Equal operator: pointer to a member function - c++

In one of my classes I included a pointer to a member function:
private:
void (class_name::*_pf)(double&, gc::mag::coefficient&, gc::mag::st&, const int&) const;
This pointer either points to function1 or function2 of class class_name.
Now when I have two object of class class_name, how can I check whether the _pf pointers are pointing to the same member function (that is, are they both pointing at function1 or function2)?

This should be enough:
if (this->_pf == other._pf)
Example :
#include <iostream>
class class_name
{
public:
void function1(int) {}
void function2(int) {}
};
class test
{
public:
test(void (class_name::*pf)(int))
: _pf(pf)
{
}
bool operator==(const test& other)
{
return (this->_pf == other._pf);
}
public:
void (class_name::*_pf)(int);
};
int main()
{
test t(&class_name::function1);
test t2(&class_name::function2);
std::cout << std::boolalpha << (t == t2) << std::endl;
return 0;
}

Related

Specialized inheritance of a templated class causes member function to return templated class type rather than inherited class type

Assume I have a base class like this:
template<typename T>
class Base {
public:
Base& operator()(const T& value) {
this->value = value;
return *this;
}
T value;
};
Now I want to inherit from this class to create type-specific classes
class InheritedFloat : public Base<float> {} inheritedFloat;
Now here I try to catch this inheritance in a functon:
void function(const InheritedFloat& inherited) {
std::cout << inherited.value << '\n';
}
Calling this function like this works fine, of course:
int main() {
function(inheritedFloat); //(inheritedFloat is a global instance)
return 0;
}
But when I try to call it with the operator()(const float& value){...} member function, function(const InheritedFloat& inherited){...} doesn't see it as a InheritedFloat-Type but instead as a Base<float>-Type:
int main() {
function(inheritedFloat(10.f)); //error
return 0;
}
Error:
Error C2664 'void function(const InheritedFloat &)': cannot convert argument 1 from 'Base<float>' to 'const InheritedFloat &'
So how can I make operator()(const T& value){...} return InheritedFloat& instead of Base<float>&?
To clearify further, this is just a simplified example (of course). I have dozens of inheritance cases. So I can't just template-specify function()
template<typename T>
void function(const Base<T>& inherited) {
std::cout << inherited.value << '\n';
}
because each inheritance needs to be treated differently. Types will overlap, so there will be multiple Base<std::size_t> cases, for example.
The whole code:
#include <iostream>
template<typename T>
class Base {
public:
Base& operator()(const T& value) {
this->value = value;
return *this;
}
T value;
};
class InheritedFloat : public Base<float> {} inheritedFloat;
void function(const InheritedFloat& inherited) {
std::cout << inherited.value << '\n';
}
int main() {
function(inheritedFloat(10.f));
return 0;
}
Thanks for reading, I appreciate any help!
You can utilize CRTP here. By supplying extra template parameter you can make base class function return a reference to a derived class:
#include <iostream>
template<typename Derived, typename T>
class Base {
public:
Derived & operator()(const T& value) {
this->value = value;
return *static_cast<Derived *>(this);
}
T value;
};
class InheritedFloat : public Base<InheritedFloat, float> {} inheritedFloat;
void function(const InheritedFloat& inherited) {
std::cout << inherited.value << '\n';
}
int main() {
function(inheritedFloat(10.f));
return 0;
}
online compiler

How can I define a parent class to reduce code duplication while using an abstract class with an equality operator definition?

I have below as 'simple' of an example of what I am trying to do as I could think up. I have an abstract class A which exposes a public interface to the world with two methods: operator== and performTasksSpecificToA. You can see that I'm using the 'Template Method Pattern' as well as the 'curiously recurring template pattern' in order to ensure that users of A don't need to worry about the implementation of A, in other words AImpl, while still being able to check equality against two instances of AImpl. See this answer on SO for a bit more information and context on this approach.
Now, suppose I wish to define a class B as follows:
class B
{
public:
virtual ~B() = 0;
bool operator(const B& b) const;
void performTasksSpecificToB();
};
As you can see, class B shares the same problem as A in terms of defining a public operator== for comparing sub-classes. How can I define a parent-class, let's call it Letter, in order to avoid duplicating code between A and B?
Here is my 'simple example', which compiles and runs.
#include <iostream>
class A
{
public:
virtual ~A() = 0;
bool operator==(const A& a) const;
void performTasksSpecificToA();
private:
virtual bool checkEquality_(const A& a) const = 0;
};
template <class T>
class A_ : public A
{
protected:
bool checkEquality_(const A& a) const override;
private:
virtual bool checkEquality(const T& t) const = 0;
};
class AImpl : public A_<AImpl>
{
public:
AImpl(int val) : val(val){};
bool checkEquality(const AImpl& anAImpl) const override;
private:
int val;
};
A::~A(){}
bool A::operator==(const A& a) const{
return checkEquality_(a);
}
template <class T>
bool A_<T>::checkEquality_(const A& a) const{
const T* other = dynamic_cast<const T*>(&a);
if (other != nullptr){
const T& me = static_cast<const T&>(*this);
return other->checkEquality(me);
}
return false;
}
bool AImpl::checkEquality(const AImpl& anAImpl) const{
return val == anAImpl.val;
}
int main(){
// factory:
AImpl* aImpl1 = new AImpl(1);
AImpl* aImpl2 = new AImpl(2);
AImpl* aImpl3 = new AImpl(1);
// client:
A& A1 = *aImpl1;
A& A2 = *aImpl2;
A& A3 = *aImpl3;
std::cout << "A1 == A2 -> ";
std::cout << (A1 == A2 ? "true" : "false");
std::cout << std::endl;
std::cout << "A1 == A3 -> ";
std::cout << (A1 == A3 ? "true" : "false");
std::cout << std::endl;
delete aImpl1;
delete aImpl2;
delete aImpl3;
return 0;
}
If you can allow Letter to be a template, you can simply have A inherit from a template base:
template<class T>
class Letter
{
public:
bool operator==(const Letter<T>& t) const {
const T& t1 = static_cast<const T&>(*this);
const T& t2 = static_cast<const T&>(t);
return t1.checkEquality_(t2);
}
private:
virtual bool checkEquality_(const T& a) const = 0;
};
class A : public Letter<A>
{
public:
virtual ~A() = 0;
void performTasksSpecificToA();
};
...
If you absolutely need a common Letter, you probably have to add another layer of CRTP like you did with A_ and A.

Forcing class instances to be const

Is there any way to force to only allow const instances of class to be instantiated, and have non-const instances be detected as an error by the compiler?
is there any generic way to take an existing class, and "constify" it by removing all non-const functionality?
One possible workaround is to create a wrapper class that holds an instance of the class and only gives access to a const reference to it.
template<class T>
class Immutable {
public:
template<typename... Args>
Immutable(Args&&... args) : instance(forward<Args>(args)...) {
}
operator const T&() {
return instance;
}
const T& get() const {
return instance;
}
private:
Immutable& operator=(const Immutable& other) = delete;
T instance;
};
Suppose you have a mutable class Class:
class Class {
public:
Class() : m_value(0) {
}
Class(const Class& other) : m_value(other.m_value) {
}
Class(int value) : m_value(value) {
}
Class(int x, int y) : m_value(x + y) {
}
void change(int value) {
m_value = value;
}
int value() const {
return m_value;
}
private:
int m_value;
};
Here is how Immutable<Class> can be used:
void functionTakingConstReference(const Class& x) {
}
void functionTakingNonConstReference(Class& x) {
}
void functionTakingImmutableClass(Immutable<Class>& x) {
}
void functionTakingValue(Class x) {
}
int main(int argc, char *argv[])
{
// Any constructor of Class can also be used with Immutable<Class>.
Immutable<Class> a;
Immutable<Class> b(1);
Immutable<Class> c(2, 3);
Immutable<Class> d(c);
// Compiles and works as expected.
functionTakingConstReference(a);
functionTakingImmutableClass(a);
functionTakingValue(a);
cout << a.get().value() << endl;
// Doesn't compile because operator= is deleted.
// b = a;
// Doesn't compile because "change" is a non-const method.
// a.get().change(4);
// Doesn't compile because the function takes a non-const reference to Class as an argument.
// functionTakingNonConstReference(a);
return 0;
}
Is there any way to force to only allow const instances of class to be instantiated, and have non-const instances be detected as an error by the compiler?
No.
But you can declare all members as const. Then both const and non-const instances would behave largely in the same way and it shouldn't matter whether the instances are const.
I think you are looking for an immutable class. An easy way to get immutability is to declare all member variables as const. This way you ensure that the state of your objects will not change after construction.
This guarantee is independent of whether your object is const and even if you have non-const member functions for that class.
For example:
class Foo
{
public:
Foo(int id, double value) : m_id(id), m_value(value) { }
int Id() const { return m_id; }
double Value() const { return m_value; }
private:
const int m_id;
const double m_value;
};
Another way you could generate an immutable object of any type is through a template class. Something like this:
class Bar
{
public:
Bar(int id, double value) : m_id(id), m_value(value) { }
int Id() const { return m_id; }
double Value() const { return m_value; }
void SetId(int id) { m_id = id; }
private:
int m_id;
double m_value;
};
template<typename T>
class MyImmutable
{
public:
const T m_obj;
MyImmutable(const T& obj) : m_obj(obj)
{ }
};
int main()
{
cout << "Hello World!" << endl;
Foo a(1,2.0);
Bar x(2,3.0);
MyImmutable<Bar> y(x);
cout << "a.id = " << a.Id() << endl;
cout << "a.value = " << a.Value() << endl;
cout << "y.id = " << y.m_obj.Id() << endl;
cout << "y.value = " << y.m_obj.Value() << endl;
y.m_obj.SetId(2); // calling non-const member throws an error.
return 0;
}

template member function inheritance

I have a non-template class with a template member function similar to below.
class Component
{
public:
static const int HASH_ID = 0;
virtual int HashID() const {return Component::HASH_ID;}
virtual bool is(int hash_id) const {return Component::HASH_ID == hash_id;}
template<typename T> bool is() const {return this->is(T::HASH_ID);}
};
class Transform : public Component
{
public:
static const int HASH_ID = 1;
virtual int HashID() const {return Transform::HASH_ID;}
virtual bool is(int hash_id) const {return Transform::HASH_ID == hash_id;}
};
My issue is that the Transform class won't let me call the template function.
Here is the test code I wrote that won't compile
int main(void)
{
Transform test_component;
Transform* transform = &test_component;
Component* component = &test_component;
std::cout << component->is<Transform>() << std::endl; //No issues
//Won't compile unless I comment out this line
std::cout << transform->is<Transform>() << std::endl; //Says I am missing argument list
std::cout << transform->is(Transform::HASH_ID) << std::endl; //Works Fine!
return 0;
}
Any ideas why this doesn't work?
virtual bool is(int hash_id) const {return Transform::HASH_ID == hash_id;}
is hiding
template<typename T> bool is() const {return this->is(T::HASH_ID);}
If a derived class declares a method with the same name as a method defined by the base class, the derived class' method hides the base class' one.

Callback in C++, template member?

Following code does NOT work, but it expresses well what I wish to do. There is a problem with the template struct container, which I think SHOULD work because it's size is known for any template argument.
class callback {
public:
// constructs a callback to a method in the context of a given object
template<class C>
callback(C& object, void (C::*method)())
: ptr.o(object), ptr.m(method) {}
// calls the method
void operator()() {
(&ptr.o ->* ptr.m) ();
}
private:
// container for the pointer to method
template<class C>
struct {
C& o;
void (C::*m)();
} ptr;
};
Is there any way to do such a thing? I mean have a non-template class callback which wraps any pointer to method?
Thanks C++ gurus!
Edit:
Please see this:
Callback in C++, template member? (2)
This is a complete working example that does what I think you're trying to do:
#include <iostream>
#include <memory>
// INTERNAL CLASSES
class CallbackSpecBase
{
public:
virtual ~CallbackSpecBase() {}
virtual void operator()() const = 0;
};
template<class C>
class CallbackSpec : public CallbackSpecBase
{
public:
CallbackSpec(C& o, void (C::*m)()) : obj(o), method(m) {}
void operator()() const { (&obj->*method)(); }
private:
C& obj;
void (C::*method)();
};
// PUBLIC API
class Callback
{
public:
Callback() {}
void operator()() { (*spec)(); }
template<class C>
void set(C& o, void (C::*m)()) { spec.reset(new CallbackSpec<C>(o, m)); }
private:
std::auto_ptr<CallbackSpecBase> spec;
};
// TEST CODE
class Test
{
public:
void foo() { std::cout << "Working" << std::endl; }
void bar() { std::cout << "Like a charm" << std::endl; }
};
int main()
{
Test t;
Callback c;
c.set(t, &Test::foo);
c();
c.set(t, &Test::bar);
c();
}
I recently implemented this:
#define UNKOWN_ITEM 0xFFFFFFFF
template <typename TArg>
class DelegateI
{
public:
virtual void operator()(TArg& a)=0;
virtual bool equals(DelegateI<TArg>* d)=0;
};
template <class TArg>
class Event
{
public:
Event()
{
}
~Event()
{
for (size_t x=0; x<m_vDelegates.size(); x++)
delete m_vDelegates[x];
}
void operator()(TArg& a)
{
for (size_t x=0; x<m_vDelegates.size(); x++)
{
m_vDelegates[x]->operator()(a);
}
}
void operator+=(DelegateI<TArg>* d)
{
if (findInfo(d) != UNKOWN_ITEM)
{
delete d;
return;
}
m_vDelegates.push_back(d);
}
void operator-=(DelegateI<TArg>* d)
{
uint32 index = findInfo(d);
delete d;
if (index == UNKOWN_ITEM)
return;
m_vDelegates.erase(m_vDelegates.begin()+index);
}
protected:
int findInfo(DelegateI<TArg>* d)
{
for (size_t x=0; x<m_vDelegates.size(); x++)
{
if (m_vDelegates[x]->equals(d))
return (int)x;
}
return UNKOWN_ITEM;
}
private:
std::vector<DelegateI<TArg>*> m_vDelegates;
};
template <class TObj, typename TArg>
class ObjDelegate : public DelegateI<TArg>
{
public:
typedef void (TObj::*TFunct)(TArg&);
ObjDelegate(TObj* t, TFunct f)
{
m_pObj = t;
m_pFunct = f;
}
virtual bool equals(DelegateI<TArg>* di)
{
ObjDelegate<TObj,TArg> *d = dynamic_cast<ObjDelegate<TObj,TArg>*>(di);
if (!d)
return false;
return ((m_pObj == d->m_pObj) && (m_pFunct == d->m_pFunct));
}
virtual void operator()(TArg& a)
{
if (m_pObj && m_pFunct)
{
(*m_pObj.*m_pFunct)(a);
}
}
TFunct m_pFunct; // pointer to member function
TObj* m_pObj; // pointer to object
};
template <typename TArg>
class FunctDelegate : public DelegateI<TArg>
{
public:
typedef void (*TFunct)(TArg&);
FunctDelegate(TFunct f)
{
m_pFunct = f;
}
virtual bool equals(DelegateI<TArg>* di)
{
FunctDelegate<TArg> *d = dynamic_cast<FunctDelegate<TArg>*>(di);
if (!d)
return false;
return (m_pFunct == d->m_pFunct);
}
virtual void operator()(TArg& a)
{
if (m_pFunct)
{
(*m_pFunct)(a);
}
}
TFunct m_pFunct; // pointer to member function
};
template <typename TArg>
class ProxieDelegate : public DelegateI<TArg>
{
public:
ProxieDelegate(Event<TArg>* e)
{
m_pEvent = e;
}
virtual bool equals(DelegateI<TArg>* di)
{
ProxieDelegate<TArg> *d = dynamic_cast<ProxieDelegate<TArg>*>(di);
if (!d)
return false;
return (m_pEvent == d->m_pEvent);
}
virtual void operator()(TArg& a)
{
if (m_pEvent)
{
(*m_pEvent)(a);
}
}
Event<TArg>* m_pEvent; // pointer to member function
};
template <class TObj, class TArg>
DelegateI<TArg>* delegate(TObj* pObj, void (TObj::*NotifyMethod)(TArg&))
{
return new ObjDelegate<TObj, TArg>(pObj, NotifyMethod);
}
template <class TArg>
DelegateI<TArg>* delegate(void (*NotifyMethod)(TArg&))
{
return new FunctDelegate<TArg>(NotifyMethod);
}
template <class TArg>
DelegateI<TArg>* delegate(Event<TArg>* e)
{
return new ProxieDelegate<TArg>(e);
}
use it like so:
define:
Event<SomeClass> someEvent;
enlist callbacks:
someEvent += delegate(&someFunction);
someEvent += delegate(classPtr, &class::classFunction);
someEvent += delegate(&someOtherEvent);
trigger:
someEvent(someClassObj);
You can also make your own delegates and overide what they do. I made a couple of others with one being able to make sure the event triggers the function in the gui thread instead of the thread it was called.
You need to use polymorphism. Use an abstract base class with a virtual invocation method (operator() if you please), with a templated descendant that implements the virtual method using the correct type signature.
The way you have it now, the data holding the type is templated, but the code meant to invoke the method and pass the object isn't. That won't work; the template type parameters need to flow through both construction and invocation.
#Barry Kelly
#include <iostream>
class callback {
public:
virtual void operator()() {};
};
template<class C>
class callback_specialization : public callback {
public:
callback_specialization(C& object, void (C::*method)())
: o(object), m(method) {}
void operator()() {
(&o ->* m) ();
}
private:
C& o;
void (C::*m)();
};
class X {
public:
void y() { std::cout << "ok\n"; }
};
int main() {
X x;
callback c(callback_specialization<X>(x, &X::y));
c();
return 0;
}
I tried this, but it does not work (print "ok")... why?
Edit:
As Neil Butterworth mentioned, polymorphism works through pointers and references,
X x;
callback& c = callback_specialization<X>(x, &X::y);
c();
Edit:
With this code, I get an error:
invalid initialization of non-const reference of type ‘callback&’
from a temporary of type ‘callback_specialization<X>’
Now, I don't understand that error, but if I replace callback& c with const callback& c and virtual void operator()() with virtual void operator()() const, it works.
You didn't say what errors you found, but I found that this worked:
template<typename C>
class callback {
public:
// constructs a callback to a method in the context of a given object
callback(C& object, void (C::*method)())
: ptr(object,method) {}
// calls the method
void operator()() {
(&ptr.o ->* ptr.m) ();
}
private:
// container for the pointer to method
// template<class C>
struct Ptr{
Ptr(C& object, void (C::*method)()): o(object), m(method) {}
C& o;
void (C::*m)();
} ptr;
};
Note that Ptr needs a constructor as it has a reference member.
You could do without struct Ptr and have the raw members.
Tested with VS2008 express.
Improving the OP's answer:
int main() {
X x;
callback_specialization<X> c(x, &X::y);
callback& ref(c);
c();
return 0;
}
This prints "ok".
Tested on VS2008 express.
Please see this
Callback in C++, template member? (2)