I need to compute the eigenvalues and eigenvectors of a big matrix (about 1000*1000 or even more). Matlab works very fast but it does not guaranty accuracy. I need this to be pretty accurate (about 1e-06 error is ok) and within a reasonable time (an hour or two is ok).
My matrix is symmetric and pretty sparse. The exact values are: ones on the diagonal, and on the diagonal below the main diagonal, and on the diagonal above it. Example:
How can I do this? C++ is the most convenient to me.
MATLAB does not guarrantee accuracy
I find this claim unreasonable. On what grounds do you say that you can find a (significantly) more accurate implementation than MATLAB's highly refined computational algorithms?
AND... using MATLAB's eig, the following is computed in less than half a second:
%// Generate the input matrix
X = ones(1000);
A = triu(X, -1) + tril(X, 1) - X;
%// Compute eigenvalues
v = eig(A);
It's fast alright!
I need this to be pretty accurate (about 1e-06 error is OK)
Remember that solving eigenvalues accurately is related to finding the roots of the characteristic polynomial. This specific 1000x1000 matrix is very ill-conditioned:
>> cond(A)
ans =
1.6551e+003
A general rule of thumb is that for a condition number of 10k, you may lose up to k digits of accuracy (on top of what would be lost to the numerical method due to loss of precision from arithmetic method).
So in your case, I'd expect the results to be accurate up to an approximate error of 10-3.
If you're not opposed to using a third party library, I've had great success using the Armadillo linear algebra libraries.
For the example below, arma is the namespace they like to use, vec is a vector, mat is a matrix.
arma::vec getEigenValues(arma::mat M) {
return arma::eig_sym(M);
}
You can also serialize the data directly into MATLAB and vice versa.
Your system is tridiagonal and a (symmetric) Toeplitz matrix. I'd guess that eigen and Matlab's eig have special cases to handle such matrices. There is a closed-form solution for the eigenvalues in this case (reference (PDF)). In Matlab for your matrix this is simply:
n = size(A,1);
k = (1:n).';
v = 1-2*cos(pi*k./(n+1));
This can be further optimized by noting that the eigenvalues are centered about 1 and thus only half of them need to be computed:
n = size(A,1);
if mod(n,2) == 0
k = (1:n/2).';
u = 2*cos(pi*k./(n+1));
v = 1+[u;-u];
else
k = (1:(n-1)/2).';
u = 2*cos(pi*k./(n+1));
v = 1+[u;0;-u];
end
I'm not sure how you're going to get more fast and accurate than that (other than performing a refinement step using the eigenvectors and optimization) with simple code. The above should be able to translated to C++ very easily (or use Matlab's codgen to generate C/C++ code that uses this or eig). However, your matrix is still ill-conditioned. Just remember that estimates of accuracy are worst case.
Related
I am trying to solve a sparse linear system as quickly as possible using eigen.
The docs give you 4 sparse solvers toc hoose from (but really it;s more like these three):
SimplicialLLT
#include<Eigen/SparseCholesky> Direct LLt factorization SPD Fill-in reducing LGPL
SimplicialLDLT is often preferable
SimplicialLDLT
#include<Eigen/SparseCholesky> Direct LDLt factorization SPD Fill-in reducing LGPL
Recommended for very sparse and not too large problems (e.g., 2D Poisson eq.)
SparseLU
#include<Eigen/SparseLU> LU factorization Square Fill-in reducing, Leverage fast dense algebra MPL2
optimized for small and large problems with irregular patterns
When I use the last solver, i.e. I do:
Eigen::SparseLU<Eigen::SparseMatrix<Scalar>> solver(bijection);
Assert(solver.info() == Eigen::Success, "Matrix is degenerate.");
solver.compute(bijection);
Assert(solver.info() == Eigen::Success, "Matrix is degenerate.");
Eigen::VectorXf vertices_u = solver.solve(u);
Assert(solver.info() == Eigen::Success, "Matrix is degenerate.");
Eigen::VectorXf vertices_v = solver.solve(v);
Assert(solver.info() == Eigen::Success, "Matrix is degenerate.");
I get the correct result, which graphically looks like this:
If I use simplicialLDLT, i.e. if I change the solver line and nothing else to:
Eigen::SimplicialLDLT<Eigen::SparseMatrix<Scalar>> solver(bijection);
I get this degenerate monstrosity:
Basically the two solvers are returining wildely different results for the exact same sparse system. How is this possible?
None of the error checks return false, so in both versions the matrices are considered to be fine.
https://eigen.tuxfamily.org/dox/group__TopicSparseSystems.html => SimplicialLDLT only for SPD matrices. You might try a least squares approach https://snaildove.github.io/2017/08/01/positive_definite_and_least_square/
I have a linear algebraic equation of the form Ax=By. Where A is a matrix of 6x5, x is vector of size 5, B a matrix of 6x6 and y vector of size 6. A, B and y are known variables and their values are accessed in real time coming from the sensors. x is unknown and has to find. One solution is to find Least Square Estimation that is x = [(A^T*A)^-1]*(A^T)B*y. This is conventional solution of linear algebraic equations. I used Eigen QR Decomposition to solve this as below
matrixA = getMatrixA();
matrixB = getMatrixB();
vectorY = getVectorY();
//LSE Solution
Eigen::ColPivHouseholderQR<Eigen::MatrixXd> dec1(matrixA);
vectorX = dec1.solve(matrixB*vectorY);//
Everything is fine until now. But when I check the errore = Ax-By, its not zero always. Error is not very big but even not ignorable. Is there any other type of decomposition which is more reliable? I have gone through one of the page but could not understand the meaning or how to implement this. Below are lines from the reference how to solve the problem. Could anybody suggest me how to implement this?
The solution of such equations Ax = Byis obtained by forming the error vector e = Ax-By and the finding the unknown vector x that minimizes the weighted error (e^T*W*e), where W is a weighting matrix. For simplicity, this weighting matrix is chosen to be of the form W = K*S, where S is a constant diagonal scaling matrix, and K is scalar weight. Hence the solution to the equation becomes
x = [(A^T*W*A)^-1]*(A^T)*W*B*y
I did not understand how to form the matrix W.
Your statement " But when I check the error e = Ax-By, its not zero always. " almost always will be true, regardless of your technique, or what weighting you choose. When you have an over-described system, you are basically trying to fit a straight line to a slew of points. Unless, by chance, all the points can be placed exactly on a single perfectly straight line, there will be some error. So no matter what technique you use to choose the line, (weights and so on) you will always have some error if the points are not colinear. The alternative would be to use some kind of spline, or in higher dimensions to allow for warping. In those cases, you can choose to fit all the points exactly to a more complicated shape, and hence result with 0 error.
So the choice of a weight matrix simply changes which straight line you will use by giving each point a slightly different weight. So it will not ever completely remove the error. But if you had a few particular points that you care more about than the others, you can give the error on those points higher weight when choosing the least square error fit.
For spline fitting see:
http://en.wikipedia.org/wiki/Spline_interpolation
For the really nicest spline curve interpolation you can use Centripital Catmull-Rom, which in addition to finding a curve to fit all the points, will prevent unnecessary loops and self intersections that can sometimes come up during abrupt changes in the data direction.
Catmull-rom curve with no cusps and no self-intersections
I'm currently trying to develop a small matrix-oriented math library (I'm using Eigen 3 for matrix data structures and operations) and I wanted to implement some handy Matlab functions, such as the widely used backslash operator (which is equivalent to mldivide ) in order to compute the solution of linear systems (expressed in matrix form).
Is there any good detailed explanation on how this could be achieved ? (I've already implemented the Moore-Penrose pseudoinverse pinv function with a classical SVD decomposition, but I've read somewhere that A\b isn't always pinv(A)*b , at least Matalb doesn't simply do that)
Thanks
For x = A\b, the backslash operator encompasses a number of algorithms to handle different kinds of input matrices. So the matrix A is diagnosed and an execution path is selected according to its characteristics.
The following page describes in pseudo-code when A is a full matrix:
if size(A,1) == size(A,2) % A is square
if isequal(A,tril(A)) % A is lower triangular
x = A \ b; % This is a simple forward substitution on b
elseif isequal(A,triu(A)) % A is upper triangular
x = A \ b; % This is a simple backward substitution on b
else
if isequal(A,A') % A is symmetric
[R,p] = chol(A);
if (p == 0) % A is symmetric positive definite
x = R \ (R' \ b); % a forward and a backward substitution
return
end
end
[L,U,P] = lu(A); % general, square A
x = U \ (L \ (P*b)); % a forward and a backward substitution
end
else % A is rectangular
[Q,R] = qr(A);
x = R \ (Q' * b);
end
For non-square matrices, QR decomposition is used. For square triangular matrices, it performs a simple forward/backward substitution. For square symmetric positive-definite matrices, Cholesky decomposition is used. Otherwise LU decomposition is used for general square matrices.
Update: MathWorks has updated the algorithm section in the doc page of mldivide with some nice flow charts. See here and here (full and sparse cases).
All of these algorithms have corresponding methods in LAPACK, and in fact it's probably what MATLAB is doing (note that recent versions of MATLAB ship with the optimized Intel MKL implementation).
The reason for having different methods is that it tries to use the most specific algorithm to solve the system of equations that takes advantage of all the characteristics of the coefficient matrix (either because it would be faster or more numerically stable). So you could certainly use a general solver, but it wont be the most efficient.
In fact if you know what A is like beforehand, you could skip the extra testing process by calling linsolve and specifying the options directly.
if A is rectangular or singular, you could also use PINV to find a minimal norm least-squares solution (implemented using SVD decomposition):
x = pinv(A)*b
All of the above applies to dense matrices, sparse matrices are a whole different story. Usually iterative solvers are used in such cases. I believe MATLAB uses UMFPACK and other related libraries from the SuiteSpase package for direct solvers.
When working with sparse matrices, you can turn on diagnostic information and see the tests performed and algorithms chosen using spparms:
spparms('spumoni',2)
x = A\b;
What's more, the backslash operator also works on gpuArray's, in which case it relies on cuBLAS and MAGMA to execute on the GPU.
It is also implemented for distributed arrays which works in a distributed computing environment (work divided among a cluster of computers where each worker has only part of the array, possibly where the entire matrix cannot be stored in memory all at once). The underlying implementation is using ScaLAPACK.
That's a pretty tall order if you want to implement all of that yourself :)
I am using FFTW to compute the inverse DFT of 2-dimensional complex data. The output of the default-setup (complex-to-complex) is complex, imaginary parts are not zero. However, I am only interested in the real-part of the result, not in the complex part. The interleaved-real-complex output of FFTW is not ideal for me since I want to postprocess the (real) output via SSE. Is there a way to get an only-real array from FFTW? The Complex-To-Real plans don't seem to work since the output isn't real.
Real data in [time|freq] domain implies conjugate symmetry about zero in the other domain.
By enforcing conjugate symmetry (adding conjugate flipped version of itself), you can efficiently discard the imaginary part in the other domain. This should allow you to use the real ifft in FFTW, getting roughly 2x speedup. Note you only use nfft/2+1 bins for the FFTW real ifft.
Here's a 1D example to illustrate the point:
X = randn(8,1)+j*randn(8,1);
Xsym = .5*(X + conj(X([1 8:-1:2]'))); % force the symmetric condition
err = real(ifft(X)) - ifft(Xsym);
For a 2D IFFT, it may be best to perform the 2d ifft with 2 passes of 1d ifft as described in another answer
I need to calculate rank of 4096x4096 sparse matrix, and I use C/C++ code.
I found some libraries (like Armadillo) that do it but they're too slow (almost 5 minutes).
I've also tried two Open Source version of Matlab (Freemat and Octave) but both crashed when I tried to make a test with a script.
5 minutes isn't so much but I must get rank from something like a million of matrix so the faster the better.
Someone knows a fast library for rank computation?
The Eigen library supports sparse matrices, try it out.
Computing the algebraic rank is O(n^3), where n is the matrix size, so it's inherently slow. You need eg. to perform pivoting, and this is slow and inaccurate if your matrix is not well conditioned (for n = 4096, a typical matrix is very ill conditioned).
Now, what is the rank ? It is the dimension of the image. It is very difficult to compute when n is large and it'll be spoiled by any small numerical inaccuracy of the input. For n = 4096, unless you happen to have particularly well conditioned matrices, this will prevent you from doing anything useful with a pivoting algorithm.
The best way is in fact to fix a cutoff epsilon, compute the singular values s_1 > ... > s_n and take as the rank the lowest integer r such that sum(s_i^2, i > r) < epsilon^2 * sum(s_i^2).
You thus need a sparse SVD routine, eg. from there.
This may not be faster, but to the very least it will be correct.
You can ask for less singular values that you need to speed up things. This is a tough problem, and with no info on the background and how you got these matrices, there is nothing more we can do.
Try the following code (the documentation is here).
It is an example for calculating the rank of the matrix A with Eigen library:
MatrixXd A(2,2);
A << 1 , 0, 1, 0;
FullPivLU<MatrixXd> luA(A);
int rank = luA.rank();