valgrind/helgrind gets killed on stress test - c++

I'm making a web server on linux in C++ with pthreads. I tested it with valgrind for leaks and memory problems - all fixed. I tested it with helgrind for thread problems - all fixed. I'm trying a stress test. I'm getting problem when the probram is run with helgrind
valgrind --tool=helgrind ./chats
It just dies on random places with the text "Killed" as it would do when I kill it with kill -9. The only report I get sometimes from helgrind is that the program exists while still holding some locks, which is normal when gets killed.
When checking for leaks:
valgrind --leak-check=full ./chats
it's more stable, but I managed to make it die once with few hundreds of concurrent connections.
I tried running program alone and couldn't make it crash at all. I tried up to 250 concurrent connections. Each thread delays with 100ms to make it easier to have multiple connections at the same time. No crash.
In all cases threads as well as connections do not get above 10 and I see it crash even with 2 connections, but never with only one connection at the same time (with including main thread and one helper thread is total of 3).
Is it possible that the problem will only happen when run with
helgrind or just helgrind makes it more likely to show?
What be the reason that a program gets killed (by kernel?) Allocating too much memory, too many file descriptors?
I tested a bit more and I found out that it only dies when the client times out and closes the connection. So here is the code which detects that the client closed the socket:
void *TcpClient::run(){
int ret;
struct timeval tv;
char * buff = (char *)malloc(10001);
int br;
colorPrintf(TC_GREEN, "new client starting: %d\n", sockFd);
while(isRunning()){
tv.tv_sec = 0;
tv.tv_usec = 500*1000;
FD_SET(sockFd, &readFds);
ret = select(sockFd+1, &readFds, NULL, NULL, &tv);
if(ret < 0){
//select error
continue;
}else if(ret == 0){
// no data to read
continue;
}
br = read(sockFd, buff, 10000);
buff[br] = 0;
if (br == 0){
// client disconnected;
setRunning(false);
break;
}
if (reader != NULL){
reader->tcpRead(this, std::string(buff, br));
}else{
readBuffer.append(buff, br);
}
//printf("received: %s\n", buff);
}
free(buff);
sendFeedback((void *)1);
colorPrintf(TC_RED, "closing client socket: %d\n", sockFd);
::close(sockFd);
sockFd = -1;
return NULL;
}
// this method writes to socket
bool TcpClient::write(std::string data){
int bw;
int dataLen = data.length();
bw = ::write(sockFd, data.data(), dataLen);
if (bw != dataLen){
return false; // I don't close the socket in this case, maybe I should
}
return true;
}
P.S. Threads are:
main thread. connections are accepted here.
one helper thread which listen for signals and sends signals. It stops signal reception for the app and manually polls the signal queue. The reason is because it's hard to handle signals when using threads. I found this technique here in stackoverflow and it seams to work pretty fine in other projects.
client connection threads
The full code is pretty big, but I can post chunks if someone is interested.
Update:
I managed to trigger the problem with only one connection. It's all happening in client thread. This is what I do:
I read/parse headers. I put delay before writing so the client can timeout (which causes the problem).
Here the client timeouts and leaves (probably closes socket)
I write back headers
I write back the html code.
Here is how I write back
bw = ::write(sockFd, data.data(), dataLen);
// bw is = dataLen = 108 when writing the headers
//then secondary write for HTML kills the program. there is a message before and after write()
bw = ::write(sockFd, data.data(), dataLen); // doesn't go past this point second time
Update 2: Got it :)
gdb sais:
Program received signal SIGPIPE, Broken pipe.
[Switching to Thread 0x41401940 (LWP 10554)]
0x0000003ac2e0d89b in write () from /lib64/libpthread.so.0
Question 1: What should I do to void receiving this signal.
Question 2: How to know that remote side disconnected while writing. On read select returns that there is data but data read is 0. How about write?

Well I just had to handle the SIGPIPE singal and write returned -1 -> I close socket and quit thread gracefully. Works like a charm.
I guess the easiest way is to set signal handler of SIGPIPE to SIG_IGN:
signal(SIGPIPE, SIG_IGN);
Note that first write was successful and didn't kill the program. If you have similar problem check if you are writing once or multiple times. If you are not familiar with gdb this is how to do it:
gdb ./your-program
> run
and gdb will tell you all about signals and sigfaults.

Related

C++ + linux handle SIGPIPE signal

Yes, I understand this issue has been discussed many times.
And yes, I've seen and read these and other discussions:
1
2
3
and I still can't fix my code myself.
I am writing my own web server. In the next cycle, it listens on a socket, connects each new client and writes it to a vector.
Into my class i have this struct:
struct Connection
{
int socket;
std::chrono::system_clock::time_point tp;
std::string request;
};
with next data structures:
std::mutex connected_clients_mux_;
std::vector<HttpServer::Connection> connected_clients_;
and the cycle itself:
//...
bind (listen_socket_, (struct sockaddr *)&addr_, sizeof(addr_));
listen(listen_socket_, 4 );
while(1){
connection_socket_ = accept(listen_socket_, NULL, NULL);
//...
Connection connection_;
//...
connected_clients_mux_.lock();
this->connected_clients_.push_back(connection_);
connected_clients_mux_.unlock();
}
it works, clients connect, send and receive requests.
But the problem is that if the connection is broken ("^C" for client), then my program will not know about it even at the moment:
void SendRespons(HttpServer::Connection socket_){
write(socket_.socket,( socket_.request + std::to_string(socket_.socket)).c_str(), 1024);
}
as the title of this question suggests, my app receives a SIGPIPE signal.
Again, I have seen "solutions".
signal(SIGPIPE, &SigPipeHandler);
void SigPipeHandler(int s) {
//printf("Caught SIGPIPE\n%d",s);
}
but it does not help. At this moment, we have the "№" of the socket to which the write was made, is it possible to "remember" it and close this particular connection in the handler method?
my system:
Operating System: Ubuntu 20.04.2 LTS
Kernel: Linux 5.8.0-43-generic
g++ --version
g++ (Ubuntu 9.3.0-17ubuntu1~20.04) 9.3.0
As stated in the links you give, the solution is to ignore SIGPIPE, and CHECK THE RETURN VALUE of the write calls. This latter is needed for correct operation (short writes) in all but the most trivial, unloaded cases anyways. Also the fixed write size of 1024 that you are using is probably not what you want -- if your response string is shorter, you'll send a bunch of random garbage along with it. You probably really want something like:
void SendRespons(HttpServer::Connection socket_){
auto data = socket_.request + std::to_string(socket_.socket);
int sent = 0;
while (sent < data.size()) {
int len = write(socket_.socket, &data[sent], data.size() - sent);
if (len < 0) {
// there was an error -- might be EPIPE or EAGAIN or EINTR or ever a few other
// obscure corner cases. For EAGAIN or EINTR (which can only happen if your
// program is set up to allow them), you probably want to try again.
// Anything else, probably just close the socket and clean up.
if (errno == EINTR)
continue;
close(socket_.socket);
// should tell someone about it?
break; }
sent += len; }
}

Simplest IPC from one Linux app to another in C++ on raspberry pi

I need the simplest most reliable IPC method from one C++ app running on the RPi to another app.
All I'm trying to do is send a string message of 40 characters from one app to another
The first app is running as a service on boot, the other app is started at a later time and is frequently exited and restarted for debugging
The frequent debugging for the second app is whats causing problems with the IPCs I've tried so far
I've tried about 3 different methods and here is where they failed:
File FIFO, the problem is one program hangs while the other program is writing to the file
Shared memory: cannot initialize on one thread and read from another thread. Also frequent exiting while debugging causing GDB crashes with the following GDB command is taking too long to complete -stack-list-frames --thread 1
UDP socket with localhost - same issue as above, plus improper exits block the socket, forcing me to reboot device
Non blocking pipe - not getting any messages on the receiving process
What else can I try? I dont want to get the DBus library, seems too complex for this application.
Any simple server and client code or a link to it would be helpful
Here is my non-blockign pipe code, that doesnt work for me,
I assume its because I dont have a reference to the pipe from one app to the other
Code sourced from here: https://www.geeksforgeeks.org/non-blocking-io-with-pipes-in-c/
char* msg1 = "hello";
char* msg2 = "bye !!";
int p[2], i;
bool InitClient()
{
// error checking for pipe
if(pipe(p) < 0)
exit(1);
// error checking for fcntl
if(fcntl(p[0], F_SETFL, O_NONBLOCK) < 0)
exit(2);
//Read
int nread;
char buf[MSGSIZE];
// write link
close(p[1]);
while (1) {
// read call if return -1 then pipe is
// empty because of fcntl
nread = read(p[0], buf, MSGSIZE);
switch (nread) {
case -1:
// case -1 means pipe is empty and errono
// set EAGAIN
if(errno == EAGAIN) {
printf("(pipe empty)\n");
sleep(1);
break;
}
default:
// text read
// by default return no. of bytes
// which read call read at that time
printf("MSG = % s\n", buf);
}
}
return true;
}
bool InitServer()
{
// error checking for pipe
if(pipe(p) < 0)
exit(1);
// error checking for fcntl
if(fcntl(p[0], F_SETFL, O_NONBLOCK) < 0)
exit(2);
//Write
// read link
close(p[0]);
// write 3 times "hello" in 3 second interval
for(i = 0 ; i < 3000000000 ; i++) {
write(p[0], msg1, MSGSIZE);
sleep(3);
}
// write "bye" one times
write(p[0], msg2, MSGSIZE);
return true;
}
Please consider ZeroMQ
https://zeromq.org/
It is lightweight and has wrapper for all major programming languages.

C++ winsockets threading issue

I made a pretty simple C++ socket server. I'm trying to spawn a thread each time a new client connects (so reading can be done in parallel).
void Server::start(void){
for(;;){
Logger::Log("Now accepting clients");
int client;
struct sockaddr_in client_addr;
size_t addr_size = sizeof(client_addr);
client = accept(this->m_socket, (sockaddr*)&client_addr, 0);
if(client != SOCKET_ERROR){
Logger::Log("New client connected!");
StateObject client_object(client, this);
this->clients.push_back(&client_object);
std::stringstream stream;
stream<<this->clients.size()<<" clients online";
Logger::Log(const_cast<char*>(stream.str().c_str()));
std::thread c_thread(std::bind(&StateObject::read, std::ref(client_object)));
//c_thread.join(); //if I join the child, new clients won't be accepted until the previous thread exits
}
}
}
Reading method in client class:
void StateObject::read(){
Logger::Log("Now reading");
for(;;){
int bytesReceived = recv(this->socket, buffer, 255, 0);
if(bytesReceived > 0){
Logger::Log(const_cast<char*>(std::string("Received: " + std::string(buffer).substr(0, bytesReceived)).c_str()));
}else if(bytesReceived == 0){
Logger::Log("Client gracefully disconnected");
break;
}else{
Logger::Log("Could not receive data from remote host");
break;
}
}
Server * server = reinterpret_cast<Server*>(parent);
server->removeClient(this);
}
Currently, after a client connects an exception is thrown:
Why and when has abort been triggered?
Please note that this happens when the child thread hasn't joined the main thread. On the other case, the "flow" goes expectedly synchronous (the current client thread has to exit so that the loop can continue to accept the next client).
Notes:
Since I am tied to Windows, I'm unable to fork child tasks - I am also not a fan of Cygwin. Asynchronous win32 methods seem to complicate things that is why I avoid them.
C++ std::thread reference
Tests have been done through Telnet
You either need to detach the thread or join it before it goes out of scope.. Otherwise std::thread calls std::terminate in its destructor.
http://www.cplusplus.com/reference/thread/thread/~thread/

How to correctly read data when using epoll_wait

I am trying to port to Linux an existing Windows C++ code that uses IOCP. Having decided to use epoll_wait to achieve high concurrency, I am already faced with a theoretical issue of when we try to process received data.
Imagine two threads calling epoll_wait, and two consequetives messages being received such that Linux unblocks the first thread and soon the second.
Example :
Thread 1 blocks on epoll_wait
Thread 2 blocks on epoll_wait
Client sends a chunk of data 1
Thread 1 deblocks from epoll_wait, performs recv and tries to process data
Client sends a chunk of data 2
Thread 2 deblocks, performs recv and tries to process data.
Is this scenario conceivable ? I.e. can it occure ?
Is there a way to prevent it so to avoid implementing synchronization in the recv/processing code ?
If you have multiple threads reading from the same set of epoll handles, I would recommend you put your epoll handles in one-shot level-triggered mode with EPOLLONESHOT. This will ensure that, after one thread observes the triggered handle, no other thread will observe it until you use epoll_ctl to re-arm the handle.
If you need to handle read and write paths independently, you may want to completely split up the read and write thread pools; have one epoll handle for read events, and one for write events, and assign threads to one or the other exclusively. Further, have a separate lock for read and for write paths. You must be careful about interactions between the read and write threads as far as modifying any per-socket state, of course.
If you do go with that split approach, you need to put some thought into how to handle socket closures. Most likely you will want an additional shared-data lock, and 'acknowledge closure' flags, set under the shared data lock, for both read and write paths. Read and write threads can then race to acknowledge, and the last one to acknowledge gets to clean up the shared data structures. That is, something like this:
void OnSocketClosed(shareddatastructure *pShared, int writer)
{
epoll_ctl(myepollhandle, EPOLL_CTL_DEL, pShared->fd, NULL);
LOCK(pShared->common_lock);
if (writer)
pShared->close_ack_w = true;
else
pShared->close_ack_r = true;
bool acked = pShared->close_ack_w && pShared->close_ack_r;
UNLOCK(pShared->common_lock);
if (acked)
free(pShared);
}
I'm assuming here that the situation you're trying to process is something like this:
You have multiple (maybe very many) sockets that you want to receive data from at once;
You want to start processing data from the first connection on Thread A when it is first received and then be sure that data from this connection is not processed on any other thread until you have finished with it in Thread A.
While you are doing that, if some data is now received on a different connection you want Thread B to pick that data and process it while still being sure that no one else can process this connection until Thread B is done with it etc.
Under these circumstances it turns out that using epoll_wait() with the same epoll fd in multiple threads is a reasonably efficient approach (I'm not claiming that it is necessarily the most efficient).
The trick here is to add the individual connections fds to the epoll fd with the EPOLLONESHOT flag. This ensures that once an fd has been returned from an epoll_wait() it is unmonitored until you specifically tell epoll to monitor it again. This ensures that the thread processing this connection suffers no interference as no other thread can be processing the same connection until this thread marks the connection to be monitored again.
You can set up the fd to monitor EPOLLIN or EPOLLOUT again using epoll_ctl() and EPOLL_CTL_MOD.
A significant benefit of using epoll like this in multiple threads is that when one thread is finished with a connection and adds it back to the epoll monitored set, any other threads still in epoll_wait() are immediately monitoring it even before the previous processing thread returns to epoll_wait(). Incidentally that could also be a disadvantage because of lack of cache data locality if a different thread now picks up that connection immediately (thus needing to fetch the data structures for this connection and flush the previous thread's cache). What works best will sensitively depend on your exact usage pattern.
If you are trying to process messages received subsequently on the same connection in different threads then this scheme to use epoll is not going to be appropriate for you, and an approach using a listening thread feeding an efficient queue feeding worker threads might be better.
Previous answers that point out that calling epoll_wait() from multiple threads is a bad idea are almost certainly right, but I was intrigued enough by the question to try and work out what does happen when it is called from multiple threads on the same handle, waiting for the same socket. I wrote the following test code:
#include <netinet/in.h>
#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/epoll.h>
#include <sys/socket.h>
#include <sys/types.h>
#include <unistd.h>
struct thread_info {
int number;
int socket;
int epoll;
};
void * thread(struct thread_info * arg)
{
struct epoll_event events[10];
int s;
char buf[512];
sleep(5 * arg->number);
printf("Thread %d start\n", arg->number);
do {
s = epoll_wait(arg->epoll, events, 10, -1);
if (s < 0) {
perror("wait");
exit(1);
} else if (s == 0) {
printf("Thread %d No data\n", arg->number);
exit(1);
}
if (recv(arg->socket, buf, 512, 0) <= 0) {
perror("recv");
exit(1);
}
printf("Thread %d got data\n", arg->number);
} while (s == 1);
printf("Thread %d end\n", arg->number);
return 0;
}
int main()
{
pthread_attr_t attr;
pthread_t threads[2];
struct thread_info thread_data[2];
int s;
int listener, client, epollfd;
struct sockaddr_in listen_address;
struct sockaddr_storage client_address;
socklen_t client_address_len;
struct epoll_event ev;
listener = socket(AF_INET, SOCK_STREAM, 0);
if (listener < 0) {
perror("socket");
exit(1);
}
memset(&listen_address, 0, sizeof(struct sockaddr_in));
listen_address.sin_family = AF_INET;
listen_address.sin_addr.s_addr = INADDR_ANY;
listen_address.sin_port = htons(6799);
s = bind(listener,
(struct sockaddr*)&listen_address,
sizeof(listen_address));
if (s != 0) {
perror("bind");
exit(1);
}
s = listen(listener, 1);
if (s != 0) {
perror("listen");
exit(1);
}
client_address_len = sizeof(client_address);
client = accept(listener,
(struct sockaddr*)&client_address,
&client_address_len);
epollfd = epoll_create(10);
if (epollfd == -1) {
perror("epoll_create");
exit(1);
}
ev.events = EPOLLIN;
ev.data.fd = client;
if (epoll_ctl(epollfd, EPOLL_CTL_ADD, client, &ev) == -1) {
perror("epoll_ctl: listen_sock");
exit(1);
}
thread_data[0].number = 0;
thread_data[1].number = 1;
thread_data[0].socket = client;
thread_data[1].socket = client;
thread_data[0].epoll = epollfd;
thread_data[1].epoll = epollfd;
s = pthread_attr_init(&attr);
if (s != 0) {
perror("pthread_attr_init");
exit(1);
}
s = pthread_create(&threads[0],
&attr,
(void*(*)(void*))&thread,
&thread_data[0]);
if (s != 0) {
perror("pthread_create");
exit(1);
}
s = pthread_create(&threads[1],
&attr,
(void*(*)(void*))&thread,
&thread_data[1]);
if (s != 0) {
perror("pthread_create");
exit(1);
}
pthread_join(threads[0], 0);
pthread_join(threads[1], 0);
return 0;
}
When data arrives, and both threads are waiting on epoll_wait(), only one will return, but as subsequent data arrives, the thread that wakes up to handle the data is effectively random between the two threads. I wasn't able to to find a way to affect which thread was woken.
It seems likely that a single thread calling epoll_wait makes most sense, with events passed to worker threads to pump the IO.
I believe that the high performance software that uses epoll and a thread per core creates multiple epoll handles that each handle a subset of all the connections. In this way the work is divided but the problem you describe is avoided.
Generally, epoll is used when you have a single thread listening for data on a single asynchronous source. To avoid busy-waiting (manually polling), you use epoll to let you know when data is ready (much like select does).
It is not standard practice to have multiple threads reading from a single data source, and I, at least, would consider it bad practice.
If you want to use multiple threads, but you only have one input source, then designate one of the threads to listen and queue the data so the other threads can read individual pieces from the queue.

Closing a thread with select() system call statement?

I have a thread to monitor serial port using select system call, the run function of the thread is as follows:
void <ProtocolClass>::run()
{
int fd = mPort->GetFileDescriptor();
fd_set readfs;
int maxfd=fd+1;
int res;
struct timeval Timeout;
Timeout.tv_usec=0;
Timeout.tv_sec=3;
//BYTE ack_message_frame[ACKNOWLEDGE_FRAME_SIZE];
while(true)
{
usleep(10);
FD_ZERO(&readfs);
FD_SET(fd,&readfs);
res=select(maxfd,&readfs,NULL,NULL,NULL);
if(res<0)
perror("\nselect failed");
else if( res==0)
puts("TIMEOUT");
else if(FD_ISSET(fd,&readfs))
{//IF INPUT RECEIVED
qDebug("************RECEIVED DATA****************");
FlushBuf();
qDebug("\nReading data into a read buffer");
int bytes_read=mPort->ReadPort(mBuf,1000);
mFrameReceived=false;
for(int i=0;i<bytes_read;i++)
{
qDebug("%x",mBuf[i]);
}
//if complete frame has been received, write the acknowledge message frame to the port.
if(bytes_read>0)
{
qDebug("\nAbout to Process Received bytes");
ProcessReceivedBytes(mBuf,bytes_read);
qDebug("\n Processed Received bytes");
if(mFrameReceived)
{
int no_bytes=mPort->WritePort(mAcknowledgeMessage,ACKNOWLEDGE_FRAME_SIZE);
}//if frame received
}//if bytes read > 0
} //if input received
}//end while
}
The problem is when I exit from this thread, using
delete <protocolclass>::instance();
the program crashes with a glibc error of malloc memory corruption. On checking the core with gdb it was found the when exiting the thread it was processing the data and thus the error. The destructor of the protocol class looks as follows:
<ProtocolClass>::~<ProtocolClass>()
{
delete [] mpTrackInfo; //delete data
wait();
mPort->ClosePort();
s_instance = NULL; //static instance of singleton
delete mPort;
}
Is this due to select? Do the semantics for destroying objects change when select is involved? Can someone suggest a clean way to destroy threads involving select call.
Thanks
I'm not sure what threading library you use, but you should probably signal the thread in one way or another that it should exit, rather than killing it.
The most simple way would be to keep a boolean that is set true when the thread should exit, and use a timeout on the select() call to check it periodically.
ProtocolClass::StopThread ()
{
kill_me = true;
// Wait for thread to die
Join();
}
ProtocolClass::run ()
{
struct timeval tv;
...
while (!kill_me) {
...
tv.tv_sec = 1;
tv.tv_usec = 0;
res = select (maxfd, &readfds, NULL, NULL, &tv);
if (res < 0) {
// Handle error
}
else if (res != 0) {
...
}
}
You could also set up a pipe and include it in readfds, and then just write something to it from another thread. That would avoid waking up every second and bring down the thread without delay.
Also, you should of course never use a boolean variable like that without some kind of lock, ...
Are the threads still looking at mpTrackInfo after you delete it?
Not seeing the code it is hard.
But Iwould think that the first thing the destructor should do is wait for any threads to die (preferably with some form of join() to make sure they are all accounted for). Once they are dead you can start cleaning up the data.
your thread is more than just memory with some members, so just deleting and counting on the destructor is not enough. Since I don't know qt threads I think this link can put you on your way:
trolltech message
Two possible problems:
What is mpTrackInfo? You delete it before you wait for the thread to exit. Does the thread use this data somewhere, maybe even after it's been deleted?
How does the thread know it's supposed to exit? The loop in run() seems to run forever, which should cause wait() in the destructor to wait forever.