correspond values between two images in opencv / c++ - c++

I am new in image processing and opencv. I have two images. I want to find correspond values in the image 2 with the image 1. and then show it. is there any function in opencv to find correspond values between images?
thanks in advance.

Mat corrVals;
bitwise_and(image2, image1>0, corrVals);
image1>0 will create temporary binary image with values 0 and 255. Than the only thing you need is to perform AND operation between pixels of your images, and store result somewhere. This is done by bitwise_and.
This is similar to approach suggested by #Mailerdaimon but uses much cheaper operations.

You can threshold you image1 such that all Values you want are 1 and all other are 0.
Than you multiply image1 with image2.
cv::multiply(image1, image2, result, scale, dtype)
This will return an image with all values greater than zero from image2 that are marked in image1.

It is hard to say without looking at your images. This is a well studied problem in computer vision and OpenCV contains several algorithms for this. The problem you're looking at can be very easy or very hard, depending on:
your images, are the normal images? just shapes? binary?
where on the images lie the corresponding pixels
how fast you need this to run
how much variation there is between images, is it exactly the same pixel value?
is there camera movement?
is there variation in illumination?
You can start by looking at stereo matching and optical flow inside OpenCV.

Related

Pixel level image registration / alignment?

I'm trying to remove foreground from two images, here's a sample pair of images:
As you can see, the Budweiser bottle is removed from the scene before the second shot is taken.
These photos were captured from a pinhole camera (iPhone), and, the tricky part is I'm hand-holding the camera, so it cannot be guaranteed that the images are perfectly aligned pixel by pixel, so a simple minus-threshold method will not work.
Then, I've decided to perform image registration using findHomography and warpPerspective from OpenCV, here's the result image:
This image is warped with the matrix I've got from findHomography, it kind of improved the alignment quality, but still not that aligned so I can use a simple way to remove the foreground.
So, finally, I decided to implement a "fuzzy-minus" algorithm: for every pixel in image1, I'll look through a 7x7 neighbour in image2 (a 7 by 7 kernel?), using the minimal difference in grayscale as the result of minus, and threshold the result into binary image, here's what I've got:
And the result is still not good. Notice the white wholes in the bottle, this is produced due to similar grayscale value of foreground and background. So I'm not sure what to do now.
I can think of two ways to solve the problem, the first is to get a better aligned pair of images, and simply minus the pairs; the second is to use a more robust way to extract the foreground.
Can anyone give me some advice on how to deal with this kind of problem? I believe there should be some state-of-art algorithms or processing pipelines, but after googling around, I get nothing.
I'm using OpenCV with C++, it would be fantastic if you can tell me how to do it with these tools in hand.
Big big thanks in advance!
The problem is not in your algorithm. You are having problem because the two scenes were not taken from exactly the same angle, as shown in the animation below. This slight difference highlight the edges in the subtraction.
You need a static camera in order to apply this approach.
I suggest using mathematical morphology on the mask that you got to get rid of the artifacts.
Try applying both opening and closing to get rid of the black and the white small regions.
Mathematical Morphology
Mathematical Morphology in opencv
The difference between the two picture is pretty huge, so you will need to use a large structure element, but I don't think you will be able to get rid of the shadow.
For the two large strips in the background, you may try to use a horizontally shaped structure element as well.
Edit
Is it possible to produce a grayscale image instead of a binary image? if yes, you may try to experiment with the hat method for the shadow, but I am not sure about this point.
This is what I got using two different structure elements for closing THEN opening
Mat mask = imread("mask.jpg",CV_LOAD_IMAGE_GRAYSCALE);
morphologyEx(mask,mask,MORPH_CLOSE,getStructuringElement(CV_SHAPE_ELLIPSE,Size(50,10)));
morphologyEx(mask,mask,MORPH_OPEN,getStructuringElement(CV_SHAPE_ELLIPSE,Size(10,50)));
imshow("open",mask);
imwrite("maskopenclose.jpg",mask);
I would suggest optical flow for alignment and OpenCV's background subtraction algorithm:
http://docs.opencv.org/trunk/doc/tutorials/video/background_subtraction/background_subtraction.html
I suggest that instead of using findHomography try using some of openCV's stereo correspondence functions: http://docs.opencv.org/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html
there is a sample code here: https://github.com/Itseez/opencv/blob/master/samples/cpp/stereo_calib.cpp

Comparing 2 images pixel by pixel (the first image is stored at a database)

I want to compare 2 images, where the first image is stored in a database and the second image is from a live video stream via a webcam. Is it possible to determine whether there are some differences between the images, or whether they are identical?
I want the image comparison to be pixel by pixel. If a pixel by pixel comparison is hard, or even impossible, could you suggest a better way of doing this?
A simple pixel by pixel comparison is unlikely to work well because of noise in the webcam image.
You need a similarity measure like Peak signal-to-noise ratio (PSNR) or Structural Similarity (SSIM)
Perform a hash function on your image and compare it with the precalculated image hash in the database.

Image comparison method with C++ and OpenCV

I am new to OpenCV. I would like to know if we can compare two images (one of the images made by photoshop i.e source image and the otherone will be taken from the camera) and find if they are same or not.
I tried to compare the images using template matching. It does not work. Can you tell me what are the other procedures which we can use for this kind of comparison?
Comparison of images can be done in different ways depending on which purpose you have in mind:
if you just want to compare whether two images are approximately equal (with a few
luminance differences), but with the same perspective and camera view, you can simply
compute a pixel-to-pixel squared difference, per color band. If the sum of squares over
the two images is smaller than a threshold the images match, otherwise not.
If one image is a black-white variant of the other, conversion of the color images is
needed (see e.g. http://www.johndcook.com/blog/2009/08/24/algorithms-convert-color-grayscale). Afterwarts simply perform the step above.
If one image is a subimage of the other, you need to perform registration of the two
images. This means determining the scale, possible rotation and XY-translation that is
necessary to lay the subimage on the larger image (for methods to register images, see:
Pluim, J.P.W., Maintz, J.B.A., Viergever, M.A. , Mutual-information-based registration of
medical images: a survey, IEEE Transactions on Medical Imaging, 2003, Volume 22, Issue 8,
pp. 986 – 1004)
If you have perspective differences, you need an algorithm for deskewing one image to
match the other as well as possible. For ways of doing deskewing look for example in
http://javaanpr.sourceforge.net/anpr.pdf from page 15 and onwards.
Good luck!
You should try SIFT. You apply SIFT to your marker (image saved in memory) and you get some descriptors (points robust to be recognized). Then you can use FAST algorithm with the camera frames in order to find the coprrespondent keypoints of the marker in the camera image.
You have many threads about this topic:
How to get a rectangle around the target object using the features extracted by SIFT in OpenCV
How to search the image for an object with SIFT and OpenCV?
OpenCV - Object matching using SURF descriptors and BruteForceMatcher
Good luck

Really Distorted Stereo Calibration Images OpenCV

What I want to do is overlay stereo images together.
Given a sample set of stereo images I was able to display rectified images of them.
However, given a set of stereo images taken for the Microsoft Kinect, RGB and Infrared, I get really distorted images.
The original and rectified images can be found in the link:
http://img153.imageshack.us/img153/8021/calibration.png
I used the same code for the same set of images. I have tried multiple sets of Kinect "stereo" images and they all came out very distorted.
I am wondering what could be wrong?
The way I am displaying the images is:
I use cvStereoCalibrate() with these two as the last parameters: ...cvTermCriteria(CV_TERMCRIT_ITER+CV_TERMCRIT_EPS, 100, 1e-5), CV_CALIB_FIX_ASPECT_RATIO }
I then use cvStereoRectify and get mapx and mapy of the RGB camera using cvInitUndistortRectifyMap() then cvRemap and display the images.
I was wondering if the parameters of cvStereoCalibrate greatly affect the Kinect "stereo" images?
Thanks,
Tyro
I notice that one of the images has much less brightness and contrast in your samples. While it does find the corners, less brightness and contrast will result in a lot of error in the subpixel accuracy. I struggle a lot with rectification too and find that setting everything up perfectly (to the point of needing less rectification) is the only way to get really good results.
You use too small pattern for calibration.

stitching aerial images

I am trying to stitch 2 aerial images together with very little overlap, probably <500 px of overlap. These images have 3600x2100 resolution. I am using the OpenCV library to complete this task.
Here is my approach:
1. Find feature points and match points between the two images.
2. Find homography between two images
3. Warp one of the images using the homgraphy
4. Stitch the two images
Right now I am trying to get this to work with two images. I am having trouble with step 3 and possibly step 2. I used findHomography() from the OpenCV library to grab my homography between the two images. Then I called warpPerspective() on one of my images using the homgraphy.
The problem with the approach is that the transformed image is all distorted. Also it seems to only transform a certain part of the image. I have no idea why it is not transforming the whole image.
Can someone give me some advice on how I should approach this problem? Thanks
In the results that you have posted, I can see that you have at least one keypoint mismatch. If you use findHomography(src, dst, 0), it will mess up your homography. You should use findHomography(src, dst, CV_RANSAC) instead.
You can also try to use warpAffine instead of warpPerspective.
Edit: In the results that you posted in the comments to your question, I had the impression that the matching worked quite stable. That means that you should be able to get good results with the example as well. Since you mostly seem to have to deal with translation you could try to filter out the outliers with the following sketched algorithm:
calculate the average (or median) motion vector x_avg
calculate the normalized dot product <x_avg, x_match>
discard x_match if the dot product is smaller than a threshold
To make it work for images with smaller overlap, you would have to look at the detector, descriptors and matches. You do not specify which descriptors you work with, but I would suggest using SIFT or SURF descriptors and the corresponding detectors. You should also set the detector parameters to make a dense sampling (i.e., try to detect more features).
You can refer to this answer which is slightly related: OpenCV - Image Stitching
To stitch images using Homography, the most important thing that should be taken care of is finding of correspondence points in both the images. Lesser the outliers in the correspondence points, the better is the generated homography.
Using robust techniques such as RANSAC along with FindHomography() function of OpenCV(Use CV_RANSAC as option) will still generate reasonable homography provided percentage of inliers is more than percentage of outliers. Also make sure that there are at-least 4 inliers in the correspondence points that passed to the FindHomography function.