How to read complete data in QTcpSocket? - c++

Now the server (implemented with java) will send some stream data to me, my code is like below:
connect(socket, SIGNAL(readyRead()), this, SLOT(read_from_server()));
in the read_from_server():
{
while (socket->bytesAvailable())
{
QString temp = socket->readAll();
}
}
but I find that even the server sent me a string with only several characters, the data is truncated, and my function is called twice, thus temp is the never complete data that I want.
If server send me a longer string, my function may be called three or more times, making me diffficult to know at which time the data is transfered completely.
So anyone can tell me how to completely receive the data easily, without so many steps of bothering? I'm sorry if this is duplicated with some questions else, I couldn't get their answers work for me. Many thanks!

What you're seeing is normal for client-server communication. Data is sent in packets and the readyRead signal is informing your program that there is data available, but has no concept of what or how much data there is, so you have to handle this.
To read the data correctly, you will need a buffer, as mentioned by #ratchetfreak, to append the bytes as they're read from the stream. It is important that you know the format of the data being sent, in order to know when you have a complete message. I have previously used at least two methods to do this: -
1) Ensure that sent messages begin with the size, in bytes, of the message being sent. On receiving data, you start by reading the size and keep appending to your buffer until it totals the size to expect.
2) Send all data in a known format, such as JSON or XML, which can be checked for the end of the message. For example, in the case of JSON, all packets will begin with an opening brace '{' and end with a closing brace '}', so you could count braces and match up the data, or use QJsonDocument::fromRawData to verify that the data is complete.
Having used both of these methods, I recommend using the first; include the size of a message that is being sent.

you can use a buffer field to hold the unfinished data temporarily and handle packets as they complete:
{
while (socket->bytesAvailable())
{
buffer.append(socket->readAll());
int packetSize = getPacketSize(buffer);
while(packetSize>0)
{
handlePacket(buffer.left(packetSize);
buffer.remove(0,packetSize);
packetSize = getPacketSize(buffer);
}
}
}

If all of the data has not yet arrived then your while loop will exit prematurely. You need to use a message format that will let the receiving code determine when the complete message has been received. For example, the message could begin with a length element, or if you are dealing with text the message could end with some character used as a terminator.

Problem is that during tcp data transfer data are send in undefined chunks. If you are trying to read defined block size you have to know in advance expected chunk size ore have a way to determinate when your block ends (something like zero terminated c-string).
Check if this answer doesn't help you (there is a trick to wait for expected data block).

Related

How to tell if SSL_read has received and processed all the records from single message

Following is the dilemma,
SSL_read, on success returns number of bytes read, SSL_pending is used to tell if the processed record has more that to be read, that means probably buffer provided is not sufficient to contain the record.
SSL_read may return n > 0, but what if this happens when first records has been processed and message effectively is multi record communication.
Question: I am using epoll to send/receive messages, which means I have to queue up event in case I expect more data. What check will ensure that all the records have been read from single message and it's time to remove this event and queue up an response event that will write the response back to client?
PS: This code hasn't been tested so it may be incorrect. Purpose of the code is to share the idea that I am trying to implement.
Following is code snippet for the read -
//read whatever is available.
while (1)
{
auto n = SSL_read(ssl_, ptr_ + tail_, sz_ - tail_);
if (n <= 0)
{
int ssle = SSL_get_error(ch->ssl_, rd);
auto old_ev = evt_.events;
if (ssle == SSL_ERROR_WANT_READ)
{
//need more data to process, wait for epoll notification again
evt_.events = EPOLLIN | EPOLLERR;
}
else if (err == SSL_ERROR_WANT_WRITE)
{
evt_.events = EPOLLOUT | EPOLLERR;
}
else
{
/* connection closed by peer, or
some irrecoverable error */
done_ = true;
tail_ = 0; //invalidate the data
break;
}
if (old_ev != evt_.events)
if (epoll_ctl(epoll_fd_, EPOLL_CTL_MOD, socket_fd_, &evt_) < 0)
{
perror("handshake failed at EPOLL_CTL_MOD");
SSL_free(ssl_);
ssl_ = nullptr;
return false;
}
}
else //some data has been read
{
tail_ = n;
if (SSL_pending(ssl_) > 0)
//buffer wasn't enough to hold the content. resize and reread
resize();
else
break;
}
}
```
enter code here
SSL_read() returns the number of decrypted bytes returned in the caller's buffer, not the number of bytes received on the connection. This mimics the return value of recv() and read().
SSL_pending() returns the number of decrypted bytes that are still in the SSL's buffer and haven't been read by the caller yet. This would be equivalent to calling ioctl(FIONREAD) on a socket.
There is no way to know how many SSL/TLS records constitute an "application message", that is for the decrypted protocol data to dictate. The protocol needs to specify where a message ends and a new message begins. For instance, by including the message length in the message data. Or delimiting messages with terminators.
Either way, the SSL/TLS layer has no concept of "messages", only an arbitrary stream of bytes that it encrypts and decrypts as needed, and transmits in "records" of its choosing. Similar to how TCP breaks up a stream of arbitrary bytes into IP frames, etc.
So, while your loop is reading arbitrary bytes from OpenSSL, it needs to process those bytes to detect separations between protocol messages, so it can then act accordingly per message.
What check will ensure that all the records have been read from single message and it's time to remove this event and queue up an response event that will write the response back to client?
I'd have hoped that your message has a header with the number of records in it. Otherwise the protocol you've got is probably unparseable.
What you'd need is to have a stateful parser that consumes all the available bytes and outputs records once they are complete. Such a parser needs to suspend its state once it reaches the last byte of decrypted input, and then must be called again when more data is available to be read. But in all cases if you can't predict ahead of time how much data is expected, you won't be able to tell when the message is finished - that is unless you're using a self-synchronizing protocol. Something like ATM headers would be a starting point. But such complication is unnecessary when all you need is just to properly delimit your data so that the packet parser can know exactly whether it's got all it needs or not.
That's the problem with sending messages: it's very easy to send stuff that can't be decoded by the receiver, since the sender is perfectly fine with losing data - it just doesn't care. But the receiver will certainly need to know how many bytes or records are expected - somehow. It can be told this a-priori by sending headers that include byte counts or fixed-size record counts (it's the same size information just in different units), or a posteriori by using unique record delimiters. For example, when sending printable text split into lines, such delimiters can be Unicode paragraph separators (U+2029).
It's very important to ensure that the record delimiters can't occur within the record data itself. Thus you need some sort of a "stuffing" mechanism, where if a delimiter sequence appears in the payload, you can alter it so that it's not a valid delimiter anymore. You also need an "unstuffing" mechanism so that such altered delimiter sequences can be detected and converted back to their original form, of course without being interpreted as a delimiter. A very simple example of such delimiting process is the octet-stuffed framing in the PPP protocol. It is a form of HDLC framing. The record separator is 0x7E. Whenever this byte is detected in the payload, it is escaped - replaced by a 0x7D 0x5E sequence. On the receiving end, the 0x7D is interpreted to mean "the following character has been XOR'd with 0x20". Thus, the receiver converts 0x7D 0x5E to 0x5E first (it removes the escape byte), and then XORs it with 0x20, yielding the original 0x7E. Such framing is easy to implement but potentially has more overhead than framing with a longer delimiter sequence, or even a dynamic delimiter sequence whose form differs for each position within the stream. This could be used to prevent denial-of-service attacks, when the attacker may maliciously provide a payload that will incur a large escaping overhead. The dynamic delimiter sequence - especially if unpredictable, e.g. by negotiating a new sequence for every connection - prevents such service degradation.

c++ streaming udp data into a queue?

I am streaming data as a string over UDP, into a Socket class inside Unreal engine. This is threaded, and runs in the background.
My read function is:
float translate;
void FdataThread::ReceiveUDP()
{
uint32 Size;
TArray<uint8> ReceivedData;
if (ReceiverSocket->HasPendingData(Size))
{
int32 Read = 0;
ReceivedData.SetNumUninitialized(FMath::Min(Size, 65507u));
ReceiverSocket->RecvFrom(ReceivedData.GetData(), ReceivedData.Num(), Read, *targetAddr);
}
FString str = FString(bytesRead, UTF8_TO_TCHAR((const UTF8CHAR *)ReceivedData));
translate = FCString::Atof(*str);
}
I then call the translate variable from another class, on a Tick, or timer.
My test case sends an incrementing number from another application.
If I print this number from inside the above Read function, it looks as expected, counting up incrementally.
When i print it from the other thread, it is missing some of the numbers.
I believe this is because I call it on the Tick, so it misses out some data due to processing time.
My question is:
Is there a way to queue the incoming data, so that when i pull the value, it is the next incremental value and not the current one? What is the best way to go about this?
Thank you, please let me know if I have not been clear.
Is this the complete code? ReceivedData isn't used after it's filled with data from the socket. Instead, an (in this code) undefined variable 'buffer' is being used.
Also, it seems that the while loop could run multiple times, overwriting old data in the ReceivedData buffer. Add some debugging messages to see whether RecvFrom actually reads all bytes from the socket. I believe it reads only one 'packet'.
Finally, especially when you're using UDP sockets over the network, note that the UDP protocol isn't guaranteed to actually deliver its packets. However, I doubt this is causing your problems if you're using it on a single computer or a local network.
Your read loop doesn't make sense. You are reading and throwing away all datagrams but the last in any given sequence that happen to be in the socket receive buffer at the same time. The translate call should be inside the loop, and the loop should be while(true), or while (running), or similar.

Winsock2 tcp/ip - some data packets are ignored probably due to null terminator from the previous packet

I wrote a simple client-server program. Network.h is a header file which uses Winsock2.h (TCP/IP mode) to create socket, accept/connect in blocking mode, send/recv in non-blocking mode. I made it so that the function string TNetwork::Recv(int size) will return the string "Nothing" if it gets WSAWOULDBLOCK error (no data is received yet)
Here is my main function:
int main(){
string Ans;
TNetwork::StartUp(); //WSA start up, etc
cin >> Ans;
if (Ans == "0"){ // 0 --> server
TNetwork::SetupAsServer(); //accept connection (in blocking mode!)
while (true){
TNetwork::Send("\nAss" + '\0'); //without null terminator, the client may read extra bytes, causing undefined behavior (?)
TNetwork::Send("embly" + '\0');
cin >> Ans;
}
}
else{ // others --> regard Ans as IP address. e.g. I can type "127.0.0.1"
TNetwork::SetupAsClient(Ans);
string Rec;
while (true){
Rec = TNetwork::Recv(1000);
if (Rec != "Nothing"){
cout << Rec;
}
}
}
system("PAUSE");
}
Supposedly, the client would print "Assembly" when connected, and when the server enters anything to its console window. Sometimes, though, the client would only print out "\nAss" in the console without the "embly.
To my understanding, TCP/IP ensures all data to be sent and in the correct order, so I guess what happens is that both packets arrive at the same time, which happen quite often over the unstable internet. And due to this null terminator, the client would ignore the "embly", since the Recv() function stopped reading when it hits a null terminator.
So, how can I ensure that the client will always read all data packets correctly?
Yes, the network stack will send the data in the correct order and doesn't care what termination type you use. This has to do with how you're receiving and processing the data stream (note: not packets, stream). If you receive all 11 bytes and print it to the screen, the print function will stop when it reaches the zero, but the rest of the data is still there.
Note: since it's a stream, what happens if you received only 10 bytes of data from the stream? You need to scan what you receive for the zero to know if you've received a full "zero-terminated string" if that's how you want to communicate your data.
EDIT: Also, I don't think "\nAss" + '\0' is doing what you think it is. Instead of adding a 0 character to the end of the string (which already has one, by the way), it's adding 0 to your string pointer.
As #mark points out, TCP is all about streams, not packets. TCP takes care of ensuring that data is reliably transmitted from A to B and that the data is delivered to the consumer in the order in which it was transmitted. Yes, the data is packetized on the wire, but the TCP stack on the system takes those packets and builds the stream which it makes available to you through the recv() function. The TCP stack handles out-of-order data, missing data, and duplicated data such that by the time your application sees it, the stream is a mirror-copy of when the sender sent.
To properly receive TCP data, you will typically need some kind of loop that reads data from the socket when it becomes available. The way I normally do this is to have a thread that is dedicated to servicing the socket. In the thread function is a loop that reads data from the socket when it becomes available and is idle otherwise. This loop reads data into a buffer of, say, 1 KB. Once the data is received from the socket into this buffer, the buffer is copied to another thread for processing. In the thread function for the processing thread is a loop that receives the 1 KB buffers from the socket thread and adds them to the back end of a master buffer of, say, 1 MB. The processing thread then processes the messages out of this master buffer and makes them available to the application.
For a simple demo application, two threads may be overkill. The two threads I've described could be certainly be combined into one, but for my application, it is more efficient to have two threads and take advantage of the multiple cores on my system. The point is, if you're going to have a front-end UI, there's not going to be a way around using at least one thread and still have the UI be responsive.
One other thing. There are two commonly-used mechanisms for protocol design. You're using one, namely, a marker (e.g., a null terminator, etc.) to signal the begin/end of a message. I don't prefer this mechanism mainly because the marker may actually need to be part of the message at some point. The other mechanism is to have a header on each message that tells, at a minimum, how long the message is. I prefer this mechanism and include in my headers a sync word and the message type as well. For example,
struct Header
{
__int16 _sync; // a hex pattern, e.g., 0xABCD
__int16 _type;
__int32 _length;
}
That's a total of 8 bytes. So when processing from the master buffer, I read the first 8 bytes, verify the sync word, and get the length. I determine if there are 'length' bytes available in the master buffer. If not, I have to wait until the socket thread provides me more data before checking again. If so, I extract 'length' bytes from the master buffer and pass that to an object created according to the specified type, which knows how to interpret that particular message. Then repeat.
As I mentioned, I use a master buffer of 1 MB or so. As messages are processed, it is important to remove them from the master buffer so there is additional space available for new data on the back end. This involves simply copying the unprocessed data, if any, to the beginning of the buffer. In cases where data comes in faster than you can process it, the master buffer may need the ability to resize itself to accommodate the additional data.
I hope that's not overwhelming. Start simple and add as you go.

synchronizing between send/recv in sockets

I have a server thats sending out data records as strings of varying length(for eg, 79,80,81,82)
I want to be able to receive exactly one record at a time.I've delimited records with a (r) but because I dont know howmany bytes I have to receive, It sometimes merges records and makes it difficult for me to process.
I have two ideas for you:
Use XML for the protocol. This way you know exactly when each message ends.
Send in the header of each "packet" the packet size, this way you know how much to read from the socket for this specific packet.
Edit:
Look at this dummy code for (2)
int buffer_size;
char* buffer;
read( socket, &buffer_size, sizeof(buffer_size));
buffer = (char*) malloc(packet_size);
read( socket, buffer, buffer_size );
// do something
free( buffer) ;
EDIT:
I recommend looking at the comments here, as they note that the contect might not be ready by a simple "read()", you need to keep "read()"ing, until you get the correct buffer size.
Also - you might not need to read the size. Basically you need to look for the ending top level tag of the XML. This can be done by parsing the whole XML, or parlty parsing the XML you get from the stream untill you have 0 nodes "open".
You should delimit with null byte. Show us your code, and we may be able to help you.
Stream sockets do not natively support an idea of a "record" - the abstraction they provide is that of a continuous stream.
You must implement a layer on top of them to provide "records". It sounds like you are already part way there, with the end-of-record delimiter. The pseudo-code to complete it is:
create empty buffer;
forever {
recv data and append to buffer;
while (buffer contains end-of-record marker) {
remove first record from buffer and process it;
move remaining data to beginning of buffer;
}
}
Are you sending your data as a stream?
You can send it as a structure which is easier to parse and retrieve the data from.
struct Message
{
int dataSize;
char data[256];
};

recv windows, one byte per call, what the?

c++
#define BUF_LEN 1024
the below code only receives one byte when its called then immediately moves on.
output = new char[BUF_LEN];
bytes_recv = recv(cli, output, BUF_LEN, 0);
output[bytes_recv] = '\0';
Any idea how to make it receive more bytes?
EDIT: the client connecting is Telnet.
The thing to remember about networking is that you will be able to read as much data as has been received. Since your code is asking for 1024 bytes and you only read 1, then only 1 byte has been received.
Since you are using a telnet client, it sounds like you have it configured in character mode. In this mode, as soon as you type a character, it will be sent.
Try to reconfigure your telnet client in line mode. In line mode, the telnet client will wait until you hit return before it sends the entire line.
On my telnet client. In order to do that, first I type ctrl-] to get to the telnet prompt and then type "mode line" to configure telnet in line mode.
Update
On further thought, this is actually a very good problem to have.
In the real world, your data can get fragmented in unexpected ways. The client may make a single send() call of N bytes but the data may not arrive in a single packet. If your code can handle byte arriving 1 by 1, then you know it will work know matter how the data arrives.
What you need to do is make sure that you accumulate your data across multiple receives. After your recv call returns, you should then append the data a buffer. Something like:
char *accumulate_buffer = new char[BUF_LEN];
size_t accumulate_buffer_len = 0;
...
bytes_recv = recv(fd,
accumulate_buffer + accumulate_buffer_len,
BUF_LEN - accumulate_buffer_len,
0);
if (bytes_recv > 0)
accumulate_buffer_len += bytes_recv;
if (can_handle_data(accumulate_buffer, accumulate_buffer_len))
{
handle_data(accumulate_buffer, accumulate_buffer_len);
accumulate_buffer_len = 0;
}
This code keeps accumulating the recv into a buffer until there is enough data to handle. Once you handle the data, you reset the length to 0 and you start accumulating afresh.
First, in this line:
output[bytes_recv] = '\0';
you need to check if bytes_recv < 0 first before you do that because you might have an error. And the way your code currently works, you'll just randomly stomp on some random piece of memory (likely the byte just before the buffer).
Secondly, the fact you are null terminating your buffer indicates that you're expecting to receive ASCII text with no embedded null characters. Never assume that, you will be wrong at the worst possible time.
Lastly stream sockets have a model that's basically a very long piece of tape with lots of letters stamped on it. There is no promise that the tape is going to be moving at any particular speed. When you do a recv call you're saying "Please give me as many letters from the tape as you have so far, up to this many.". You may get as many as you ask for, you may get only 1. No promises. It doesn't matter how the other side spit bits of the tape out, the tape is going through an extremely complex bunch of gears and you just have no idea how many letters are going to be coming by at any given time.
If you care about certain groupings of characters, you have to put things in the stream (ont the tape) saying where those units start and/or end. There are many ways of doing this. Telnet itself uses several different ones in different circumstances.
And on the receiving side, you have to look for those markers and put the sequences of characters you want to treat as a unit together yourself.
So, if you want to read a line, you have to read until you get a '\n'. If you try to read 1024 bytes at a time, you have to take into account that the '\n' might end up in the middle of your buffer and so your buffer may contain the line you want and part of the next line. It might even contain several lines. The only promise is that you won't get more characters than you asked for.
Force the sending side to send more bytes using Nagle's algorithm, then you will receive them in packages.