I'm a little new to it and I don't understand the threading term completely yet, Allthough I know how to make a thread and run programs with multiple threads. What I'm wondering about is that when you create a dll file (c++) and inject it into a process (lets say gamehacking) for instance. Would you need to create threads in the dll file, or is that not going to work? After my understanding the main thread will be running from the host process right? Or how does it work?
Well it depends on what you are planning to achieve using the DLL. If that particular DLL has some static functions / utility class, that just takes an input, doing some calculations / processing and produce an output, then there is no need of threading here.
But if that DLL is going to listen on a socket or write to a file or do the actual work that going to need some parallelism, then you might want to create threads inside that DLL.
Basically you must need to understand, what is that task, that is accomplished by this DLL. A DLL can be linked during compile time as a normal library or it can be loaded dynamically in run-time based on your need / use-case.
To answer your question,
Would you need to create threads in the dll file, or is that not going to work?
Ans : Not always. You need to create thread to accomplish some task. That being said, this is not the case always. It is perfectly feasible to run a DLL inside a process, without having any threads.
After my understanding the main thread will be running from the host process right? Or how does it work?
Ans : That's right. Any process you run, there will be one thread by default. If your application is simple enough to be processed by a single thread, then it is a blessing. Keep up with it :)
Since you are specifically refering to injecting the DLL, I have some input for you additionally to what has already been said.
First, let's make sure that the concepts of threads, processes and modules are clear.
A thread is basically the immediate environment in which code runs. Things like the current state of processor registers and stack variables (e.g. your local variables in functions, in most cases, but also where in the code the execution currently stands) belong to a thread. There are also other resources which often have thread-affinity, such as windows. It depends a lot on the resource in question whether and what kind of thread affinity they have.
Let's assume you write a simple hello world program. It will run in one thread which goes through your program from the beginning to the end and print "Hello World". Now let's assume you would want to write a program which slowly writes "Hello World", one character per second, but in the meantime download a file. Then you could create a second thread and have one thread output "Hello World" slowly, and one thread download the file. This means execution can happen in parallel, with different local state - one thread is currently inside your printHelloWorld function and one thread is inside downloadFile.
A process is basically a container for one or more threads. It bundles them together in a shared environment which uses the same virtual memory (this means that for example global variables in your code would be accessible from all threads, but this would require careful synchronization to avoid race conditions) and shares resources such as file handles the threads in the process create. So, your hello-world-and-download program from before would have 2 threads in 1 process, sharing the console for example, and being seen in the task manager as one entity.
A module is a file which contains executable code (in most cases, that is) and is loaded into a process. Usually, in a process there are one EXE file and several DLL files loaded as modules. DLL files and EXE files are technically almost the same, but EXE files are meant to be the basis from which a processes starts, and DLL files are meant to be libraries exporting certain functions which can be used by other modules. Since I said modules are loaded into processes, it means that a module is accessible by all threads in the process, and it doesn't have thread-affinity by its own - in our previous example, when the second thread downloads the file, it may be calling into a HTTP-networking DLL, whose code would then run in the second thread. There is a number of modules which is loaded automatically into each process by Windows, and others are probably loaded by certain features of your compiler.
OK, so, back to your question:
Would you need to create threads in the dll file[...]?
Per se, using a DLL has nothing to do with whether you need to create new threads or not. It depends on what you want to do - if you need to do some time-consuming task in parallel to whatever other code is running, then you would need to create a new thread for it, otherwise there is no need.
[...]or is that not going to work?
As said, you can create new threads if you want (it will work), but it's not a necessity coming with using a DLL.
After my understanding the main thread will be running from the host process right?
The main thread of the host process will of course be in the host process. (Although there is technically no "main thread", since it's perfectly valid to have the first thread in a process create a second one and then terminate, so only the second one would be running anymore, you usually do have the first thread live through the whole lifetime of the process, and you can probably call it the "main thread" in this case.) In which module the currently-running code is located, though, will depend on what the thread is currently doing.
Let me get back to the matter of "injecting": The previous answers appear to have assumed a more "normal" environment where your DLL is just linked to the program and meant to be loaded by it. In this case, your DLL's initialization routine (which is automatically run when a module is loaded into a process) would just be run in the "main thread", probably before the actual work of the process begins.
However, things are a bit different when you inject a DLL. It depends on how you do the injection:
If you inject the DLL by modifying the imports table of the host EXE, then your DLL will be loaded the "normal" way I just said. So you can expect your initialization routine to run during the process' startup, in the main thread.
If you inject the DLL by using the AppInit_DLLs registry key, it would be the same.
Same thing if you inject the DLL by starting the host process suspended, then writing a stub to load the DLL into the processes' memory and using SetThreadContext to point the instruction pointer to it.
If you inject the DLL through means of remotely calling LoadLibrary inside the target process, using CreateRemoteThread, then however, as the name suggests, you are creating a new thread inside the process. In this thread, LoadLibrary will load your DLL and also call your initialization routine, so in this case, your initialization routine would indeed run in a new thread other than the "main thread".
Every process has at least one thread. When that process starts, it's possible to link a bunch of functions, or a library, to the memory space of that process. That's what a dll is. The advantage compared to linking directly to the binary is the library only has to exist in one place in the file system and one place in memory while being used by multiple processes. It's a linking technique, similar to how .so files are used in Linux. It has nothing to do with threading.
Would you need to create threads in the dll file, or is that not going to work?
There wouldn't be any point loading a DLL that didn't contain code that would be run. That said, there are several ways the DLL code might get run:
when the DLL is loaded it gets a chance to run some initialisation code
during initialisation, it might:
start one or more threads, which can keep running - perhaps watching for some event that triggers some action on their part
register for callbacks from the OS or application, such as setting up signal handlers, keystroke handlers, any type of event handler....
it might contain functions that the program will look for dynamically and run, mistaking your DLL code for the original versions of those functions that the program came with
Which of these suits your needs depends entirely on what your DLL is trying to achieve, and what's technically necessary to achieve it. For example, if watching for some memory to have specific content, then modifying it further, it might suffice to have a function in your DLL called by an OS alarm service, resetting itself to go off again later if the triggering memory content is not found. But, the trigger might be existence of a file, or shared memory service, a socket being created etc..
After my understanding the main thread will be running from the host process right? Or how does it work?
Yes - threads started within a process - including any DLL initialisation routines - are also within the process. There are some library functions that may create other processes - such as fork, popen, system - that may contain their own threads.
Soft MetaTrader 5. It's trading terminal. It's "indicator" windows are little cpp-like programs. They can load pure cpp dlls. Every "indicator" works in separate thread.
I need to create shared memory stuff which can be accessable from every "indicator". Also for shared memory could be loaded in every indicator it must be in particular dll.
I found info about boost interprocesses.
I am newbee with boost and multithreading.
So I wonder am I right way?
Create dll with shared memory functionality and interface to access it from indicator.
Load dll in several "indicators".
Access it from several "indicators" in real-time?
Could you also advice other ways?
Global variables in shared libraries are not shared across the library user processes. That segment of data is created for every process which loads the library, only the read-only code segment is actually shared.
You need to use a library for shared memory, such as boost::interprocess shared_memory_object or POSIX Shared Memory, or Qt's QSharedMemory. That is however in case you need inter-process communication.
There is nothing special you need to do in order for multiple threads to access shared memory in the same process, aside from using a mutex to prevent data races.
I have inherited a large body of c++ code in a linux shared object that I suspect is not re-entrant.
Is there any way to run this code in multiple threads spawned from the same process, by ensuring each thread loads its own copy of the dll and maintains its own memory space?
Of course not. Threads use the same memory space. Processes have separate memory spaces. So you'd need to run multiple separate processes if your code is not re-entrant.
The scenario is here:
If a program is executed, at runtime assume it will link to some DLL files, the (master) program/process may or may not create multi-threading function-calls to the functions in DLLs.
Then is there a way that the DLL, of cause besides parameter-passing, can tell whether the master process, who calls the functions within the DLL at runtime, is in a single or multi-thread manner (For instance, by Open MP)?
You can check and compare the current thread ID to detect calls from different threads. You could also implement a DLLMain() function that gets called for every started and terminated thread. I'm pretty sure you can also retrieve a handle to the current process and enumerate the threads running in it. Only the first version will actually tell you if your code is run from different threads though, I think that e.g. WinSock will create a thread for you, even though your program is single-threaded otherwise.
BTW: Consider adding win32api tag and removing C++ tag.
I am developing a DLL in MS VC express c++ that will be loaded in multiple client applications at the same time, the DLL has a shared memory space created using data_seg(".SHARED_SPACE_NAME"). In this shared memory space there are some vectors that can be modified.
Lets assume we have a function in the DLL body called doCalc():
_DLLAPI void __stdcall doCalc(int argument)
{
//Add to vector
//Loop through vector
//Erase from vector
//etc.
}
If doCalc is called at the same time from two or more client applications the system will crash.
I want the doCalc calls to "wait in line" for the previous call to finish - like it was a single-threaded application.
So that if client 1 calls and then immediately after client 2 calls, then client 1 should finish the function, and then client 2 should run the function.
The best solution would be to run the DLL as a single thread but I have searched the internet a I do not think it is possible.
I have tried searching the internet for this issue, and I have come up with something about making the function static would make it thread safe.
I have also read that C++0x somehow will make this thread-safe. But that it is not supported in MS VC express.
I have no experience in multithreading, so I hope you can help. Thanks in advance.
The Windows API to use here would be CreateMutex. Create a named mutex object. As you need to manipulate the shared data, call WaitForSingleObject with the mutex handle, and when you are done, call ReleaseMutex. Each thread that calls WaitForSingleObject takes ownership of the mutex and any other thread that calls WaitForSingleObject will stall, until the owning thread calls ReleaseMutex.
Of course, I don't belive you can do what you want to do:
Dlls may be mapped in at different addresses in each process space. If so, all pointers will be incorrect.
C++ does not allow fine grained control over allocations and has many implicit allocations, especially when dealing with STL objects. I don't belive that you can get the vector to store all the relevant data in the shared area.
You are going to have to do this with C style raw arrays.
Looks like you need a system-wide mutex that will protect your critical section of code (the code that mustn't run simultaneously). Making the function static has nothing to do with it, because it doesn't prevent different applications from running it at the same time.
I think that Boost.Interprocess is exactly what you need. It will solve both, the synchronization problem, and the one that Jim Brissom said in his comment that you even haven't thought about yet.