I'm designing and programming an elevator-like robot for a high school project. Could I possibly do anything to make this any simpler? Or better? I have attached a picture of my design that I made in AutoCAD Inventor with labels.
For those not familiar with RobotC or VEX (it is VERY similar to C and C++): the limit switches (limit1, limit2, ...) and bump switches (floor1, floor2, ...) are analog buttons and return a value of 0 if not pressed and 1 if pressed. The motor (mainMotor) rotates the gear which causes the mechanism to travel upwards on the slide. When the shaft sticking out the motor mechanism moves up and down, it presses limit switches and causes it to return a value of 1.
int callup [3];
int calldown [3];
int floorat[3];
int main ()
{
if (SensorValue[limit1] == 1)
{
floorat[0] = 1;
}
else
{
floorat[0] = 0;
}
if (SensorValue[limit2] == 1)
{
floorat[1] = 1;
}
else
{
floorat[1] = 0;
}
if (SensorValue[limit3] == 1)
{
floorat[2] = 1;
}
else
{
floorat[2] = 0;
}
if (SensorValue[floor1] == 1)
{
calldown[0] = 1;
SensorValue[LED1] = 1;
}
if (SensorValue[floor2] == 1 && floorat[2] == 1)
{
calldown[1] = 1;
SensorValue[LED2] = 1;
}
if (SensorValue[floor2] == 1 && floorat[0] == 1)
{
callup[1] = 1;
SensorValue[LED2] = 1;
}
if (SensorValue[floor3])
{
callup[2] = 1;
SensorValue[LED3] = 1;
}
motors ();
}
void motors ()
{
if (callup[2] == 1 && floorat[2] == 1)
{
int x = 1;
while (x < 3)
{
SensorValue[LED3] = 1;
wait(0.5);
SensorValue[LED3] = 0;
wait(0.5);
}
callup[2] = 0;
main ();
}
else if (callup[1] == 1 && floorat[1] == 1)
{
int x = 1;
while (x < 3)
{
SensorValue[LED2] = 1;
wait(0.5);
SensorValue[LED2] = 0;
wait(0.5);
}
callup[1] = 0;
main ();
}
else if (callup[0] == 1 && floorat[0] == 1)
{
int x = 1;
while (x < 3)
{
SensorValue[LED1] = 1;
wait(0.5);
SensorValue[LED1] = 0;
wait(0.5);
}
callup[0] = 0;
main ();
}
if (callup[2] == 1 && floorat[1] == 1 && calldown[0] == 0 || callup[2] == 1 && floorat[0] == 1 && callup[1] == 0)
{
startMotor(mainMotor, 60);
untilTouch(limit3);
stopMotor(mainMotor);
callup[2] = 0;
wait(1);
main ();
}
if (callup[1] == 1 && floorat[0] == 1)
{
startMotor(mainMotor, 60);
untilTouch(limit2);
stopMotor(mainMotor);
callup[1] = 0;
wait(1);
main();
}
if (calldown[1] == 1 && floorat[2] == 1)
{
startMotor(mainMotor, -60);
untilTouch(limit2);
stopMotor(mainMotor);
calldown[1] = 0;
wait(1);
main();
}
if (calldown[0] == 1 && floorat[2] == 1 && calldown[1] == 0 || calldown[0] == 1 && floorat[1] == 1)
{
startMotor(mainMotor, -60);
untilTouch(limit1);
stopMotor(mainMotor);
calldown[0] = 0;
wait(1);
main();
}
}
Although it shouldn't be a concern for this question, the 60 in the startMotor command is the speed of the motor, just to make it clearer.
Feel free to ask any more questions.
Let's define what are the states of an elevator at a given moment:
An elevator can go up, down, or be idle.
The elevator is at a given floor and go from one floor to the other when it trigger a switch:
Now, if we translate this into some pseudo code (which should be easily translated to RobotC) :
enum elevator_status = { idle, down, up };
int currentfloor; //1, 2, 3
switch(elevator_status)
{
case idle:
//we check if a button is pressed and possibly go up or down
if(SensorValue(floor1))
{
if(currentfloor > 1)
elevator_status = down;
}
else if(SensorValue(floor2))
{
if(currentfloor > 2)
elevator_status = down;
else if(currentfloor < 2)
elevator_status = up;
}
else if(SensorValue(floor3))
{
if(currentfloor < 3)
elevator_status = up;
}
break;
case up:
case down:
//we check if we trigger a floor switch and stop the elevator
if(SensorValue(limit1))
{
currentfloor = 1;
elevator_status = idle;
}
else if(SensorValue(limit2))
{
currentfloor = 2;
elevator_status = idle;
}
else if(SensorValue(limit3))
{
currentfloor = 3;
elevator_status = idle;
}
break;
}
//we set the speed of the motor
if(elevator_status == up)
{
set_motorstate(cw);
)
else if(elevator_status == down)
{
set_motorstate(ccw);
}
else if(elevator_status == idle)
{
set_motorstate(idle);
}
Note : in this code the elevator will only take care of new up and down floor calls when the elevator is idle. It does not store up and down call while it is moving and go there later. I do not know if it was a requirement for you.
I'm not familiar with RobotC or VEX, however I've noticed a certain amount of replicated operations that could be made into their own functions.
The following code snippets I would make into separate functions. So in the large function called motors you have the following set of operations:
int x = 1;
while (x < 3)
{
SensorValue[LED3] = 1;
wait(0.5);
SensorValue[LED3] = 0;
wait(0.5);
}
callup[2] = 0;
main ();
This is repeated with slightly different values.
Here I'd write a function like the following:
void adjust_sensors( size_t led, size_t level )
{
int x = 1;
while (x < 3)
{
SensorValue[led] = 1;
wait(0.5);
SensorValue[led] = 0;
wait(0.5);
}
callup[level] = 0;
main ();
}
You can do the same for the following code as well:
startMotor(mainMotor, 60);
untilTouch(limit3);
stopMotor(mainMotor);
callup[2] = 0;
wait(1);
main ();
Also it seems like the while loop will never end because the value of x never changes.
You also have a typo at the top when you declare:
int callown [2];
I presume you meant:
int calldown [2];
Would be good to add some comments to your code as well for clarity.
Hope this helps.
I could be way off, because I'm just a student with questions of my own but it looks like you may have made a mistake in your array sizes. For instance, when you declared:
int floorat[2];
This made the array size 2. Then you refer to 3 element locations in this array [0, 1, 2]. Also, can't you just use a regular integer, and assign it values 1, 2, or 3?
I would recommend redefining these varaibles as:
int callup;
int calldown;
int floorat;
Then you can avoid extra lines of code and simplify the if/else clauses to:
if (SensorValue[limit1] == 1)
{
floorat = 1;
}
if (SensorValue[limit2] == 1)
{
floorat = 2;
}
if (SensorValue[limit3] == 1)
{
floorat = 3;
}
Related
The user is supposed to input a number between 0 and 81, and it should generate a sudoku board with that many (valid) numbers filled in (Even if the sudoku board may not be solvable).
It works fine for small numbers of n, but if it has to backtrack, it gets stuck oscillating between ~42 and ~56.
In this program, it's important to note that n is the number that the user has specified, nOn is the number the function is on.
the array named positions[] contains the numbers 0-80 in a randomized order (compliments of the shuffle function) and is designed to represent the randomized order in which to fill the grid.
bool Sudoku::generateSudoku(int n, int nOn)
{
int xpos = positions[nOn] / 9;
int ypos = positions[nOn] % 9;
int queryCount = 0;
char query = rand()%9 + '1';
bool success = false;
if (nOn >= n)
{
return true;
}
else
{
while (queryCount < 9 && !success)
{
if (isValid(xpos, ypos, query, 0))
{
sudoku[xpos][ypos][0] = query;
success = generateSudoku(n, nOn + 1);
}
if (query == '9')
{
query = '1';
}
else
{
query++;
}
queryCount++;
}
if (!success)
{
sudoku[xpos][ypos][0] = '*';
return false;
}
else
{
return true;
}
}
}
I've gone over it several times with 2 of my friends and I can't find why it's getting choked up. Any help would be appreciated!
edit: I've added a similar function that I know works for comparison. This one starts in the upper left hand corner and recursively backtracks when it runs into invalid solutions. it's able to solve any (solvable) puzzle in a matter of seconds
int Sudoku::solveSudoku(int x, int y)
{
bool success = false;
char query = '1';
int counter = 0;
if (x == 8 && y == 9)
{
return 1;
}
else if (y == 9)
{
y = 0;
x++;
}
if (sudoku[x][y][0] != '*')
{
sudoku[x][y][1] = sudoku[x][y][0];
success = solveSudoku(x, y + 1);
}
else
{
while (query <= '9' && !success)
{
if (isValid(x, y, query, 1))
{
sudoku[x][y][1] = query;
success = solveSudoku(x, y + 1);
}
else
{
query++;
}
}
}
if (success)
{
return 1;
}
else
{
sudoku[x][y][1] = sudoku[x][y][0];
return false;
}
}
The other day, I wrote a console game of Tic-Tac-Toe in c++ for my son. He wanted me to add a computer, and I ended us using the minimax algorithm for the first time. I did some quick testing, but really just gave my laptop to my son as soon as it was printing stuff, who played with it for a couple minuets. I looked over his sholder once or twice, and noticed that it wasn't playing optimally, iv'e been trying to debug it, but I can't see where it goes wrong. I tried getting rid of alpha beta prunning, but that did not change anything.
For context, on the board the computer is -1, blank is 0, and the player is 1.
Here is the minimax function:
int minimax(int board[9], int depth, int alpha, int beta, bool isMaxizimaizingPlayer)
{
bool found = false;
for (int i = 0; i < 9; i++)
{
if (board[i] == 0)
{
found = true;
}
}
if (!found)
{
return eval(board);
}
if (depth == 0 || eval(board) != 0)
{
return eval(board);
}
if (isMaxizimaizingPlayer)
{
int maxEval = -2;
for (int spot = 0; spot < 9; spot++)
{
if (board[spot] == 0)
{
board[spot] = 1;
int e = minimax(board, depth - 1, alpha, beta, false);
if (e > maxEval)
{
maxEval = e;
}
//if (beta < alpha)
//{
// break;
//}
board[spot] = 0;
}
}
return maxEval;
}
else {
int minEval = 2;
for (int spot = 0; spot < 9; spot++)
{
if (board[spot] == 0)
{
board[spot] = -1;
int e = minimax(board, depth - 1, alpha, beta, true);
if (e < minEval)
{
minEval = e;
}
//if (beta < alpha)
//{
// break;
//}
board[spot] = 0;
}
}
return minEval;
}
}
To be compleate, here is my eval function:
int eval(int board[9])
{
/*horizontial*/
for (int i = 0; i < 3; i++)
{
if (board[i * 3] == board[i * 3 + 1] && board[i * 3 + 2] == board[i * 3] && board[i * 3] != 0)
{
return board[i * 3];
}
}
/*vertical*/
for (int i = 0; i < 3; i++)
{
if (board[i] == board[i + 3] && board[i] == board[i + 6] && board[i] != 0)
{
return board[i];
}
}
/*Both diags*/
if (board[4] != 0) {
if (board[0] == board[4] && board[0] == board[8])
{
return board[4];
}
if (board[2] == board[4] && board[4] == board[6])
{
return board[4];
}
}
return 0;
}
And here is the inital call:
int spot = 0;
int minEval = 2;
for (int i = 0; i < 9; i++)
{
if (board[i] == 0)
{
board[i] = -1;
int score = minimax(board, 3, -2, 2, false);
if (score < minEval) {
minEval = score;
spot = i;
}
board[i] = 0;
}
}
std::cout << "The computer went in spot " << spot + 1 << std::endl;
board[spot] = -1;
printBoard(board);
It looks like you only call minimax with a depth of three, so the algorithm will only look up to three moves ahead, if you want optimal play you need to set the depth to > 9, so that the agent is always looking ahead to the end of the game.
The goal of this program is for the knight to move around the chest board and only touching each spot once.
Each spot is initialized and set to zero by default.
As the knight moves, each spot the knight touches should correspond with the number of moves taken to reach that point.
However, I am having quite a few problems
1) My Knight is moving around the board and going either out of bound of the multidimensional chess board array or manipulates the movement arrays (horizontal[] and vertical[])
2) The conditions of my boolean functions MoveOnBoard && MoveHasNotBeenMade are that if the next possible move is between the exisiting rows and columns also if the spot being moved to has a value of 0(meaning it has yet to be moved to). However, both of these conditions
seem to be ignored.
How would I go about fixing this?
Thank you in advance!
Here's the code below
using namespace std;
#include <iostream>
#include <array>
void DefinedMoveSet();
void RenderBoard();
void MoveKnight(int& moveChoice, int& numberOfMovesMade);
void PossibleMoves();
bool MoveOnBoard(int& moveChoice);
bool MoveHasNotBeenMade(int& moveChoice);
// Two single dimenisional arrays to store move positions for the Knight
// Arrays have yet to be assigned values
int vertical[8], horizontal[8];
int currentRow = 4, currentColumn = 3;
// Initializing an array with the dimension 8 * 8
int chestBoard[8][8] = { 0 };
int main()
{
DefinedMoveSet();
PossibleMoves();
RenderBoard();
cin.ignore();
return 0;
}
void RenderBoard()
{
// The outer loop goes through each row until it reaches 8
for (int boardRow = 0; boardRow < 8; boardRow++)
{
// The inner loop takes in the specific row
for (int boardColumn = 0; boardColumn < 8; boardColumn++)
{
// Then iterates through the columns of that row until it reaches 8
// Each index is seperated by a tab escape key shortcut
cout << chestBoard[boardRow][boardColumn] << "\t";
}
// Back to the inner array a new line is printed for the next row
cout << "\n";
}
}
void DefinedMoveSet()
{
// Values for the horizontal array at each index
horizontal[0] = 2;
horizontal[1] = 1;
horizontal[2] = -1;
horizontal[3] = -2;
horizontal[4] = -2;
horizontal[5] = -1;
horizontal[6] = 1;
horizontal[7] = 2;
// Values for the vertical array at each index
vertical[0] = -1;
vertical[1] = -2;
vertical[2] = -2;
vertical[3] = -1;
vertical[4] = 1;
vertical[5] = 2;
vertical[6] = 2;
vertical[7] = 1;
}
bool MoveOnBoard(int& moveChoice)
{
int futureRow = currentRow + vertical[moveChoice];
int futureColumn = currentColumn + horizontal[moveChoice];
if ((0 < futureRow) && (0 < futureColumn) && (futureRow < 8) && (futureColumn < 8))
return true;
}
bool MoveHasNotBeenMade(int& moveChoice)
{
int futureRow = currentRow + vertical[moveChoice];
int futureColumn = currentColumn + horizontal[moveChoice];
if (chestBoard[futureRow][futureColumn] == 0)
return true;
}
void PossibleMoves()
{
bool movesStillExist = true;
int numberOfMovesMade = 1;
while (numberOfMovesMade < 65 && movesStillExist)
{
for (int i = 0; i < 8; i++)
{
if (i == 8)
movesStillExist = false;
if (MoveOnBoard(i) && MoveHasNotBeenMade(i))
{
numberOfMovesMade++;
MoveKnight(i, numberOfMovesMade);
}
}
}
}
void MoveKnight(int &moveChoice, int &numberOfMovesMade)
{
// Takes in the int moveNumber as a parameter
// MoveNumber(or case) must be between 0 and 7
// if there is not a case for the value then the knight will not move
//chestBoard[currentRow][currentColumn] = numberOfMovesMade;
currentRow += vertical[moveChoice];
currentColumn += horizontal[moveChoice];
chestBoard[currentRow][currentColumn] = numberOfMovesMade;
}
in MoveOnBoardand and in MoveHasNotBeenMade instead of
if(...)
return true;
should be
if(...)
return true;
return false;
if condtion == false, function returning not void reach end without return statement.
With the advice from the comments I received, I was able to fix the index issues as well as the return value of the boolean functions.
My main problem was that I was not breaking out of the previous loop after moving.
Easily solved by this if statement
if (MoveOnBoard(i) && MoveHasNotBeenMade(i))
{
MoveKnight(i);
break;
}
I was trying to achieve this by telling the compiler
if (i == 8)
movesStillExist = false;
As pointed out by #Aziuth this condition will never be met because a move at that index does not exist.
So instead for my purposes I changed that condition to be
if (i == 7)
movesStillExist = false;
Also for the index issues my logic was a little off
if (((0 <= futureRow) && (0 <= futureColumn)) && ((futureRow < 8) && (futureColumn < 8)))
return true; // if the future row and column are in bounds then return true
return false; // else the default is false
Also, my code is not idealistic for c++.
Having so many global variables and not enough commenting.
Please understand that the use of single and multidimensional arrays are required due to this being a challenge for my c++ course.
bool MoveOnBoard(int& moveChoice)
{
int futureRow = currentRow + vertical[moveChoice];
int futureColumn = currentColumn + horizontal[moveChoice];
if (((0 <= futureRow) && (0 <= futureColumn)) && ((futureRow < 8) && (futureColumn < 8)))
return true;
return false;
}
bool MoveHasNotBeenMade(int& moveChoice)
{
int futureRow = currentRow + vertical[moveChoice];
int futureColumn = currentColumn + horizontal[moveChoice];
if (chestBoard[futureRow][futureColumn] == 0)
return true;
return false;
}
void PossibleMoves()
{
bool movesStillExist = true;
while (numberOfMovesMade < 65 && movesStillExist)
{
for (int i = 0; i < 8; i++)
{
if (MoveOnBoard(i) && MoveHasNotBeenMade(i))
{
MoveKnight(i);
break;
}
if (i == 7)
movesStillExist = false;
}
}
}
void MoveKnight(int &moveChoice)
{
// Takes in the int moveNumber as a parameter
// MoveNumber(or case) must be between 0 and 7
// if there is not a case for the value then the knight will not move
chestBoard[currentRow][currentColumn] = numberOfMovesMade;
numberOfMovesMade++;
currentRow += vertical[moveChoice];
currentColumn += horizontal[moveChoice];
chestBoard[currentRow][currentColumn] = numberOfMovesMade;
}
I am trying to make this go through the array in a spiral order. When it finds 2, it should replace it with 0 and the next number in the spiral order should become 2. So, if my array is
000
200
000
is should become
000
020
000
The variable ok tells me if I found that number 2 and simply modifies the next number to 2. Note that it doesn't loop through it. When It reaches the center of the array, it stops and doesn't go backwards or starts over.
Any ideas why it doesn't work? It simply doesn't modify my array at all.
#include<iostream>
using namespace std;
#define ROWS 3
#define COLS 3
int main()
{
int arr[ROWS][COLS] = {{2,0,0},
{0,0,0},
{0,0,0}};
// Four direction counters of current movement
// Horizontal right, vertical bottom, horizontal left and vertical top respectively
int hr, vb, hl, vt, ok=0;
// levl indicates current depth of our imaginary rectangle into array. Starting value is zero
// since we are looping on the boundaries and ending value is the inner most rectangle
int levl;
for (levl=0; levl < COLS - levl; levl++)
{
for(hr=levl; hr < COLS-levl; hr++) // go right
{
if (ok==1)
{
arr[levl][hr] == 2;
ok = 2;
}
if ( (arr[levl][hr] == 2) && (ok == 0) )
{
arr[levl][hr] == 0;
ok = 1;
}
}
for(vb=levl+1; vb < COLS-levl; vb++) // go down
{
if (ok == 1)
{
arr[vb][hr-1] == 2;
ok = 2;
}
if ( (arr[vb][hr-1] == 2) && (ok == 0) )
{
arr[vb][hr-1] == 0;
ok = 1;
}
}
for(hl=vb-1; hl-1 >= levl; hl--) // go left
{
if ( ok == 1)
{
arr[vb-1][hl-1] == 2;
ok = 2;
}
if ( (arr[vb-1][hl-1] == 2) && (ok == 0) )
{
arr[vb-1][hl-1] == 0;
ok = 1;
}
}
for(vt=vb-1; vt-1 > levl; vt--) // go up
{
if (ok == 1)
{
arr[vt-1][hl] == 2;
ok = 2;
}
if ( (arr[vt-1][hl] == 2) && (ok==0) )
{
arr[vt-1][hl] == 0;
ok = 1;
}
}
}
cout << endl;
for(int t = 0;t < 3;t++)
{
for(int u = 0;u < 3;u++)
cout<<arr[t][u]<<" ";
cout<<endl;
}
int a;
cin>>a;
return 0;
}
The reason that your array is not being modified is because you are using "==" instead of "=". So
if ((arr[levl][hr] == 2)&&(ok==0))
{
arr[levl][hr] == 0;
ok=1;
}
should be
if ((arr[levl][hr] == 2)&&(ok==0))
{
arr[levl][hr] = 0;
ok=1;
}
== Is a comparison operator and = assigns the value. Check your code very carefully and make it more readable for you could be able to find easy mistakes like that :).
I need to place numbers within a grid such that it doesn't collide with each other. This number placement should be random and can be horizontal or vertical. The numbers basically indicate the locations of the ships. So the points for the ships should be together and need to be random and should not collide.
I have tried it:
int main()
{
srand(time(NULL));
int Grid[64];
int battleShips;
bool battleShipFilled;
for(int i = 0; i < 64; i++)
Grid[i]=0;
for(int i = 1; i <= 5; i++)
{
battleShips = 1;
while(battleShips != 5)
{
int horizontal = rand()%2;
if(horizontal == 0)
{
battleShipFilled = false;
while(!battleShipFilled)
{
int row = rand()%8;
int column = rand()%8;
while(Grid[(row)*8+(column)] == 1)
{
row = rand()%8;
column = rand()%8;
}
int j = 0;
if(i == 1) j= (i+1);
else j= i;
for(int k = -j/2; k <= j/2; k++)
{
int numberOfCorrectLocation = 0;
while(numberOfCorrectLocation != j)
{
if(row+k> 0 && row+k<8)
{
if(Grid[(row+k)*8+(column)] == 1) break;
numberOfCorrectLocation++;
}
}
if(numberOfCorrectLocation !=i) break;
}
for(int k = -j/2; k <= j/2; k++)
Grid[(row+k)*8+(column)] = 1;
battleShipFilled = true;
}
battleShips++;
}
else
{
battleShipFilled = false;
while(!battleShipFilled)
{
int row = rand()%8;
int column = rand()%8;
while(Grid[(row)*8+(column)] == 1)
{
row = rand()%8;
column = rand()%8;
}
int j = 0;
if(i == 1) j= (i+1);
else j= i;
for(int k = -j/2; k <= j/2; k++)
{
int numberOfCorrectLocation = 0;
while(numberOfCorrectLocation != i)
{
if(row+k> 0 && row+k<8)
{
if(Grid[(row)*8+(column+k)] == 1) break;
numberOfCorrectLocation++;
}
}
if(numberOfCorrectLocation !=i) break;
}
for(int k = -j/2; k <= j/2; k++)
Grid[(row)*8+(column+k)] = 1;
battleShipFilled = true;
}
battleShips++;
}
}
}
}
But the code i have written is not able to generate the numbers randomly in the 8x8 grid.
Need some guidance on how to solve this. If there is any better way of doing it, please tell me...
How it should look:
What My code is doing:
Basically, I am placing 5 ships, each of different size on a grid. For each, I check whether I want to place it horizontally or vertically randomly. After that, I check whether the surrounding is filled up or not. If not, I place them there. Or I repeat the process.
Important Point: I need to use just while, for loops..
You are much better of using recursion for that problem. This will give your algorithm unwind possibility. What I mean is that you can deploy each ship and place next part at random end of the ship, then check the new placed ship part has adjacent tiles empty and progress to the next one. if it happens that its touches another ship it will due to recursive nature it will remove the placed tile and try on the other end. If the position of the ship is not valid it should place the ship in different place and start over.
I have used this solution in a word search game, where the board had to be populated with words to look for. Worked perfect.
This is a code from my word search game:
bool generate ( std::string word, BuzzLevel &level, CCPoint position, std::vector<CCPoint> &placed, CCSize lSize )
{
std::string cPiece;
if ( word.size() == 0 ) return true;
if ( !level.inBounds ( position ) ) return false;
cPiece += level.getPiece(position)->getLetter();
int l = cPiece.size();
if ( (cPiece != " ") && (word[0] != cPiece[0]) ) return false;
if ( pointInVec (position, placed) ) return false;
if ( position.x >= lSize.width || position.y >= lSize.height || position.x < 0 || position.y < 0 ) return false;
placed.push_back(position);
bool used[6];
for ( int t = 0; t < 6; t++ ) used[t] = false;
int adj;
while ( (adj = HexCoord::getRandomAdjacentUnique(used)) != -1 )
{
CCPoint nextPosition = HexCoord::getAdjacentGridPositionInDirection((eDirection) adj, position);
if ( generate ( word.substr(1, word.size()), level, nextPosition, placed, lSize ) ) return true;
}
placed.pop_back();
return false;
}
CCPoint getRandPoint ( CCSize size )
{
return CCPoint ( rand() % (int)size.width, rand() % (int)size.height);
}
void generateWholeLevel ( BuzzLevel &level,
blockInfo* info,
const CCSize &levelSize,
vector<CCLabelBMFont*> wordList
)
{
for ( vector<CCLabelBMFont*>::iterator iter = wordList.begin();
iter != wordList.end(); iter++ )
{
std::string cWord = (*iter)->getString();
// CCLog("Curront word %s", cWord.c_str() );
vector<CCPoint> wordPositions;
int iterations = 0;
while ( true )
{
iterations++;
//CCLog("iteration %i", iterations );
CCPoint cPoint = getRandPoint(levelSize);
if ( generate (cWord, level, cPoint, wordPositions, levelSize ) )
{
//Place pieces here
for ( int t = 0; t < cWord.size(); t++ )
{
level.getPiece(wordPositions[t])->addLetter(cWord[t]);
}
break;
}
if ( iterations > 1500 )
{
level.clear();
generateWholeLevel(level, info, levelSize, wordList);
return;
}
}
}
}
I might add that shaped used in the game was a honeycomb. Letter could wind in any direction, so the code above is way more complex then what you are looking for I guess, but will provide a starting point.
I will provide something more suitable when I get back home as I don't have enough time now.
I can see a potential infinite loop in your code
int j = 0;
if(i == 1) j= (i+1);
else j= i;
for(int k = -j/2; k <= j/2; k++)
{
int numberOfCorrectLocation = 0;
while(numberOfCorrectLocation != i)
{
if(row+k> 0 && row+k<8)
{
if(Grid[(row)*8+(column+k)] == 1) break;
numberOfCorrectLocation++;
}
}
if(numberOfCorrectLocation !=i) break;
}
Here, nothing prevents row from being 0, as it was assignd rand%8 earlier, and k can be assigned a negative value (since j can be positive). Once that happens nothing will end the while loop.
Also, I would recommend re-approaching this problem in a more object oriented way (or at the very least breaking up the code in main() into multiple, shorter functions). Personally I found the code a little difficult to follow.
A very quick and probably buggy example of how you could really clean your solution up and make it more flexible by using some OOP:
enum Orientation {
Horizontal,
Vertical
};
struct Ship {
Ship(unsigned l = 1, bool o = Horizontal) : length(l), orientation(o) {}
unsigned char length;
bool orientation;
};
class Grid {
public:
Grid(const unsigned w = 8, const unsigned h = 8) : _w(w), _h(h) {
grid.resize(w * h);
foreach (Ship * sp, grid) {
sp = nullptr;
}
}
bool addShip(Ship * s, unsigned x, unsigned y) {
if ((x <= _w) && (y <= _h)) { // if in valid range
if (s->orientation == Horizontal) {
if ((x + s->length) <= _w) { // if not too big
int p = 0; //check if occupied
for (int c1 = 0; c1 < s->length; ++c1) if (grid[y * _w + x + p++]) return false;
p = 0; // occupy if not
for (int c1 = 0; c1 < s->length; ++c1) grid[y * _w + x + p++] = s;
return true;
} else return false;
} else {
if ((y + s->length) <= _h) {
int p = 0; // check
for (int c1 = 0; c1 < s->length; ++c1) {
if (grid[y * _w + x + p]) return false;
p += _w;
}
p = 0; // occupy
for (int c1 = 0; c1 < s->length; ++c1) {
grid[y * _w + x + p] = s;
p += _w;
}
return true;
} else return false;
}
} else return false;
}
void drawGrid() {
for (int y = 0; y < _h; ++y) {
for (int x = 0; x < _w; ++x) {
if (grid.at(y * w + x)) cout << "|S";
else cout << "|_";
}
cout << "|" << endl;
}
cout << endl;
}
void hitXY(unsigned x, unsigned y) {
if ((x <= _w) && (y <= _h)) {
if (grid[y * _w + x]) cout << "You sunk my battleship" << endl;
else cout << "Nothing..." << endl;
}
}
private:
QVector<Ship *> grid;
unsigned _w, _h;
};
The basic idea is create a grid of arbitrary size and give it the ability to "load" ships of arbitrary length at arbitrary coordinates. You need to check if the size is not too much and if the tiles aren't already occupied, that's pretty much it, the other thing is orientation - if horizontal then increment is +1, if vertical increment is + width.
This gives flexibility to use the methods to quickly populate the grid with random data:
int main() {
Grid g(20, 20);
g.drawGrid();
unsigned shipCount = 20;
while (shipCount) {
Ship * s = new Ship(qrand() % 8 + 2, qrand() %2);
if (g.addShip(s, qrand() % 20, qrand() % 20)) --shipCount;
else delete s;
}
cout << endl;
g.drawGrid();
for (int i = 0; i < 20; ++i) g.hitXY(qrand() % 20, qrand() % 20);
}
Naturally, you can extend it further, make hit ships sink and disappear from the grid, make it possible to move ships around and flip their orientation. You can even use diagonal orientation. A lot of flexibility and potential to harness by refining an OOP based solution.
Obviously, you will put some limits in production code, as currently you can create grids of 0x0 and ships of length 0. It's just a quick example anyway. I am using Qt and therefore Qt containers, but its just the same with std containers.
I tried to rewrite your program in Java, it works as required. Feel free to ask anything that is not clearly coded. I didn't rechecked it so it may have errors of its own. It can be further optimized and cleaned but as it is past midnight around here, I would rather not do that at the moment :)
public static void main(String[] args) {
Random generator = new Random();
int Grid[][] = new int[8][8];
for (int battleShips = 0; battleShips < 5; battleShips++) {
boolean isHorizontal = generator.nextInt(2) == 0 ? true : false;
boolean battleShipFilled = false;
while (!battleShipFilled) {
// Select a random row and column for trial
int row = generator.nextInt(8);
int column = generator.nextInt(8);
while (Grid[row][column] == 1) {
row = generator.nextInt(8);
column = generator.nextInt(8);
}
int lengthOfBattleship = 0;
if (battleShips == 0) // Smallest ship should be of length 2
lengthOfBattleship = (battleShips + 2);
else // Other 4 ships has the length of 2, 3, 4 & 5
lengthOfBattleship = battleShips + 1;
int numberOfCorrectLocation = 0;
for (int k = 0; k < lengthOfBattleship; k++) {
if (isHorizontal && row + k > 0 && row + k < 8) {
if (Grid[row + k][column] == 1)
break;
} else if (!isHorizontal && column + k > 0 && column + k < 8) {
if (Grid[row][column + k] == 1)
break;
} else {
break;
}
numberOfCorrectLocation++;
}
if (numberOfCorrectLocation == lengthOfBattleship) {
for (int k = 0; k < lengthOfBattleship; k++) {
if (isHorizontal)
Grid[row + k][column] = 1;
else
Grid[row][column + k] = 1;
}
battleShipFilled = true;
}
}
}
}
Some important points.
As #Kindread said in an another answer, the code has an infinite loop condition which must be eliminated.
This algorithm will use too much resources to find a solution, it should be optimized.
Code duplications should be avoided as it will result in more maintenance cost (which might not be a problem for this specific case), and possible bugs.
Hope this answer helps...