thus preventing any leaks in case an exception is thrown.
A more detailed explanation of the new evaluation order introduced by C++17 was provided by Barry in another answer.
Thanks to #Remy Lebeau for pointing out that this is still a problem under C++17 (although less so): the shared_ptr constructor can fail to allocate its control block and throw, in which case the pointer passed to it is not deleted.
Solution: use make_shared.
To a great extent, that's someone elevating their own weaknesses to a general rule. There's nothing wrong per se with creating objects using the new operator. What there is some argument for is that you have to do so with some discipline: if you create an object you need to make sure it's going to be destroyed.
The easiest way of doing that is to create the object in automatic storage, so C++ knows to destroy it when it goes out of scope:
{
File foo = File("foo.dat");
// Do things
}
Now, observe that when you fall off that block after the end-brace, foo is out of scope. C++ will call its destructor automatically for you. Unlike Java, you don't need to wait for the garbage collection to find it.
Had you written
{
File * foo = new File("foo.dat");
you would want to match it explicitly with
delete foo;
}
or even better, allocate your File * as a "smart pointer". If you aren't careful about that it can lead to leaks.
The answer itself makes the mistaken assumption that if you don't use new you don't allocate on the heap; in fact, in C++ you don't know that. At most, you know that a small amount of memory, say one pointer, is certainly allocated on the stack. However, consider if the implementation of File is something like:
class File {
private:
FileImpl * fd;
public:
File(String fn){ fd = new FileImpl(fn);}
Then FileImpl will still be allocated on the stack.
And yes, you'd better be sure to have
~File(){ delete fd ; }
in the class as well; without it, you'll leak memory from the heap even if you didn't apparently allocate on the heap at all.
new() shouldn't be used as little as possible. It should be used as carefully as possible. And it should be used as often as necessary as dictated by pragmatism.
Allocation of objects on the stack, relying on their implicit destruction, is a simple model. If the required scope of an object fits that model then there's no need to use new(), with the associated delete() and checking of NULL pointers.
In the case where you have lots of short-lived objects allocation on the stack should reduce the problems of heap fragmentation.
However, if the lifetime of your object needs to extend beyond the current scope then new() is the right answer. Just make sure that you pay attention to when and how you call delete() and the possibilities of NULL pointers, using deleted objects and all of the other gotchas that come with the use of pointers.
When you use new, objects are allocated to the heap. It is generally used when you anticipate expansion. When you declare an object such as,
Class var;
it is placed on the stack.
You will always have to call destroy on the object that you placed on the heap with new. This opens the potential for memory leaks. Objects placed on the stack are not prone to memory leaking!
One notable reason to avoid overusing the heap is for performance -- specifically involving the performance of the default memory management mechanism used by C++. While allocation can be quite quick in the trivial case, doing a lot of new and delete on objects of non-uniform size without strict order leads not only to memory fragmentation, but it also complicates the allocation algorithm and can absolutely destroy performance in certain cases.
That's the problem that memory pools where created to solve, allowing to to mitigate the inherent disadvantages of traditional heap implementations, while still allowing you to use the heap as necessary.
Better still, though, to avoid the problem altogether. If you can put it on the stack, then do so.
I tend to disagree with the idea of using new "too much". Though the original poster's use of new with system classes is a bit ridiculous. (int *i; i = new int[9999];? really? int i[9999]; is much clearer.) I think that is what was getting the commenter's goat.
When you're working with system objects, it's very rare that you'd need more than one reference to the exact same object. As long as the value is the same, that's all that matters. And system objects don't typically take up much space in memory. (one byte per character, in a string). And if they do, the libraries should be designed to take that memory management into account (if they're written well). In these cases, (all but one or two of the news in his code), new is practically pointless and only serves to introduce confusions and potential for bugs.
When you're working with your own classes/objects, however (e.g. the original poster's Line class), then you have to begin thinking about the issues like memory footprint, persistence of data, etc. yourself. At this point, allowing multiple references to the same value is invaluable - it allows for constructs like linked lists, dictionaries, and graphs, where multiple variables need to not only have the same value, but reference the exact same object in memory. However, the Line class doesn't have any of those requirements. So the original poster's code actually has absolutely no needs for new.
I think the poster meant to say You do not have to allocate everything on the heap rather than the the stack.
Basically, objects are allocated on the stack (if the object size allows, of course) because of the cheap cost of stack-allocation, rather than heap-based allocation which involves quite some work by the allocator, and adds verbosity because then you have to manage data allocated on the heap.
Two reasons:
It's unnecessary in this case. You're making your code needlessly more complicated.
It allocates space on the heap, and it means that you have to remember to delete it later, or it will cause a memory leak.
Many answers have gone into various performance considerations. I want to address the comment which puzzled OP:
Stop thinking like a Java programmer.
Indeed, in Java, as explained in the answer to this question,
You use the new keyword when an object is being explicitly created for the first time.
but in C++, objects of type T are created like so: T{} (or T{ctor_argument1,ctor_arg2} for a constructor with arguments). That's why usually you just have no reason to want to use new.
So, why is it ever used at all? Well, for two reasons:
You need to create many values the number of which is not known at compile time.
Due to limitations of the C++ implementation on common machines - to prevent a stack overflow by allocating too much space creating values the regular way.
Now, beyond what the comment you quoted implied, you should note that even those two cases above are covered well enough without you having to "resort" to using new yourself:
You can use container types from the standard libraries which can hold a runtime-variable number of elements (like std::vector).
You can use smart pointers, which give you a pointer similar to new, but ensure that memory gets released where the "pointer" goes out of scope.
and for this reason, it is an official item in the C++ community Coding Guidelines to avoid explicit new and delete: Guideline R.11.
The core reason is that objects on heap are always difficult to use and manage than simple values. Writing code that are easy to read and maintain is always the first priority of any serious programmer.
Another scenario is the library we are using provides value semantics and make dynamic allocation unnecessary. Std::string is a good example.
For object oriented code however, using a pointer - which means use new to create it beforehand - is a must. In order to simplify the complexity of resource management, we have dozens of tools to make it as simple as possible, such as smart pointers. The object based paradigm or generic paradigm assumes value semantics and requires less or no new, just as the posters elsewhere stated.
Traditional design patterns, especially those mentioned in GoF book, use new a lot, as they are typical OO code.
new is the new goto.
Recall why goto is so reviled: while it is a powerful, low-level tool for flow control, people often used it in unnecessarily complicated ways that made code difficult to follow. Furthermore, the most useful and easiest to read patterns were encoded in structured programming statements (e.g. for or while); the ultimate effect is that the code where goto is the appropriate way to is rather rare, if you are tempted to write goto, you're probably doing things badly (unless you really know what you're doing).
new is similar — it is often used to make things unnecessarily complicated and harder to read, and the most useful usage patterns can be encoded have been encoded into various classes. Furthermore, if you need to use any new usage patterns for which there aren't already standard classes, you can write your own classes that encode them!
I would even argue that new is worse than goto, due to the need to pair new and delete statements.
Like goto, if you ever think you need to use new, you are probably doing things badly — especially if you are doing so outside of the implementation of a class whose purpose in life is to encapsulate whatever dynamic allocations you need to do.
One more point to all the above correct answers, it depends on what sort of programming you are doing. Kernel developing in Windows for example -> The stack is severely limited and you might not be able to take page faults like in user mode.
In such environments, new, or C-like API calls are prefered and even required.
Of course, this is merely an exception to the rule.
new allocates objects on the heap. Otherwise, objects are allocated on the stack. Look up the difference between the two.

Do I need to delete an static std::map?

In some classes I have an static std::map with pointers inside. My question is if I need to delete at the end of the program or this memory is automatically freed. My concern is if the pointers stored inside are correctly deleted through our destructors when std::map is deleted.
Thanks.
If the map contains pointers that were allocated with new (or new[], or malloc), then each pointer needs a corresponding delete (or delete[], or free).
The map's destructor wont know what to do with a bald pointer. Consider using a smart pointer that has appropriate move semantics like a boost smart pointer or if you've got a very new compiler, one of the C++0x smart pointers. However, do not use the current standard's std::auto_ptr, inside of STL containers. See this thread for why.
Edit:
As Billy ONeal pointed out, boost::ptr_map is also designed exactly for this purpose.
If I understand the situation correctly, you don't delete the map itself. But you probably need to delete the objects the map is pointing to. It would probably be a really good idea to use a smart pointer such as Boost shared_ptr in your map instead of native pointers. Then the objects would be cleaned up automatically.
Edit:
Using Boost ptr_map might be an even better idea.
The memory is "automatically freed", in the sense that the entire process memory is freed, but the destructors of the objects pointed to will not be called. This can cause a resource leak, if you use RAII.
std::map never calls delete on it's members. Assuming you're working with a relatively recent operating system, the OS will reclaim the memory occupied by the members on process termination, but the destructors will not run.
If you have a map of pointers, then the answer is 'no', your destructors will not be called, but 'yes', the memory will be freed at the end of process execution. All memory allocated by a process is always freed by the Operating System when a process exits (even if it crashes), but destructors might not be called.
A memory "leak" is where memory is unintentionally not deleted over a period of time, and ends up reducing as the process continues. If it is a type of process that runs for a very long period of time, eg a server that is rarely restarted, this can be a major problem.
Memory leak detectors will pick up on any memory that is allocated and not deleted by a programming call, so valgrind, etc. will report this as a leak.
It is as well to check your code with programs like valgrind, and therefore the less that "gets in the way", the easier it will be to spot real leaks. Therefore my advice is not do just let the system clean up the memory, or singletons, etc, for you when you have allocated a pointer with new (or malloc or new[]).
You can have a "clean-up" routine to do this. Just have an object in the scope of your map that has a deleter (as it will be deleted when it exits) that will clean up the pointers in the map. As you need your object to be deleted first it should be declared later than the map.
Like in any case of storage class which stores pointers: you are responsible to deallocate memory they point to. Storage class is responsible only to clean its own resources. Relying on reclaiming memory by OS at the process termination is a bad practice.

Memory Freeing Inqury

Additional thanks extend to Daniel Newby for answering my memory usage question (and Martin York for explaining it a bit more). It is definitely the answer I was looking for, but more of my other questions were answered by others.
Thanks everyone
for clearing up all of my concerns. Very pleased to see things running how I expect them to run.
I've run into something that I'm not exactly sure about.
In my program, I'm not using malloc() or free(). I'm making instances of my classes with new and I've made sure each one runs it's destructor when it's delete'd, however, there are no free() calls or even setting their pointers (to things inside a global scope, or other classes) to NULL or 0.
What I mean by "I've made sure", is not that I call each destructor. I only use delete to call on the destructor to run, but I have variables that increase by 1 everytime an object is created, and everytime it's destructor is run. This is how I've made sure the amount of objects I created are equal to the amount of destructors called.
Should I be using malloc() and free() anyway? Should I be NULLing pointers to things that I still want to exist?
A second question is why, when I look at my task manager, does my process never "drop" memory? It used to never stop gaining, and then I started deleting everything properly. Or so I thought.
Wouldn't free() or delete make the memory usage go down?
What practices should I pursue about malloc'ing and free'ing memory with linked lists?
There's rarely a reason to use malloc() and free() in a C++ program. Stick with new and delete. Note that unlike languages with garbage collection, setting a pointer to NULL or 0 in C++ has nothing to do with deallocating the memory.
you should be using delete with a new and free with a malloc. delete will call the class' destructor so you don't have to explicitly call it. The purpose of the destructor is to release and resources the class might have and delete will free the memory as well.
The only time you should explicetly use the destructor is when you have initialized your object through placement new. You should put yourself in a position where the compiler generated code releases your resources -- read this article on the C++ idiom : resource acquisition is initialization.
Also setting the pointer of a class to null does nothing, there is no garbage collector in the background cleaning up your memory. If you don't free dynamic memory in C++ it will be "leaked" memory -- i.e., there are no links to the memory and it will never be reclaimed till the process exits.
p.s., once again do not mix the pairs of the memory allocation functions.
edt: don't implement linked lists, use the containers provided by the Standard template library. If you feel you need better performance use the intrusive containers from boost.
You should use new and delete in preference to malloc()/calloc()/realloc() and free().
If you're creating linked lists you should use std::list. Also, look into std::vector
As far as the apparent memory usage of your application: it's quite likely that memory is not returned to the system until the application exits.
new and delete can more or less to be considered the C++ versions of malloc and free. So stick within one pair or another, i.e. if a pointer was created with new, it should be released with delete, which ensures the destructor call you mentioned. The malloc/free pair are not C++ aware, and just allocate and release a block of memory with no attached constructor/destructor semantics.
Yes indeed I consider it good form to set pointers to NULL or zero when they've been freed or deleted. During debugging I also sometimes set them to something characteristic like 0xdeadbeef so they stand out.
It's likely that the OS "memory usage" is reflecting the entire size of your process' heap, rather than your memory manager's idea of how much memory is allocated. When the allocator discovers that it doesn't have enough heap space, it grows the heap, and this will be reflected in the "memory usage" you're looking at. In theory it would be possible to shrink the heap accordingly on memory release, but this doesn't always happen. Thus you may only see the memory usage grow, and never shrink.
"Should I be using malloc() and free() anyway?"
No, in most cases. Stick with one form of memory management only. Trying to use both means that you will inevitably screw up and delete a malloc()ed item, or free() a newed item, giving a subtle bug. Stick with one form and you fix these bugs in advance.
"Wouldn't free() or delete make the memory usage go down?"
The OS allocates memory in pages, often 4 kiB in size. As long as a single byte of the page is still in use, it will not be returned to the OS. You are probably allocating many small items, but not deallocating all of them. (There are ways to help with a custom new/delete, but they are generally not worth the effort.)
In my program, I'm not using malloc()or free(). I'm making instances of my classes with new and I've made sure each one runs it's destructor when it's delete'd,
That is scary. You should not need to make anything run its destructor. It is allocated (new) it is destroyed (delete) the constructor is run atomatically on new and the destructor is run automatically on delete.
however, there are no free() calls or even setting their pointers (to things inside a global scope, or other classes) to NULL or 0.
There is no need to use malloc/free in C++ code (there are a few situations where you are using C libs that require malloced memory but they are explicitly documented and few).
Technically there is no need to set a pointer to NULL after you delete it.
It is good technique for a variable to go out of scope just after it is deleted so it can not accidently be re-used. If for some reason the pointer variable lives (ie does not go out of scope) for a long time after you call delete then it is usefull to set it to NULL so that it is no accidently re-used.
Should I be using malloc() and free() anyway? Should I be NULLing pointers to things that I still want to exist?
No and No.
Note: C++ unlike Java does not keep track of how many pointers point at an object.
If you have more than one pointer pointing at an object you need to use smart pointers (you should be using smart pointers anyway).
A second question is why, when I look at my task manager, does my process never "drop" memory? It used to never stop gaining, and then I started deleting everything properly. Or so I thought.
The application never releases back to the OS (on most OS's in normal situations).
So the memory will never go down (until the application exits).
Internally the memory management tracks all the frees so that the memory can be re-used.
But if it runs out it will ask the OS for more and thus in the task manager the memory allocation will go up (this will not be returned to the OS).
Wouldn't free() or delete make the memory usage go down?
No.
What practices should I pursue about malloc'ing and free'ing memory with linked lists?
You should use Smart Pointers so you don't need to worry about when to delete an object.
They also make your code exception safe.
But if you using pointers. call delete to remove an element then set is value to NULL (the pointer scope is alive long after the delete is called).
Note: A boost:shared_pointer is very similar to a Java pointer. It tracks the number of pointers and deletes the object when the last reference to the object is destroyed. No need for you to do any deleting (just like Java) and all you actually need to do is call new (just like Java).

How to guard against memory leaks?

I was recently interviewing for a C++ position, and I was asked how I guard against creating memory leaks. I know I didn't give a satisfactory answer to that question, so I'm throwing it to you guys. What are the best ways to guard against memory leaks?
Thanks!
What all the answers given so far boil down to is this: avoid having to call delete.
Any time the programmer has to call delete, you have a potential memory leak.
Instead, make the delete call happen automatically. C++ guarantees that local objects have their destructors called when they go out of scope. Use that guarantee to ensure your memory allocations are automatically deleted.
At its most general, this technique means that every memory allocation should be wrapped inside a simple class, whose constructor allocates the necessary memory, and destructor releases it.
Because this is such a commonly-used and widely applicable technique, smart pointer classes have been created that reduce the amount of boilerplate code. Rather than allocating memory, their constructors take a pointer to the memory allocation already made, and stores that. When the smart pointer goes out of scope, it is able to delete the allocation.
Of course, depending on usage, different semantics may be called for. Do you just need the simple case, where the allocation should last exactly as long as the wrapper class lives? Then use boost::scoped_ptr or, if you can't use boost, std::auto_ptr. Do you have an unknown number of objects referencing the allocation with no knowledge of how long each of them will live? Then the reference-counted boost::shared_ptr is a good solution.
But you don't have to use smart pointers. The standard library containers do the trick too. They internally allocate the memory required to store copies of the objects you put into them, and they release the memory again when they're deleted. So the user doesn't have to call either new or delete.
There are countless variations of this technique, changing whose responsibility it is to create the initial memory allocation, or when the deallocation should be performed.
But what they all have in common is the answer to your question: The RAII idiom: Resource Acquisition Is Initialization. Memory allocations are a kind of resource. Resources should be acquired when an object is initialized, and released by the object itslef, when it is destroyed.
Make the C++ scope and lifetime rules do your work for you. Never ever call delete outside of a RAII object, whether it is a container class, a smart pointer or some ad-hoc wrapper for a single allocation. Let the object handle the resource assigned to it.
If all delete calls happen automatically, there's no way you can forget them. And then there's no way you can leak memory.
Don't allocate memory on the heap if you don't need to. Most work can be done on the stack, so you should only do heap memory allocations when you absolutely need to.
If you need a heap-allocated object that is owned by a single other object then use std::auto_ptr.
Use standard containers, or containers from Boost instead of inventing your own.
If you have an object that is referred to by several other objects and is owned by no single one in particular then use either std::tr1::shared_ptr or std::tr1::weak_ptr -- whichever suits your use case.
If none of these things match your use case then maybe use delete. If you do end up having to manually manage memory then just use memory leak detection tools to make sure that you aren't leaking anything (and of course, just be careful). You shouldn't ever really get to this point though.
You'd do well to read up on RAII.
replace new with shared_ptr's. Basically RAII. make code exception safe. Use the stl everywhere possible. If you use reference counting pointers make sure that they don't form cycles. SCOPED_EXIT from boost is also very useful.
(Easy) Never ever let a raw pointer own a object (search your code for the regexp "\= *new". Use shared_ptr or scoped_ptr instead, or even better, use real variables instead of pointers as often as you can.
(Hard) Make sure you don't have any circular references, with shared_ptrs pointing to each other, use weak_ptr to break them.
Done!
Use all kind of smart pointers.
Use certain strategy for creation and deletion of objects, like who creates that is responsible for delete.
make sure that you understand exactly how an object will be deleted everytime you create one
make sure you understand who owns the pointer every time one is returned to you
make sure your error paths dispose of objects you have created appropriately
be paranoid about the above
In addition to the advice about RAII, remember to make your base class destructor virtual if there are any virtual functions.
To avoid memory leaks, what you must do is to have a clear and definite notion of who is responsible for deleting any dynamically allocated object.
C++ allows construction of objects on the stack (i.e. as kind-of local variables). This binds creation and destruction the the control flow: an objects is created when program execution reaches its declaration, and the object is destroyed when execution escapes the block in which that declaration was made. Whenever allocation need matches that pattern, then use it. This will save you much of the trouble.
For other usages, if you can define and document a clear notion of responsibility, then this may work fine. For instance, you have a method or a function which returns a pointer to a newly allocated object, and you document that the caller becomes responsible for ultimately deleting that instance. Clear documentation coupled with good programmer discipline (something which is not easily achieved !) can solve many remaining problems of memory management.
In some situations, including undisciplined programmers and complex data structures, you may have to resort to more advanced techniques, such as reference counting. Each object is awarded a "counter" which is the number of other variables which point to it. Whenever a piece of code decides to no longer point to the object, the counter is decreased. When the counter reaches zero, the object is deleted. Reference counting requires strict counter handling. This can be done with so-called "smart pointers": these are object which are functionally pointers, but which automatically adjust the counter upon their own creation and destruction.
Reference counting works quite good in many situations, but they cannot handle cyclic structures. So for the most complex situations, you have to resort to the heavy artillery, i.e. a garbage collector. The one I link to is the GC for C and C++ written by Hans Boehm, and it has been used in some rather big projects (e.g. Inkscape). The point of a garbage collector is to maintain a global view on the complete memory space, to know whether a given instance is still in use or not. This is the right tool when local-view tools, such as reference counting, are not enough. One could argue that, at that point, one should ask oneself whether C++ is the right language for the problem at hand. Garbage collection works best when the language is cooperative (this unlocks a host of optimizations which are not doable when the compiler is unaware of what happens with memory, as a typical C or C++ compiler).
Note that none of the techniques described above allows the programmer to stop thinking. Even a GC can suffer from memory leaks, because it uses reachability as an approximation of future usage (there are theoretical reasons which imply that it is not possible, in full generality, to accurately detect all objects which will not be used thereafter). You may still have to set some fields to NULL to inform the GC that you will no longer access an object through a given variable.
I start by reading the following: https://stackoverflow.com/search?q=%5Bc%2B%2B%5D+memory+leak
A very good way is using Smart Pointers, the boost/tr1::shared_ptr. The memory will be free'd, once the (stack allocated) smart pointer goes out of scope.
You can use the utility.
If you work on Linux - use valgrid (it's free).
Use deleaker on Windows.
Smart pointers.
Memory management.
Override 'new' and 'delete' or use your own macros/templates.
On x86 you can regularly use Valgrind to check your code

General guidelines to avoid memory leaks in C++ [closed]

As it currently stands, this question is not a good fit for our Q&A format. We expect answers to be supported by facts, references, or expertise, but this question will likely solicit debate, arguments, polling, or extended discussion. If you feel that this question can be improved and possibly reopened, visit the help center for guidance.
Closed 10 years ago.
What are some general tips to make sure I don't leak memory in C++ programs? How do I figure out who should free memory that has been dynamically allocated?
I thoroughly endorse all the advice about RAII and smart pointers, but I'd also like to add a slightly higher-level tip: the easiest memory to manage is the memory you never allocated. Unlike languages like C# and Java, where pretty much everything is a reference, in C++ you should put objects on the stack whenever you can. As I've see several people (including Dr Stroustrup) point out, the main reason why garbage collection has never been popular in C++ is that well-written C++ doesn't produce much garbage in the first place.
Don't write
Object* x = new Object;
or even
shared_ptr<Object> x(new Object);
when you can just write
Object x;
Use RAII
Forget Garbage Collection (Use RAII instead). Note that even the Garbage Collector can leak, too (if you forget to "null" some references in Java/C#), and that Garbage Collector won't help you to dispose of resources (if you have an object which acquired a handle to a file, the file won't be freed automatically when the object will go out of scope if you don't do it manually in Java, or use the "dispose" pattern in C#).
Forget the "one return per function" rule. This is a good C advice to avoid leaks, but it is outdated in C++ because of its use of exceptions (use RAII instead).
And while the "Sandwich Pattern" is a good C advice, it is outdated in C++ because of its use of exceptions (use RAII instead).
This post seem to be repetitive, but in C++, the most basic pattern to know is RAII.
Learn to use smart pointers, both from boost, TR1 or even the lowly (but often efficient enough) auto_ptr (but you must know its limitations).
RAII is the basis of both exception safety and resource disposal in C++, and no other pattern (sandwich, etc.) will give you both (and most of the time, it will give you none).
See below a comparison of RAII and non RAII code:
void doSandwich()
{
T * p = new T() ;
// do something with p
delete p ; // leak if the p processing throws or return
}
void doRAIIDynamic()
{
std::auto_ptr<T> p(new T()) ; // you can use other smart pointers, too
// do something with p
// WON'T EVER LEAK, even in case of exceptions, returns, breaks, etc.
}
void doRAIIStatic()
{
T p ;
// do something with p
// WON'T EVER LEAK, even in case of exceptions, returns, breaks, etc.
}
About RAII
To summarize (after the comment from Ogre Psalm33), RAII relies on three concepts:
Once the object is constructed, it just works! Do acquire resources in the constructor.
Object destruction is enough! Do free resources in the destructor.
It's all about scopes! Scoped objects (see doRAIIStatic example above) will be constructed at their declaration, and will be destroyed the moment the execution exits the scope, no matter how the exit (return, break, exception, etc.).
This means that in correct C++ code, most objects won't be constructed with new, and will be declared on the stack instead. And for those constructed using new, all will be somehow scoped (e.g. attached to a smart pointer).
As a developer, this is very powerful indeed as you won't need to care about manual resource handling (as done in C, or for some objects in Java which makes intensive use of try/finally for that case)...
Edit (2012-02-12)
"scoped objects ... will be destructed ... no matter the exit" that's not entirely true. there are ways to cheat RAII. any flavour of terminate() will bypass cleanup. exit(EXIT_SUCCESS) is an oxymoron in this regard.
– wilhelmtell
wilhelmtell is quite right about that: There are exceptional ways to cheat RAII, all leading to the process abrupt stop.
Those are exceptional ways because C++ code is not littered with terminate, exit, etc., or in the case with exceptions, we do want an unhandled exception to crash the process and core dump its memory image as is, and not after cleaning.
But we must still know about those cases because, while they rarely happen, they can still happen.
(who calls terminate or exit in casual C++ code?... I remember having to deal with that problem when playing with GLUT: This library is very C-oriented, going as far as actively designing it to make things difficult for C++ developers like not caring about stack allocated data, or having "interesting" decisions about never returning from their main loop... I won't comment about that).
Instead of managing memory manually, try to use smart pointers where applicable.
Take a look at the Boost lib, TR1, and smart pointers.
Also smart pointers are now a part of C++ standard called C++11.
You'll want to look at smart pointers, such as boost's smart pointers.
Instead of
int main()
{
Object* obj = new Object();
//...
delete obj;
}
boost::shared_ptr will automatically delete once the reference count is zero:
int main()
{
boost::shared_ptr<Object> obj(new Object());
//...
// destructor destroys when reference count is zero
}
Note my last note, "when reference count is zero, which is the coolest part. So If you have multiple users of your object, you won't have to keep track of whether the object is still in use. Once nobody refers to your shared pointer, it gets destroyed.
This is not a panacea, however. Though you can access the base pointer, you wouldn't want to pass it to a 3rd party API unless you were confident with what it was doing. Lots of times, your "posting" stuff to some other thread for work to be done AFTER the creating scope is finished. This is common with PostThreadMessage in Win32:
void foo()
{
boost::shared_ptr<Object> obj(new Object());
// Simplified here
PostThreadMessage(...., (LPARAM)ob.get());
// Destructor destroys! pointer sent to PostThreadMessage is invalid! Zohnoes!
}
As always, use your thinking cap with any tool...
Read up on RAII and make sure you understand it.
Bah, you young kids and your new-fangled garbage collectors...
Very strong rules on "ownership" - what object or part of the software has the right to delete the object. Clear comments and wise variable names to make it obvious if a pointer "owns" or is "just look, don't touch". To help decide who owns what, follow as much as possible the "sandwich" pattern within every subroutine or method.
create a thing
use that thing
destroy that thing
Sometimes it's necessary to create and destroy in widely different places; i think hard to avoid that.
In any program requiring complex data structures, i create a strict clear-cut tree of objects containing other objects - using "owner" pointers. This tree models the basic hierarchy of application domain concepts. Example a 3D scene owns objects, lights, textures. At the end of the rendering when the program quits, there's a clear way to destroy everything.
Many other pointers are defined as needed whenever one entity needs access another, to scan over arays or whatever; these are the "just looking". For the 3D scene example - an object uses a texture but does not own; other objects may use that same texture. The destruction of an object does not invoke destruction of any textures.
Yes it's time consuming but that's what i do. I rarely have memory leaks or other problems. But then i work in the limited arena of high-performance scientific, data acquisition and graphics software. I don't often deal transactions like in banking and ecommerce, event-driven GUIs or high networked asynchronous chaos. Maybe the new-fangled ways have an advantage there!
Most memory leaks are the result of not being clear about object ownership and lifetime.
The first thing to do is to allocate on the Stack whenever you can. This deals with most of the cases where you need to allocate a single object for some purpose.
If you do need to 'new' an object then most of the time it will have a single obvious owner for the rest of its lifetime. For this situation I tend to use a bunch of collections templates that are designed for 'owning' objects stored in them by pointer. They are implemented with the STL vector and map containers but have some differences:
These collections can not be copied or assigned to. (once they contain objects.)
Pointers to objects are inserted into them.
When the collection is deleted the destructor is first called on all objects in the collection. (I have another version where it asserts if destructed and not empty.)
Since they store pointers you can also store inherited objects in these containers.
My beaf with STL is that it is so focused on Value objects while in most applications objects are unique entities that do not have meaningful copy semantics required for use in those containers.
Great question!
if you are using c++ and you are developing real-time CPU-and-memory boud application (like games) you need to write your own Memory Manager.
I think the better you can do is merge some interesting works of various authors, I can give you some hint:
Fixed size allocator is heavily discussed, everywhere in the net
Small Object Allocation was introduced by Alexandrescu in 2001 in his perfect book "Modern c++ design"
A great advancement (with source code distributed) can be found in an amazing article in Game Programming Gem 7 (2008) named "High Performance Heap allocator" written by Dimitar Lazarov
A great list of resources can be found in this article
Do not start writing a noob unuseful allocator by yourself... DOCUMENT YOURSELF first.
One technique that has become popular with memory management in C++ is RAII. Basically you use constructors/destructors to handle resource allocation. Of course there are some other obnoxious details in C++ due to exception safety, but the basic idea is pretty simple.
The issue generally comes down to one of ownership. I highly recommend reading the Effective C++ series by Scott Meyers and Modern C++ Design by Andrei Alexandrescu.
There's already a lot about how to not leak, but if you need a tool to help you track leaks take a look at:
BoundsChecker under VS
MMGR C/C++ lib from FluidStudio
http://www.paulnettle.com/pub/FluidStudios/MemoryManagers/Fluid_Studios_Memory_Manager.zip (its overrides the allocation methods and creates a report of the allocations, leaks, etc)
User smart pointers everywhere you can! Whole classes of memory leaks just go away.
Share and know memory ownership rules across your project. Using the COM rules makes for the best consistency ([in] parameters are owned by the caller, callee must copy; [out] params are owned by the caller, callee must make a copy if keeping a reference; etc.)
valgrind is a good tool to check your programs memory leakages at runtime, too.
It is available on most flavors of Linux (including Android) and on Darwin.
If you use to write unit tests for your programs, you should get in the habit of systematicaly running valgrind on tests. It will potentially avoid many memory leaks at an early stage. It is also usually easier to pinpoint them in simple tests that in a full software.
Of course this advice stay valid for any other memory check tool.
Also, don't use manually allocated memory if there's a std library class (e.g. vector). Make sure if you violate that rule that you have a virtual destructor.
If you can't/don't use a smart pointer for something (although that should be a huge red flag), type in your code with:
allocate
if allocation succeeded:
{ //scope)
deallocate()
}
That's obvious, but make sure you type it before you type any code in the scope
A frequent source of these bugs is when you have a method that accepts a reference or pointer to an object but leaves ownership unclear. Style and commenting conventions can make this less likely.
Let the case where the function takes ownership of the object be the special case. In all situations where this happens, be sure to write a comment next to the function in the header file indicating this. You should strive to make sure that in most cases the module or class which allocates an object is also responsible for deallocating it.
Using const can help a lot in some cases. If a function will not modify an object, and does not store a reference to it that persists after it returns, accept a const reference. From reading the caller's code it will be obvious that your function has not accepted ownership of the object. You could have had the same function accept a non-const pointer, and the caller may or may not have assumed that the callee accepted ownership, but with a const reference there's no question.
Do not use non-const references in argument lists. It is very unclear when reading the caller code that the callee may have kept a reference to the parameter.
I disagree with the comments recommending reference counted pointers. This usually works fine, but when you have a bug and it doesn't work, especially if your destructor does something non-trivial, such as in a multithreaded program. Definitely try to adjust your design to not need reference counting if it's not too hard.
Tips in order of Importance:
-Tip#1 Always remember to declare your destructors "virtual".
-Tip#2 Use RAII
-Tip#3 Use boost's smartpointers
-Tip#4 Don't write your own buggy Smartpointers, use boost (on a project I'm on right now I can't use boost, and I've suffered having to debug my own smart pointers, I would definately not take the same route again, but then again right now I can't add boost to our dependencies)
-Tip#5 If its some casual/non-performance critical (as in games with thousands of objects) work look at Thorsten Ottosen's boost pointer container
-Tip#6 Find a leak detection header for your platform of choice such as Visual Leak Detection's "vld" header
If you can, use boost shared_ptr and standard C++ auto_ptr. Those convey ownership semantics.
When you return an auto_ptr, you are telling the caller that you are giving them ownership of the memory.
When you return a shared_ptr, you are telling the caller that you have a reference to it and they take part of the ownership, but it isn't solely their responsibility.
These semantics also apply to parameters. If the caller passes you an auto_ptr, they are giving you ownership.
Others have mentioned ways of avoiding memory leaks in the first place (like smart pointers). But a profiling and memory-analysis tool is often the only way to track down memory problems once you have them.
Valgrind memcheck is an excellent free one.
For MSVC only, add the following to the top of each .cpp file:
#ifdef _DEBUG
#define new DEBUG_NEW
#endif
Then, when debugging with VS2003 or greater, you will be told of any leaks when your program exits (it tracks new/delete). It's basic, but it has helped me in the past.
valgrind (only avail for *nix platforms) is a very nice memory checker
If you are going to manage your memory manually, you have two cases:
I created the object (perhaps indirectly, by calling a function that allocates a new object), I use it (or a function I call uses it), then I free it.
Somebody gave me the reference, so I should not free it.
If you need to break any of these rules, please document it.
It is all about pointer ownership.
Try to avoid allocating objects dynamically. As long as classes have appropriate constructors and destructors, use a variable of the class type, not a pointer to it, and you avoid dynamical allocation and deallocation because the compiler will do it for you.
Actually that's also the mechanism used by "smart pointers" and referred to as RAII by some of the other writers ;-) .
When you pass objects to other functions, prefer reference parameters over pointers. This avoids some possible errors.
Declare parameters const, where possible, especially pointers to objects. That way objects can't be freed "accidentially" (except if you cast the const away ;-))).
Minimize the number of places in the program where you do memory allocation and deallocation. E. g. if you do allocate or free the same type several times, write a function for it (or a factory method ;-)).
This way you can create debug output (which addresses are allocated and deallocated, ...) easily, if required.
Use a factory function to allocate objects of several related classes from a single function.
If your classes have a common base class with a virtual destructor, you can free all of them using the same function (or static method).
Check your program with tools like purify (unfortunately many $/€/...).
You can intercept the memory allocation functions and see if there are some memory zones not freed upon program exit (though it is not suitable for all the applications).
It can also be done at compile time by replacing operators new and delete and other memory allocation functions.
For example check in this site [Debugging memory allocation in C++]
Note: There is a trick for delete operator also something like this:
#define DEBUG_DELETE PrepareDelete(__LINE__,__FILE__); delete
#define delete DEBUG_DELETE
You can store in some variables the name of the file and when the overloaded delete operator will know which was the place it was called from. This way you can have the trace of every delete and malloc from your program. At the end of the memory checking sequence you should be able to report what allocated block of memory was not 'deleted' identifying it by filename and line number which is I guess what you want.
You could also try something like BoundsChecker under Visual Studio which is pretty interesting and easy to use.
We wrap all our allocation functions with a layer that appends a brief string at the front and a sentinel flag at the end. So for example you'd have a call to "myalloc( pszSomeString, iSize, iAlignment ); or new( "description", iSize ) MyObject(); which internally allocates the specified size plus enough space for your header and sentinel. Of course, don't forget to comment this out for non-debug builds! It takes a little more memory to do this but the benefits far outweigh the costs.
This has three benefits - first it allows you to easily and quickly track what code is leaking, by doing quick searches for code allocated in certain 'zones' but not cleaned up when those zones should have freed. It can also be useful to detect when a boundary has been overwritten by checking to ensure all sentinels are intact. This has saved us numerous times when trying to find those well-hidden crashes or array missteps. The third benefit is in tracking the use of memory to see who the big players are - a collation of certain descriptions in a MemDump tells you when 'sound' is taking up way more space than you anticipated, for example.
C++ is designed RAII in mind. There is really no better way to manage memory in C++ I think.
But be careful not to allocate very big chunks (like buffer objects) on local scope. It can cause stack overflows and, if there is a flaw in bounds checking while using that chunk, you can overwrite other variables or return addresses, which leads to all kinds security holes.
One of the only examples about allocating and destroying in different places is thread creation (the parameter you pass).
But even in this case is easy.
Here is the function/method creating a thread:
struct myparams {
int x;
std::vector<double> z;
}
std::auto_ptr<myparams> param(new myparams(x, ...));
// Release the ownership in case thread creation is successfull
if (0 == pthread_create(&th, NULL, th_func, param.get()) param.release();
...
Here instead the thread function
extern "C" void* th_func(void* p) {
try {
std::auto_ptr<myparams> param((myparams*)p);
...
} catch(...) {
}
return 0;
}
Pretty easyn isn't it? In case the thread creation fails the resource will be free'd (deleted) by the auto_ptr, otherwise the ownership will be passed to the thread.
What if the thread is so fast that after creation it releases the resource before the
param.release();
gets called in the main function/method? Nothing! Because we will 'tell' the auto_ptr to ignore the deallocation.
Is C++ memory management easy isn't it?
Cheers,
Ema!
Manage memory the same way you manage other resources (handles, files, db connections, sockets...). GC would not help you with them either.
Exactly one return from any function. That way you can do deallocation there and never miss it.
It's too easy to make a mistake otherwise:
new a()
if (Bad()) {delete a; return;}
new b()
if (Bad()) {delete a; delete b; return;}
... // etc.