Related
Let us suppose that a std::tuple<some_types...> is given. I would like to create a new std::tuple whose types are the ones indexed in [0, sizeof...(some_types) - 2]. For instance, let's suppose that the starting tuple is std::tuple<int, double, bool>. I would like to obtain a sub-tuple defined as std::tuple<int, double>.
I'm quite new to variadic templates. As a first step I tried to write a struct in charge of storing the different types of the original std::tuple with the aim of creating a new tuple of the same kind (as in std::tuple<decltype(old_tuple)> new_tuple).
template<typename... types>
struct type_list;
template<typename T, typename... types>
struct type_list<T, types...> : public type_list<types...> {
typedef T type;
};
template<typename T>
struct type_list<T> {
typedef T type;
};
What I would like to do is something like:
std::tuple<type_list<bool, double, int>::type...> new_tuple // this won't work
And the next step would be of discarding the last element in the parameter pack. How can I access the several type's stored in type_list? and how to discard some of them?
Thanks.
Here is a way to solve your problem directly.
template<unsigned...s> struct seq { typedef seq<s...> type; };
template<unsigned max, unsigned... s> struct make_seq:make_seq<max-1, max-1, s...> {};
template<unsigned...s> struct make_seq<0, s...>:seq<s...> {};
template<unsigned... s, typename Tuple>
auto extract_tuple( seq<s...>, Tuple& tup ) {
return std::make_tuple( std::get<s>(tup)... );
}
You can use this as follows:
std::tuple< int, double, bool > my_tup;
auto short_tup = extract_tuple( make_seq<2>(), my_tup );
auto skip_2nd = extract_tuple( seq<0,2>(), my_tup );
and use decltype if you need the resulting type.
A completely other approach would be to write append_type, which takes a type and a tuple<...>, and adds that type to the end. Then add to type_list:
template<template<typename...>class target>
struct gather {
typedef typename type_list<types...>::template gather<target>::type parent_result;
typedef typename append< parent_result, T >::type type;
};
which gives you a way to accumulate the types of your type_list into an arbitrary parameter pack holding template. But that isn't required for your problem.
This kind of manipulation is fairly easy with an index sequence technique: generate an index sequence with two fewer indices than your tuple, and use that sequence to select fields from the original. Using std::make_index_sequence and return type deduction from C++14:
template <typename... T, std::size_t... I>
auto subtuple_(const std::tuple<T...>& t, std::index_sequence<I...>) {
return std::make_tuple(std::get<I>(t)...);
}
template <int Trim, typename... T>
auto subtuple(const std::tuple<T...>& t) {
return subtuple_(t, std::make_index_sequence<sizeof...(T) - Trim>());
}
In C++11:
#include <cstddef> // for std::size_t
template<typename T, T... I>
struct integer_sequence {
using value_type = T;
static constexpr std::size_t size() noexcept {
return sizeof...(I);
}
};
namespace integer_sequence_detail {
template <typename, typename> struct concat;
template <typename T, T... A, T... B>
struct concat<integer_sequence<T, A...>, integer_sequence<T, B...>> {
typedef integer_sequence<T, A..., B...> type;
};
template <typename T, int First, int Count>
struct build_helper {
using type = typename concat<
typename build_helper<T, First, Count/2>::type,
typename build_helper<T, First + Count/2, Count - Count/2>::type
>::type;
};
template <typename T, int First>
struct build_helper<T, First, 1> {
using type = integer_sequence<T, T(First)>;
};
template <typename T, int First>
struct build_helper<T, First, 0> {
using type = integer_sequence<T>;
};
template <typename T, T N>
using builder = typename build_helper<T, 0, N>::type;
} // namespace integer_sequence_detail
template <typename T, T N>
using make_integer_sequence = integer_sequence_detail::builder<T, N>;
template <std::size_t... I>
using index_sequence = integer_sequence<std::size_t, I...>;
template<size_t N>
using make_index_sequence = make_integer_sequence<size_t, N>;
#include <tuple>
template <typename... T, std::size_t... I>
auto subtuple_(const std::tuple<T...>& t, index_sequence<I...>)
-> decltype(std::make_tuple(std::get<I>(t)...))
{
return std::make_tuple(std::get<I>(t)...);
}
template <int Trim, typename... T>
auto subtuple(const std::tuple<T...>& t)
-> decltype(subtuple_(t, make_index_sequence<sizeof...(T) - Trim>()))
{
return subtuple_(t, make_index_sequence<sizeof...(T) - Trim>());
}
Live at Coliru.
Subrange from tuple with boundary checking, without declaring "helper classes":
template <size_t starting, size_t elems, class tuple, class seq = decltype(std::make_index_sequence<elems>())>
struct sub_range;
template <size_t starting, size_t elems, class ... args, size_t ... indx>
struct sub_range<starting, elems, std::tuple<args...>, std::index_sequence<indx...>>
{
static_assert(elems <= sizeof...(args) - starting, "sub range is out of bounds!");
using tuple = std::tuple<std::tuple_element_t<indx + starting, std::tuple<args...>> ...>;
};
Usage:
struct a0;
...
struct a8;
using range_outer = std::tuple<a0, a1, a2, a3, a4, a5, a6, a7, a8>;
sub_range<2, 3, range_outer>::tuple; //std::tuple<a2, a3, a4>
One way to do it is to recursively pass two tuples to a helper struct that takes the first element of the "source" tuple and adds it to the end of the another one:
#include <iostream>
#include <tuple>
#include <type_traits>
namespace detail {
template<typename...>
struct truncate;
// this specialization does the majority of the work
template<typename... Head, typename T, typename... Tail>
struct truncate< std::tuple<Head...>, std::tuple<T, Tail...> > {
typedef typename
truncate< std::tuple<Head..., T>, std::tuple<Tail...> >::type type;
};
// this one stops the recursion when there's only
// one element left in the source tuple
template<typename... Head, typename T>
struct truncate< std::tuple<Head...>, std::tuple<T> > {
typedef std::tuple<Head...> type;
};
}
template<typename...>
struct tuple_truncate;
template<typename... Args>
struct tuple_truncate<std::tuple<Args...>> {
// initiate the recursion - we start with an empty tuple,
// with the source tuple on the right
typedef typename detail::truncate< std::tuple<>, std::tuple<Args...> >::type type;
};
int main()
{
typedef typename tuple_truncate< std::tuple<bool, double, int> >::type X;
// test
std::cout << std::is_same<X, std::tuple<bool, double>>::value; // 1, yay
}
Live example.
I tried to implement the C++14 alias template make_integer_sequence, which simplifies the creation of the class template integer_sequence.
template< class T, T... I> struct integer_sequence
{
typedef T value_type;
static constexpr size_t size() noexcept { return sizeof...(I) ; }
};
template< class T, T N>
using make_integer_sequence = integer_sequence< T, 0,1,2, ... ,N-1 >; // only for illustration.
To implement make_integer_sequence we need a helper structure make_helper.
template< class T , class N >
using make_integer_sequence = typename make_helper<T,N>::type;
Implementing make_helper isn't too difficult.
template< class T, T N, T... I >
struct make_helper
{
typedef typename mpl::if_< T(0) == N,
mpl::identity< integer_sequence<T,I...> >,
make_helper< T, N-1, N-1,I...>
>::type;
};
To test make_integer_sequence I made this main function:
int main()
{
#define GEN(z,n,temp) \
typedef make_integer_sequence< int, n > BOOST_PP_CAT(int_seq,n) ;
BOOST_PP_REPEAT(256, GEN, ~);
}
I compiled the program with GCC 4.8.0, on a quad-core i5 system with 8GBs of RAM.
Successful compilation took 4 seconds.
But, when I changed the GEN macro to:
int main() {
#define GEN(z,n,temp) \
typedef make_integer_sequence< int, n * 4 > BOOST_PP_CAT(int_seq, n) ;
BOOST_PP_REPEAT(256, GEN, ~ );
}
The compilation was unsuccessful and outputted the error message:
virtual memory exhausted.
Could somebody explain this error and what caused it?
EDIT:
I simplified the test to:
int main()
{
typedef make_integer_sequence< int, 4096 > int_seq4096;
}
I then successfully compiled with GCC 4.8.0 -ftemplate-depth=65536.
However this second test:
int main()
{
typedef make_integer_sequence< int, 16384 > int_seq16384;
}
Did not compile with GCC 4.8.0 -ftemplate-depth=65536, and resulted in the error:
virtual memory exhausted.
So, my question is, how do I decrease template deep instantiation?
Regards,
Khurshid.
Here's a log N implementation that doesn't even need an increased max-depth for template instantiations and compiles pretty fast:
// using aliases for cleaner syntax
template<class T> using Invoke = typename T::type;
template<unsigned...> struct seq{ using type = seq; };
template<class S1, class S2> struct concat;
template<unsigned... I1, unsigned... I2>
struct concat<seq<I1...>, seq<I2...>>
: seq<I1..., (sizeof...(I1)+I2)...>{};
template<class S1, class S2>
using Concat = Invoke<concat<S1, S2>>;
template<unsigned N> struct gen_seq;
template<unsigned N> using GenSeq = Invoke<gen_seq<N>>;
template<unsigned N>
struct gen_seq : Concat<GenSeq<N/2>, GenSeq<N - N/2>>{};
template<> struct gen_seq<0> : seq<>{};
template<> struct gen_seq<1> : seq<0>{};
This is basically me hacking around Xeo's solution: Making community wiki - if appreciative, please upvote Xeo.
...just modified until I felt it couldn't get any simpler, renamed and added value_type and size() per the Standard (but only doing index_sequence not integer_sequence), and code working with GCC 5.2 -std=c++14 could run otherwise unaltered under older/other compilers I'm stuck with. Might save someone some time / confusion.
// based on http://stackoverflow.com/a/17426611/410767 by Xeo
namespace std // WARNING: at own risk, otherwise use own namespace
{
template <size_t... Ints>
struct index_sequence
{
using type = index_sequence;
using value_type = size_t;
static constexpr std::size_t size() noexcept { return sizeof...(Ints); }
};
// --------------------------------------------------------------
template <class Sequence1, class Sequence2>
struct _merge_and_renumber;
template <size_t... I1, size_t... I2>
struct _merge_and_renumber<index_sequence<I1...>, index_sequence<I2...>>
: index_sequence<I1..., (sizeof...(I1)+I2)...>
{ };
// --------------------------------------------------------------
template <size_t N>
struct make_index_sequence
: _merge_and_renumber<typename make_index_sequence<N/2>::type,
typename make_index_sequence<N - N/2>::type>
{ };
template<> struct make_index_sequence<0> : index_sequence<> { };
template<> struct make_index_sequence<1> : index_sequence<0> { };
}
Notes:
the "magic" of Xeo's solution is in the declaration of _merge_and_renumber (concat in his code) with exactly two parameters, while the specilisation effectively exposes their individual parameter packs
the typename...::type in...
struct make_index_sequence
: _merge_and_renumber<typename make_index_sequence<N/2>::type,
typename make_index_sequence<N - N/2>::type>
avoids the error:
invalid use of incomplete type 'struct std::_merge_and_renumber<std::make_index_sequence<1ul>, std::index_sequence<0ul> >'
I found very fast and needless deep recursion version of implementation of make_index_sequence. In my PC it compiles with N = 1 048 576 , with 2 s.
(PC : Centos 6.4 x86, i5, 8 Gb RAM, gcc-4.4.7 -std=c++0x -O2 -Wall).
#include <cstddef> // for std::size_t
template< std::size_t ... i >
struct index_sequence
{
typedef std::size_t value_type;
typedef index_sequence<i...> type;
// gcc-4.4.7 doesn't support `constexpr` and `noexcept`.
static /*constexpr*/ std::size_t size() /*noexcept*/
{
return sizeof ... (i);
}
};
// this structure doubles index_sequence elements.
// s- is number of template arguments in IS.
template< std::size_t s, typename IS >
struct doubled_index_sequence;
template< std::size_t s, std::size_t ... i >
struct doubled_index_sequence< s, index_sequence<i... > >
{
typedef index_sequence<i..., (s + i)... > type;
};
// this structure incremented by one index_sequence, iff NEED-is true,
// otherwise returns IS
template< bool NEED, typename IS >
struct inc_index_sequence;
template< typename IS >
struct inc_index_sequence<false,IS>{ typedef IS type; };
template< std::size_t ... i >
struct inc_index_sequence< true, index_sequence<i...> >
{
typedef index_sequence<i..., sizeof...(i)> type;
};
// helper structure for make_index_sequence.
template< std::size_t N >
struct make_index_sequence_impl :
inc_index_sequence< (N % 2 != 0),
typename doubled_index_sequence< N / 2,
typename make_index_sequence_impl< N / 2> ::type
>::type
>
{};
// helper structure needs specialization only with 0 element.
template<>struct make_index_sequence_impl<0>{ typedef index_sequence<> type; };
// OUR make_index_sequence, gcc-4.4.7 doesn't support `using`,
// so we use struct instead of it.
template< std::size_t N >
struct make_index_sequence : make_index_sequence_impl<N>::type {};
//index_sequence_for any variadic templates
template< typename ... T >
struct index_sequence_for : make_index_sequence< sizeof...(T) >{};
// test
typedef make_index_sequence< 1024 * 1024 >::type a_big_index_sequence;
int main(){}
You are missing a -1 here:
typedef typename mpl::if_< T(0) == N,
mpl::identity< integer_sequence<T> >,
make_helper< T, N, N-1,I...>
>::type;
in particular:
typedef typename mpl::if_< T(0) == N,
mpl::identity< integer_sequence<T> >,
make_helper< T, N-1, N-1,I...>
>::type;
Next, the first branch shouldn't be integer_sequence<T>, but rather integer_sequence<T, I...>.
typedef typename mpl::if_< T(0) == N,
mpl::identity< integer_sequence<T, I...> >,
make_helper< T, N-1, N-1,I...>
>::type;
which should be enough to get your original code to compile.
In general, when writing serious template metaprogramming, your main goal should be to keep the depth of template instantiation down. A way to think about this problem is imagining you have an infinite-thread computer: each independent calculation should be shuffled off onto its own thread, then shuffled together at the end. You have a few operations that take O(1) depth, like ... expansion: exploit them.
Usually, pulling of logarithmic depth is enough, because with a 900 depth, that allows 2^900 sized structures, and something else breaks first. (To be fair, what is more likely to happen is 90 different layers of 2^10 sized structures).
Here is another slightly more general variation of Xeo's logarithmic answer which provides make_integer_sequence for arbitrary types. This is done by using std::integral_constant in order to avoid the dreaded "template argument involves template parameter" error.
template<typename Int, Int... Ints>
struct integer_sequence
{
using value_type = Int;
static constexpr std::size_t size() noexcept
{
return sizeof...(Ints);
}
};
template<std::size_t... Indices>
using index_sequence = integer_sequence<std::size_t, Indices...>;
namespace
{
// Merge two integer sequences, adding an offset to the right-hand side.
template<typename Offset, typename Lhs, typename Rhs>
struct merge;
template<typename Int, Int Offset, Int... Lhs, Int... Rhs>
struct merge<
std::integral_constant<Int, Offset>,
integer_sequence<Int, Lhs...>,
integer_sequence<Int, Rhs...>
>
{
using type = integer_sequence<Int, Lhs..., (Offset + Rhs)...>;
};
template<typename Int, typename N>
struct log_make_sequence
{
using L = std::integral_constant<Int, N::value / 2>;
using R = std::integral_constant<Int, N::value - L::value>;
using type = typename merge<
L,
typename log_make_sequence<Int, L>::type,
typename log_make_sequence<Int, R>::type
>::type;
};
// An empty sequence.
template<typename Int>
struct log_make_sequence<Int, std::integral_constant<Int, 0>>
{
using type = integer_sequence<Int>;
};
// A single-element sequence.
template<typename Int>
struct log_make_sequence<Int, std::integral_constant<Int, 1>>
{
using type = integer_sequence<Int, 0>;
};
}
template<typename Int, Int N>
using make_integer_sequence =
typename log_make_sequence<
Int, std::integral_constant<Int, N>
>::type;
template<std::size_t N>
using make_index_sequence = make_integer_sequence<std::size_t, N>;
Demo: coliru
Simple implementation O(N). Probably not what you want for large N, but my application is only for calling functions with indexed arguments, and I wouldn't expect an arity of more than about 10. I haven't filled in the members of integer_sequence. I'm looking forward to using a standard library implementation and nuking this :)
template <typename T, T... ints>
struct integer_sequence
{ };
template <typename T, T N, typename = void>
struct make_integer_sequence_impl
{
template <typename>
struct tmp;
template <T... Prev>
struct tmp<integer_sequence<T, Prev...>>
{
using type = integer_sequence<T, Prev..., N-1>;
};
using type = typename tmp<typename make_integer_sequence_impl<T, N-1>::type>::type;
};
template <typename T, T N>
struct make_integer_sequence_impl<T, N, typename std::enable_if<N==0>::type>
{ using type = integer_sequence<T>; };
template <typename T, T N>
using make_integer_sequence = typename make_integer_sequence_impl<T, N>::type;
Here is another implementation technique (for T=size_t), it uses C++17 fold expressions and bitwise generation (i.e. O(log(N)):
template <size_t... Is>
struct idx_seq {
template <size_t N, size_t Offset>
struct pow2_impl {
using type = typename idx_seq<Is..., (Offset + Is)...>::template pow2_impl<N - 1, Offset + sizeof...(Is)>::type;
};
template <size_t _> struct pow2_impl<0, _> { using type = idx_seq; };
template <size_t _> struct pow2_impl<(size_t)-1, _> { using type = idx_seq<>; };
template <size_t Offset>
using offset = idx_seq<(Offset + Is)...>;
};
template <size_t N>
using idx_seq_pow2 = typename idx_seq<0>::template pow2_impl<N, 1>::type;
template <size_t... Is, size_t... Js>
constexpr static auto operator,(idx_seq<Is...>, idx_seq<Js...>)
-> idx_seq<Is..., Js...>
{ return {}; }
template <size_t N, size_t Mask, size_t... Bits>
struct make_idx_seq_impl {
using type = typename make_idx_seq_impl<N, (N >= Mask ? Mask << 1 : 0), Bits..., (N & Mask)>::type;
};
template <size_t N, size_t... Bits>
struct make_idx_seq_impl<N, 0, Bits...> {
using type = decltype((idx_seq<>{}, ..., typename idx_seq_pow2<Bits>::template offset<(N & (Bits - 1))>{}));
};
template <size_t N>
using make_idx_seq = typename make_idx_seq_impl<N, 1>::type;
Here is a very simple solution implemented with recursion based on tag dispatching
template <typename T, T M, T ... Indx>
constexpr std::integer_sequence<T, Indx...> make_index_sequence_(std::false_type)
{
return {};
}
template <typename T, T M, T ... Indx>
constexpr auto make_index_sequence_(std::true_type)
{
return make_index_sequence_<T, M, Indx..., sizeof...(Indx)>(
std::integral_constant<bool, sizeof...(Indx) + 1 < M>());
}
template <size_t M>
constexpr auto make_index_sequence()
{
return make_index_sequence_<size_t, M>(std::integral_constant<bool, (0 < M)>());
}
However, this solution can not be extended to C++11.
This seems to be a very simple question: How does one remove the first (the n-th) type in a std::tuple?
Example:
typedef std::tuple<int, short, double> tuple1;
typedef std::tuple<short, double> tuple2;
The operation described above would transform tuple1 into tuple2. Is it possible?
You can use a simple type function based on partial specialization of a class template:
#include <type_traits>
#include <tuple>
using namespace std;
template<typename T>
struct remove_first_type
{
};
template<typename T, typename... Ts>
struct remove_first_type<tuple<T, Ts...>>
{
typedef tuple<Ts...> type;
};
int main()
{
typedef tuple<int, bool, double> my_tuple;
typedef remove_first_type<my_tuple>::type my_tuple_wo_first_type;
static_assert(
is_same<my_tuple_wo_first_type, tuple<bool, double>>::value,
"Error!"
);
}
Also, this solution can be easily generalized to remove the i-th type of a tuple:
#include <type_traits>
#include <tuple>
using namespace std;
template<size_t I, typename T>
struct remove_ith_type
{
};
template<typename T, typename... Ts>
struct remove_ith_type<0, tuple<T, Ts...>>
{
typedef tuple<Ts...> type;
};
template<size_t I, typename T, typename... Ts>
struct remove_ith_type<I, tuple<T, Ts...>>
{
typedef decltype(
tuple_cat(
declval<tuple<T>>(),
declval<typename remove_ith_type<I - 1, tuple<Ts...>>::type>()
)
) type;
};
int main()
{
typedef tuple<int, bool, double> my_tuple;
typedef remove_ith_type<1, my_tuple>::type my_tuple_wo_2nd_type;
static_assert(
is_same<my_tuple_wo_2nd_type, tuple<int, double>>::value,
"Error!"
);
}
I wrote a proposal which was accepted into the C++14 standard making it quite easy to do for any "tuple-like" type, i.e. one that supports the tuple_size and tuple_element API:
template<typename T, typename Seq>
struct tuple_cdr_impl;
template<typename T, std::size_t I0, std::size_t... I>
struct tuple_cdr_impl<T, std::index_sequence<I0, I...>>
{
using type = std::tuple<typename std::tuple_element<I, T>::type...>;
};
template<typename T>
struct tuple_cdr
: tuple_cdr_impl<T, std::make_index_sequence<std::tuple_size<T>::value>>
{ };
And you can transform a tuple object into the new type with only a couple of functions:
template<typename T, std::size_t I0, std::size_t... I>
typename tuple_cdr<typename std::remove_reference<T>::type>::type
cdr_impl(T&& t, std::index_sequence<I0, I...>)
{
return std::make_tuple(std::get<I>(t)...);
}
template<typename T>
typename tuple_cdr<typename std::remove_reference<T>::type>::type
cdr(T&& t)
{
return cdr_impl(std::forward<T>(t),
std::make_index_sequence<std::tuple_size<T>::value>{});
}
This creates an integer sequence [0,1,2,...,N) where N is tuple_size<T>::value, then creates a new tuple with make_tuple(get<I>(t)...) for I in [1,2,...,N)
Testing it:
using tuple1 = std::tuple<int, short, double>;
using tuple2 = std::tuple<short, double>;
using transformed = decltype(cdr(std::declval<tuple1>()));
static_assert(std::is_same<transformed, tuple2>::value, "");
static_assert(std::is_same<tuple_cdr<tuple1>::type, tuple2>::value, "");
#include <iostream>
int main()
{
auto t = cdr(std::make_tuple(nullptr, "hello", "world"));
std::cout << std::get<0>(t) << ", " << std::get<1>(t) << '\n';
}
My reference implementation for the proposal is at https://gitlab.com/redistd/integer_seq/blob/master/integer_seq.h
I came up with a solution very similar to that proposed by #Andy, but that tries to be a bit more generic by working directly on the parameter pack (using a dummy wrapper) rather than on std::tuple. This way, the operation can be applied to other variadic templates as well, not only to tuples:
#include <type_traits>
#include <tuple>
template <typename... Args> struct pack {};
template <template <typename...> class T, typename Pack>
struct unpack;
template <template <typename...> class T, typename... Args>
struct unpack<T, pack<Args...>>
{
typedef T<Args...> type;
};
template <typename T, typename Pack>
struct prepend;
template <typename T, typename... Args>
struct prepend<T, pack<Args...>>
{
typedef pack<T, Args...> type;
};
template <std::size_t N, typename... Args>
struct remove_nth_type;
template <std::size_t N, typename T, typename... Ts>
struct remove_nth_type<N, T, Ts...>
: prepend<T, typename remove_nth_type<N-1, Ts...>::type>
{};
template <typename T, typename... Ts>
struct remove_nth_type<0, T, Ts...>
{
typedef pack<Ts...> type;
};
template <typename T, int N>
struct remove_nth;
template <template <typename...> class T, int N, typename... Args>
struct remove_nth<T<Args...>, N>
{
typedef typename
unpack<
T, typename
remove_nth_type<N, Args...>::type
>::type type;
};
template <typename... Args>
struct my_variadic_template
{
};
int main()
{
typedef std::tuple<int, bool, double> my_tuple;
typedef remove_nth<my_tuple, 1>::type my_tuple_wo_2nd_type;
static_assert(
is_same<my_tuple_wo_2nd_type, tuple<int, double>>::value,
"Error!"
);
typedef my_variadic_template<int, double> vt;
typedef remove_nth<vt, 0>::type vt_wo_1st_type;
static_assert(
is_same<vt_wo_1st_type, my_variadic_template<double>>::value,
"Error!"
);
}
pack is an helper structure whose sole purpose is to store a template parameter pack. unpack can then be used to unpack the parameters into an arbitrary class template (thanks to #BenVoigt for this trick). prepend simply prepends a type to a pack.
remove_nth_type uses partial template specialization to remove the nth type from a parameter pack, storing the result into a pack. Finally, remove_nth takes a specialization of an arbitrary class template, remove the nth type from its template parameters, and return the new specialization.
Beside that crazy TMP stuff, there is a very easy way using the C++17 STL function std::apply:
#include <string>
#include <tuple>
template <class T, class... Args>
auto tail(const std::tuple<T, Args...>& t)
{
return std::apply(
[](const T&, const Args&... args)
{
return std::make_tuple(args...);
}, t);
}
template <class T>
using tail_t = decltype(tail(T{}));
int main()
{
std::tuple<int, double, std::string> t{1, 2., "3"};
auto _2_3 = tail(t);
using tuple_t = tail_t<std::tuple<int, double, std::string>>;
static_assert(std::is_same_v<std::tuple<double, std::string>, tuple_t>);
}
DEMO.
This is an over engineered bit of template metaprogramming for this task. It includes the ability to do arbitrary reorders/duplications/removals on the types of a tuple via a filter template:
#include <utility>
#include <type_traits>
template<typename... Ts> struct pack {};
template<std::size_t index, typename Pack, typename=void> struct nth_type;
template<typename T0, typename... Ts>
struct nth_type<0, pack<T0, Ts...>, void> { typedef T0 type; };
template<std::size_t index, typename T0, typename... Ts>
struct nth_type<index, pack<T0, Ts...>, typename std::enable_if<(index>0)>::type>:
nth_type<index-1, pack<Ts...>>
{};
template<std::size_t... s> struct seq {};
template<std::size_t n, std::size_t... s>
struct make_seq:make_seq<n-1, n-1, s...> {};
template<std::size_t... s>
struct make_seq<0,s...> {
typedef seq<s...> type;
};
template<typename T, typename Pack> struct conc_pack { typedef pack<T> type; };
template<typename T, typename... Ts> struct conc_pack<T, pack<Ts...>> { typedef pack<T, Ts...> type; };
template<std::size_t n, typename Seq> struct append;
template<std::size_t n, std::size_t... s>
struct append<n, seq<s...>> {
typedef seq<n, s...> type;
};
template<typename S0, typename S1> struct conc;
template<std::size_t... s0, std::size_t... s1>
struct conc<seq<s0...>, seq<s1...>>
{
typedef seq<s0..., s1...> type;
};
template<typename T, typename=void> struct value_exists:std::false_type {};
template<typename T> struct value_exists<T,
typename std::enable_if< std::is_same<decltype(T::value),decltype(T::value)>::value >::type
>:std::true_type {};
template<typename T, typename=void> struct result_exists:std::false_type {};
template<typename T> struct result_exists<T,
typename std::enable_if< std::is_same<typename T::result,typename T::result>::value >::type
>:std::true_type {};
template<template<std::size_t>class filter, typename Seq, typename=void>
struct filter_seq { typedef seq<> type; };
template<template<std::size_t>class filter, std::size_t s0, std::size_t... s>
struct filter_seq<filter, seq<s0, s...>, typename std::enable_if<value_exists<filter<s0>>::value>::type>
: append< filter<s0>::value, typename filter_seq<filter, seq<s...>>::type >
{};
template<template<std::size_t>class filter, std::size_t s0, std::size_t... s>
struct filter_seq<filter, seq<s0, s...>, typename std::enable_if<!value_exists<filter<s0>>::value && result_exists<filter<s0>>::value>::type>
: conc< typename filter<s0>::result, typename filter_seq<filter, seq<s...>>::type >
{};
template<template<std::size_t>class filter, std::size_t s0, std::size_t... s>
struct filter_seq<filter, seq<s0, s...>, typename std::enable_if<!value_exists<filter<s0>>::value && !result_exists<filter<s0>>::value>::type>
: filter_seq<filter, seq<s...>>
{};
template<typename Seq, typename Pack>
struct remap_pack {
typedef pack<> type;
};
template<std::size_t s0, std::size_t... s, typename Pack>
struct remap_pack< seq<s0, s...>, Pack >
{
typedef typename conc_pack< typename nth_type<s0, Pack>::type, typename remap_pack< seq<s...>, Pack >::type >::type type;
};
template<typename Pack>
struct get_indexes { typedef seq<> type; };
template<typename... Ts>
struct get_indexes<pack<Ts...>> {
typedef typename make_seq< sizeof...(Ts) >::type type;
};
template<std::size_t n>
struct filter_zero_out { enum{ value = n }; };
template<>
struct filter_zero_out<0> {};
template<std::size_t n>
struct filter_zero_out_b { typedef seq<n> result; };
template<>
struct filter_zero_out_b<0> { typedef seq<> result; };
#include <iostream>
int main() {
typedef pack< int, double, char > pack1;
typedef pack< double, char > pack2;
typedef filter_seq< filter_zero_out, typename get_indexes<pack1>::type >::type reindex;
typedef filter_seq< filter_zero_out_b, typename get_indexes<pack1>::type >::type reindex_b;
typedef typename remap_pack< reindex, pack1 >::type pack2_clone;
typedef typename remap_pack< reindex_b, pack1 >::type pack2_clone_b;
std::cout << std::is_same< pack2, pack2_clone >::value << "\n";
std::cout << std::is_same< pack2, pack2_clone_b >::value << "\n";
}
Here we have a type pack that holds an arbitrary list of types. See #LucTouraille 's neat answer for how to move between tuple and pack.
seq holds a sequence of indexes. remap_pack takes a seq and a pack, and builds a resulting pack by grabbing the nth element of the original pack.
filter_seq takes a template<size_t> functor and a seq, and uses the functor to filter the elements of the seq. The functor can return either a ::value of type size_t or a ::result of type seq<...> or neither, allowing one-to-one or one-to-many functors.
A few other helper functions, like conc, append, conc_pack, get_indexes, make_seq, nth_type round things out.
I tested it with filter_zero_out which is a ::value based filter that removes 0, and filter_zero_out_b which is a ::result based filter that also removes 0.
struct T1 {};
struct T2: T1 {};
typedef tr2::direct_bases<T2>::type NEW_TYPE ;
should return my something like a touple to bases types. How can I get the nth element
of this __reflection_typelist<...>. I search for something like tuple_element for the reflection list.
You can use this simple metafunction to turn the typelist into an std::tuple:
#include <tr2/type_traits>
#include <tuple>
template<typename T>
struct dbc_as_tuple { };
template<typename... Ts>
struct dbc_as_tuple<std::tr2::__reflection_typelist<Ts...>>
{
typedef std::tuple<Ts...> type;
};
At this point, you could work with it as you would normally work with a tuple. For instance, this is how you could retrieve elements of the type list:
struct A {};
struct B {};
struct C : A, B {};
int main()
{
using namespace std;
using direct_base_classes = dbc_as_tuple<tr2::direct_bases<C>::type>::type;
using first = tuple_element<0, direct_base_classes>::type;
using second = tuple_element<1, direct_base_classes>::type;
static_assert(is_same<first, A>::value, "Error!"); // Will not fire
static_assert(is_same<second, B>::value, "Error!"); // Will not fire
}
Write your own?
template <typename R, unsigned int N> struct get;
template <typename T, typename ...Args, unsigned int N>
struct get<std::tr2::__reflection_typelist<T, Args...>, N>
{
typedef typename get<std::tr2::__reflection_typelist<Args...>, N - 1>::type type;
};
template <typename T, typename ...Args>
struct get<std::tr2::__reflection_typelist<T, Args...>, 0>
{
typedef T type;
};
Or even using first/next:
template <typename R, unsigned int N>
struct get
{
typedef typename get<typename R::next::type, N - 1>::type type;
};
template <typename R>
struct get<R, 0>
{
typedef typename R::first::type type;
};
At this point, I'd say the source code is the best documentation.
I'd like to create the cross product of a list of types using variadic templates.
Here's what I have so far:
#include <iostream>
#include <typeinfo>
#include <cxxabi.h>
template<typename...> struct type_list {};
template<typename T1, typename T2> struct type_pair {};
template<typename T, typename... Rest>
struct row
{
typedef type_list<type_pair<T,Rest>...> type;
};
template<typename... T>
struct cross_product
{
typedef type_list<typename row<T,T...>::type...> type;
};
int main()
{
int s;
typedef cross_product<int, float, short>::type result;
std::cout << abi::__cxa_demangle(typeid(result).name(), 0, 0, &s) << std::endl;
return 0;
}
This program outputs:
$ g++ -std=c++0x cross_product.cpp ; ./a.out
type_list<type_list<type_pair<int, int>, type_pair<int, float>, type_pair<int, short> >, type_list<type_pair<float, int>, type_pair<float, float>, type_pair<float, short> >, type_list<type_pair<short, int>, type_pair<short, float>, type_pair<short, short> > >
But I'd like it to output:
type_list<type_pair<int,int>, type_pair<int,float>, type_pair<int,short>, type_pair<float,int>,...>
That is, without the nested type_lists.
Is there a direct way to do this without the row helper, or should the solution "unwrap" the nested type_lists somehow?
A nice clean version I think:
cross_product.cpp:
#include "type_printer.hpp"
#include <iostream>
template<typename ...Ts> struct type_list {};
template<typename T1, typename T2> struct pair {};
// Concatenation
template <typename ... T> struct concat;
template <typename ... Ts, typename ... Us>
struct concat<type_list<Ts...>, type_list<Us...>>
{
typedef type_list<Ts..., Us...> type;
};
// Cross Product
template <typename T, typename U> struct cross_product;
// Partially specialise the empty case for the first type_list.
template <typename ...Us>
struct cross_product<type_list<>, type_list<Us...>> {
typedef type_list<> type;
};
// The general case for two type_lists. Process:
// 1. Expand out the head of the first type_list with the full second type_list.
// 2. Recurse the tail of the first type_list.
// 3. Concatenate the two type_lists.
template <typename T, typename ...Ts, typename ...Us>
struct cross_product<type_list<T, Ts...>, type_list<Us...>> {
typedef typename concat<
type_list<pair<T, Us>...>,
typename cross_product<type_list<Ts...>, type_list<Us...>>::type
>::type type;
};
struct A {};
struct B {};
struct C {};
struct D {};
struct E {};
struct F {};
template <typename T, typename U>
void test()
{
std::cout << print_type<T>() << " \u2a2f " << print_type<U>() << " = "
<< print_type<typename cross_product<T, U>::type>() << std::endl;
}
int main()
{
std::cout << "Cartesian product of type lists\n";
test<type_list<>, type_list<>>();
test<type_list<>, type_list<A>>();
test<type_list<>, type_list<A, B>>();
test<type_list<A, B>, type_list<>>();
test<type_list<A>, type_list<B>>();
test<type_list<A>, type_list<B, C, D>>();
test<type_list<A, B>, type_list<B, C, D>>();
test<type_list<A, B, C>, type_list<D>>();
test<type_list<A, B, C>, type_list<D, E, F>>();
return 0;
}
type_printer.hpp:
#ifndef TYPE_PRINTER_HPP
#define TYPE_PRINTER_HPP
#include "detail/type_printer_detail.hpp"
template <typename T>
std::string print_type()
{
return detail::type_printer<T>()();
}
#endif
detail/type_printer_detail.hpp:
#ifndef DETAIL__TYPE_PRINTER_DETAIL_HPP
#define DETAIL__TYPE_PRINTER_DETAIL_HPP
#include <typeinfo>
#include <cxxabi.h>
#include <string>
template <typename ...Ts> struct type_list;
template <typename T1, typename T2> struct pair;
namespace detail {
// print scalar types
template <typename T>
struct type_printer {
std::string operator()() const {
int s;
return abi::__cxa_demangle(typeid(T).name(), 0, 0, &s);
}
};
// print pair<T, U> types
template <typename T, typename U>
struct type_printer<pair<T, U>> {
std::string operator()() const {
return "(" + type_printer<T>()() + "," + type_printer<U>()() + ")";
}
};
// print type_list<T>
template <>
struct type_printer<type_list<>> {
std::string operator()() const {
return "\u2205";
}
};
template <typename T>
struct type_printer<type_list<T>> {
std::string operator()() const {
return "{" + type_printer<T>()() + "}";
}
std::string operator()(const std::string& sep) const {
return sep + type_printer<T>()();
}
};
template <typename T, typename ...Ts>
struct type_printer<type_list<T, Ts...>> {
std::string operator()() const {
return "{" + type_printer<T>()() + type_printer<type_list<Ts...>>()(std::string(", ")) + "}";
}
std::string operator()(const std::string& sep) const {
return sep + type_printer<T>()() + type_printer<type_list<Ts...>>()(sep);
}
};
}
#endif
Run:
g++ -std=c++0x cross_product.cpp && ./a.out
Output:
Cartesian product of type lists
∅ ⨯ ∅ = ∅
∅ ⨯ {A} = ∅
∅ ⨯ {A, B} = ∅
{A, B} ⨯ ∅ = ∅
{A} ⨯ {B} = {(A,B)}
{A} ⨯ {B, C, D} = {(A,B), (A,C), (A,D)}
{A, B} ⨯ {B, C, D} = {(A,B), (A,C), (A,D), (B,B), (B,C), (B,D)}
{A, B, C} ⨯ {D} = {(A,D), (B,D), (C,D)}
{A, B, C} ⨯ {D, E, F} = {(A,D), (A,E), (A,F), (B,D), (B,E), (B,F), (C,D), (C,E), (C,F)}
(I noticed on Windows using Chrome that the cross product unicode character is not coming out well. Sorry, I don't know how to fix that.)
Somehow my brain is fried: I think I'm using more code than is needed but, at least, it has the desired results (although I didn't fix the memory leak):
#include <iostream>
#include <typeinfo>
#include <cxxabi.h>
template<typename...> struct type_list {};
template<typename T1, typename T2> struct type_pair {};
template<typename T, typename... Rest>
struct row
{
typedef type_list<type_pair<T,Rest>...> type;
};
template <typename... T> struct concat;
template <typename... S, typename... T>
struct concat<type_list<S...>, type_list<T...>>
{
typedef type_list<S..., T...> type;
};
template <typename... T>
struct expand
{
typedef type_list<T...> type;
};
template <> struct expand<> { typedef type_list<> type; };
template <typename... T, typename... L>
struct expand<type_list<T...>, L...>
{
typedef typename concat<typename expand<T...>::type, typename expand<L...>::type>::type type;
};
template<typename... T>
struct cross_product
{
typedef typename expand<type_list<typename row<T,T...>::type...>>::type type;
};
int main()
{
int s;
typedef cross_product<int, float, short>::type result;
std::cout << abi::__cxa_demangle(typeid(result).name(), 0, 0, &s) << std::endl;
return 0;
}
Maybe something like this:
template <typename ...Args> struct typelist { };
template <typename S, typename T> struct typelist_cat;
template <typename ...Ss, typename ...Ts>
struct typelist_cat<typelist<Ss...>, typelist<Ts...>>
{
typedef typelist<Ss..., Ts...> type;
};
template <typename S, typename T> struct product;
template <typename S, typename ...Ss, typename ...Ts>
struct product<typelist<S, Ss...>, typelist<Ts...>>
{
// the cartesian product of {S} and {Ts...}
// is a list of pairs -- here: a typelist of 2-element typelists
typedef typelist<typelist<S, Ts>...> S_cross_Ts;
// the cartesian product of {Ss...} and {Ts...} (computed recursively)
typedef typename product<typelist<Ss...>, typelist<Ts...>>::type
Ss_cross_Ts;
// concatenate both products
typedef typename typelist_cat<S_cross_Ts, Ss_cross_Ts>::type type;
};
// end the recursion
template <typename ...Ts>
struct product<typelist<>, typelist<Ts...>>
{
typedef typelist<> type;
};
Now you should be able to use product<typelist<A,B,C>, typelist<D,E,F>>::type.
C++17
Working Demo
Logic to concatenate type_lists to avoid nested type_list like you are asking for:
// base case: 2 type_lists
template<class... Ts, class... Us>
auto concat(type_list<Ts...>, type_list<Us...>) -> type_list<Ts..., Us...>;
// recursive case: more than 2 type_lists
template<class... Ts, class... Us, class... Rest>
auto concat(type_list<Ts...>, type_list<Us...>, Rest...) -> decltype(concat(type_list<Ts..., Us...>{}, Rest{}...));
Note that these functions don't have (or need) implementations; this is a trick to avoid class template specialization (I learned it from Hana Dusikova's compile time regular expressions)
Then, simplifying your row and cross_product impls as pairs and cross_product_impl, respectively:
template<class T, class... Ts>
using pairs = type_list<type_pair<T, Ts>...>;
template<class... T>
auto cross_product_impl()
{
if constexpr(sizeof...(T) == 0)
return type_list<> {};
if constexpr(sizeof...(T) == 1)
return type_list<type_pair<T, T>...>{};
if constexpr(sizeof...(T) > 1)
return concat(pairs<T, T...>{}...);
}
if constexpr allows us to more easily express the logic, I think.
Finally a type alias for cross_product that gives us what the type would be if we theoretically invoked cross_product_impl:
template<class... T>
using cross_product = decltype(cross_product_impl<T...>());
Usage basically the same as before:
cross_product<int, float, short> result;
So far all solutions have drawbacks, unnecessary dependencies, unnecessary helpers and all are restricted to the Cartesian power of two. The following solution has no such drawbacks and supports:
Any cartesian power including 0.
Returning the empty set if any of the factors is an empty set.
The code is self contained and does not depend on any include files.
The inputs of the function can be of any template type.
The type of the output list can be specified via the first template
parameter.
It was actually to harder to implement (but good as homework) then I thought. I am actually thinking about creating a little generator which allows me an extended template syntax which makes these things really easy.
Simplified the code works as follows: product converts an input list tuple<A...>,tuple<B...>,tuple<C...> into tuple<tuple<A>...>, tuple<B...>, tuple<C...>. This second list is then passed to product_helper which does the recursive Cartesian product computation.
template <typename... T> struct cat2;
template <template<typename...> class R, typename... As, typename... Bs>
struct cat2 <R<As...>, R<Bs...> > {
using type = R <As..., Bs...>;
};
template <typename... Ts> struct product_helper;
template <template<typename...> class R, typename... Ts>
struct product_helper < R<Ts...> > { // stop condition
using type = R< Ts...>;
};
template <template<typename...> class R, typename... Ts>
struct product_helper < R<R<> >, Ts... > { // catches first empty tuple
using type = R<>;
};
template <template<typename...> class R, typename... Ts, typename... Rests>
struct product_helper < R<Ts...>, R<>, Rests... > { // catches any empty tuple except first
using type = R<>;
};
template <template<typename...> class R, typename... X, typename H, typename... Rests>
struct product_helper < R<X...>, R<H>, Rests... > {
using type1 = R <typename cat2<X,R<H> >::type...>;
using type = typename product_helper<type1, Rests...>::type;
};
template <template<typename...> class R, typename... X, template<typename...> class Head, typename T, typename... Ts, typename... Rests>
struct product_helper < R<X...>, Head<T, Ts...>, Rests... > {
using type1 = R <typename cat2<X,R<T> >::type...>;
using type2 = typename product_helper<R<X...> , R<Ts...> >::type;
using type3 = typename cat2<type1,type2>::type;
using type = typename product_helper<type3, Rests...>::type;
};
template <template<typename...> class R, typename... Ts> struct product;
template <template<typename...> class R>
struct product < R > { // no input, R specifies the return type
using type = R<>;
};
template <template<typename...> class R, template<typename...> class Head, typename... Ts, typename... Tail>
struct product <R, Head<Ts...>, Tail... > { // R is the return type, Head<A...> is the first input list
using type = typename product_helper< R<R<Ts>...>, Tail... >::type;
};
Here is a compilable example of how the code can be used.
Here's another solution.
#include <iostream>
#include <typeinfo>
#include <cxxabi.h>
template <typename ...Args> struct typelist { };
template <typename, typename> struct typepair { };
template <typename S, typename T> struct product;
template <typename S, typename T> struct append;
template<typename ...Ss, typename ...Ts>
struct append<typelist<Ss...>, typelist<Ts...>> {
typedef typelist<Ss..., Ts...> type;
};
template<>
struct product<typelist<>, typelist<>> {
typedef typelist<> type;
};
template<typename ...Ts>
struct product<typelist<>, typelist<Ts...>> {
typedef typelist<> type;
};
template<typename ...Ts>
struct product<typelist<Ts...>, typelist<>> {
typedef typelist<> type;
};
template<typename S, typename T, typename ...Ss, typename ...Ts>
struct product<typelist<S, Ss...>, typelist<T, Ts...>> {
typedef typename
append<typelist<typepair<S, T>,
typepair<S, Ts>...,
typepair<Ss, T>...>,
typename product<typelist<Ss...>, typelist<Ts...>>::type>::type type;
};
int main(void)
{
int s;
std::cout << abi::__cxa_demangle(
typeid(product<typelist<int, float>, typelist<short, double>>::type).name(), 0, 0, &s) << "\n";
return 0;
}
Note: This is NOT what the OP asked for... but may be of relevance to others (like me) who stumble upon this question. Here is how it can be done using a Loki::TypeList (i.e. prior C++-11), perhaps of historical interest or for compatability sake.
Also, perhaps it is presumptuous of me to pollute loki's namespace. YMMV.
crossproduct.h
#include "loki/NullType.h"
#include "loki/Typelist.h"
namespace Loki {
namespace TL {
/// a pair of two types
template <typename A_t, typename B_t>
struct TypePair
{
typedef A_t A;
typedef B_t B;
};
/// a template which takes one type and pairs it with all other types
/// in another typelist
template <class T, class TList > struct DistributePair;
/// specialization of Distribute for the nulltype
template < class TList >
struct DistributePair< NullType, TList >
{
typedef NullType type;
};
/// specialization of Distribute where the second parameter is nulltype
template <class T >
struct DistributePair< T, NullType >
{
typedef NullType type;
};
/// specialization of Distribute where the first parameter is a
/// typelist
template <class T, class Head, class Tail >
struct DistributePair< T, Typelist<Head,Tail> >
{
typedef Typelist<
TypePair<T,Head>,
typename DistributePair<T,Tail>::type
> type;
};
/// performs cartesion product of two typelists
template <class TListA, class TListB> struct CrossProduct;
/// specialization of CrossProduct for NullType
template <class TListB>
struct CrossProduct< NullType, TListB >
{
typedef NullType type;
};
/// specialization of CrossProduct for recursion
template <class Head, class Tail, class TListB>
struct CrossProduct< Typelist<Head,Tail>, TListB >
{
typedef typename Append<
typename DistributePair< Head,TListB >::type,
typename CrossProduct< Tail, TListB >::type
>::Result type;
};
} // namespace TL
} // namespace Loki
test.cpp
#include <crossproduct.h>
#include <loki/HierarchyGenerators.h>
#include <iostream>
struct A{};
struct B{};
struct C{};
struct D{};
struct E{};
struct F{};
typedef LOKI_TYPELIST_3(A,B,C) TypeListA_t;
typedef LOKI_TYPELIST_3(D,E,F) TypeListB_t;
typedef typename Loki::TL::CrossProduct< TypeListA_t, TypeListB_t >::type Cross_t;
template <typename T> const char* toString();
template <> const char* toString<A>(){ return "A"; };
template <> const char* toString<B>(){ return "B"; };
template <> const char* toString<C>(){ return "C"; };
template <> const char* toString<D>(){ return "D"; };
template <> const char* toString<E>(){ return "E"; };
template <> const char* toString<F>(){ return "F"; };
template <typename T> struct Printer
{
Printer()
{
std::cout << toString<T>() << ", ";
}
};
template <typename T1, typename T2>
struct Printer< Loki::TL::TypePair<T1,T2> >
{
Printer()
{
std::cout << "(" << toString<T1>() << "," << toString<T2>() << "), ";
}
};
typedef Loki::GenScatterHierarchy< TypeListA_t, Printer > PrinterA_t;
typedef Loki::GenScatterHierarchy< TypeListB_t, Printer > PrinterB_t;
typedef Loki::GenScatterHierarchy< Cross_t, Printer > PrinterCross_t;
int main(int argc, char** argv)
{
std::cout << "\nType list A: \n ";
PrinterA_t a;
std::cout << "\nType list B: \n ";
PrinterB_t b;
std::cout << "\nType list Cross: \n ";
PrinterCross_t cross;
return 0;
}
output
Type list A:
A, B, C,
Type list B:
D, E, F,
Type list Cross:
(A,D), (A,E), (A,F), (B,D), (B,E), (B,F), (C,D), (C,E), (C,F),
With Boost.Mp11, this is a short one-liner (as always):
using input = type_list<int, float, short>;
using result = mp_product<
type_pair,
input, input>;
Demo.
We can generalize this to picking N things, with repetition, from that input. We can't use type_pair anymore to group our elements, so we'll just have a list of type_list of elements. To do that, we basically need to write:
mp_product<type_list, input, input, ..., input>
// ~~~~~~~ N times ~~~~~~~~
Which is also the same as:
mp_product_q<mp_quote<type_list>, input, input, ..., input>
// ~~~~~~~ N times ~~~~~~~~
One way to do that is:
template <int N>
using product = mp_apply<
mp_product_q,
mp_append<
mp_list<mp_quote<type_list>>,
mp_repeat_c<mp_list<input>, N>
>>;
Demo.
Really enjoyed this "homework" assignment :)
Both solutions below create a class full of type_list typedefs, along with member functions that will check to see if a given list of types exist in the class as a type_list.
The first solution creates all possible combinations of types from 1 to N types per type_list (the width parameter defines N). The second solution creates only pairs of types.
First Solution
template<typename... Ts> struct type_list { typedef type_list<Ts...> type; };
template<size_t, typename...> struct xprod_tlist_ {};
template<typename... Ts, typename... Us>
struct xprod_tlist_<1, type_list<Ts...>, Us...> {};
template<size_t width, typename... Ts, typename... Us>
struct xprod_tlist_<width, type_list<Ts...>, Us...>
: type_list<Ts..., Us>...
, xprod_tlist_<width - 1, type_list<Ts..., Us>, Us...>... {};
template<size_t width, typename... Ts> struct xprod_tlist
: type_list<Ts>..., xprod_tlist_<width, type_list<Ts>, Ts...>... {
template<typename... Us> struct exists
: std::is_base_of<type_list<Us...>, xprod_tlist<width, Ts...>> {};
template<typename... Us> struct assert_exists {
static_assert(exists<Us...>::value, "Type not present in list");
};
};
Usage:
typedef xprod_tlist<5, int, char, string, float, double, long> X;
//these pass
X::assert_exists<int, int, int, int, int> assert_test1;
X::assert_exists<double, float, char, int, string> assert_test2;
//these fail
X::assert_exists<char, char, char, char, char, char> assert_test3;
X::assert_exists<int, bool> assert_test4;
//true
auto test1 = X::exists<int, int, int, int, int>::value;
auto test2 = X::exists<double, float, char, int, string>::value;
//false
auto test3 = X::exists<char, char, char, char, char, char>::value;
auto test4 = X::exists<int, bool>::value;
Second Solution
template<class T, class U> struct type_pair { typedef type_pair<T, U> type; };
template<class... Ts> struct type_list {};
template<class...> struct xprod_tlist_ {};
template<class T, class... Ts, class... Us>
struct xprod_tlist_<type_list<T, Ts...>, type_list<Us...>>
: type_pair<T, Us>..., xprod_tlist_<type_list<Ts...>, type_list<Us...>> {};
template<class... Ts>
struct xprod_tlist : xprod_tlist_<type_list<Ts...>, type_list<Ts...>> {
template<class T, class U> struct exists
: std::is_base_of<type_pair<T, U>, xprod_tlist<Ts...>> {};
template<class T, class U> struct assert_exists {
static_assert(exists<T, U>::value, "Type not present in list");
};
};
Usage:
typedef xprod_tlist<int, float, string> X;
//these pass
X::assert_exists<int, int> assert_test1;
X::assert_exists<int, float> assert_test2;
X::assert_exists<int, string> assert_test3;
X::assert_exists<float, int> assert_test4;
X::assert_exists<float, float> assert_test5;
X::assert_exists<float, string> assert_test6;
X::assert_exists<string, int> assert_test7;
X::assert_exists<string, float> assert_test8;
X::assert_exists<string, string> assert_test9;
//this fails
X::assert_exists<int, char> assert_test10;
//true
auto test1 = X::exists<int, int>::value;
auto test2 = X::exists<int, float>::value;
auto test3 = X::exists<int, string>::value;
auto test4 = X::exists<float, int>::value;
auto test5 = X::exists<float, float>::value;
auto test6 = X::exists<float, string>::value;
auto test7 = X::exists<string, int>::value;
auto test8 = X::exists<string, float>::value;
auto test9 = X::exists<string, string>::value;
//false
auto test10 = X::exists<int, char>::value;