I'm just learning how to use exceptions in C++ and have come across weird behavior in my "test" code. (excuse overly stupid questions like this one, please...it's NOT lack of research/effort, just lack of experience!) If I'm catching just the exception DivideByZero it works fine.
But introducing the second exception StupidQuestion makes the code not work exactly how I expected. How I wrote it below I thought it should take care of the DivideByZero exception if it needs to, and if not then check if StupidQuestion occurs, and if not just go back to the try clause and print the normal result. But if I input, say, a=3 and b=1, the program redirects to the DivideByZero try clause instead of the StupidQuestion one. The weird thing is, though, divide does seem to be throwing StupidQuestion (see via cout statement), but it's not catching right, as also seen by the absense of the cout statement.
#include <iostream>
#include <cstdlib>
using namespace std;
const int DivideByZero = 42;
const int StupidQuestion=1337;
float divide (int,int);
main(){
int a,b;
float c;
cout << "Enter numerator: ";
cin >> a;
cout << "Enter denominator: ";
cin >> b;
try{
c = divide(a,b);
cout << "The answer is " << c << endl;
}
catch(int DivideByZero){
cout << "ERROR: Divide by zero!" << endl;
}
catch(int StupidQuestion){
cout << "But doesn't come over here...?" << endl;
cout << "ERROR: You are an idiot for asking a stupid question like that!" << endl;
}
system("PAUSE");
}
float divide(int a, int b){
if(b==0){
throw DivideByZero;
}
else if(b==1){
cout << "It goes correctly here...?" << endl;
throw StupidQuestion;
}
else return (float)a/b;
}
I was wondering if it had something to do with the fact that DivideByZero and StupidQuestion were both of type int, so I changed the code to make StupidQuestion be of type char instead of int. (So: const char StupidQuestion='F'; and catch(char StupidQuestion) were really the only things changed from above) And it worked fine.
Why isn't the above code working when the two exceptions have the same type (int)?
Instead of this
catch(int DivideByZero) {
cout << "ERROR: Divide by zero!" << endl;
}
catch(int StupidQuestion) {
cout << "But doesn't come over here...?" << endl;
cout << "ERROR: You are an idiot for asking a stupid question like that!" << endl;
}
you are looking for
catch (int errval) {
if (errval == DivideByZero) {
cout << "ERROR: Divide by zero!" << endl;
}
else if (errval == StupidQuestion) {
cout << "ERROR: You are an idiot for asking a stupid question like that!" << endl;
}
else {
throw; // for other errors, keep searching for a handler
}
}
The variable name inside the catch clause is creating a new local variable, which has no relation to a global constant with the same name.
Also note that there will be no way to catch just one error number... but you can rethrow unknown errors as I show.
catch(int DivideByZero) { }
catch(int StupidQuestion) { }
Both catch blocks catch ints, they're just named differently. Only the first one can ever be entered, the second one is dead code.
When choosing a handler for an exception only type is taken into account, and neither values nor addresses (addresses of variables are not applicable here at all because of how exceptions work), also names of variables do not exist after compilation.
The first appropriate handler for the exception is always chosen.
Please look my answer to another question for details: https://stackoverflow.com/a/45436594/1790694
Related
I am analyzing part of code that was part of my lectures.
I have managed to compile it but I cannot understand:
why does my program output "Wyjatek" and 0 instead of "WyjatekNieoznaczony"?
I was pretty sure WyjatekNieoznaczony() should be thrown because a=0 and b=0 as well. Right now i am a little bit confused.
Could you help me, please?
class Wyjatek {};
class WyjatekBledny : public Wyjatek {};
class WyjatekNieoznaczony : public Wyjatek {};
double f(double a, double b) {
if (b == 0) {
if (a == 0)
throw WyjatekNieoznaczony();
else
throw WyjatekBledny();
}
return a / b;
}
double g(double a, double b) throw (int) {
try {
return f(a, b);
}
catch (WyjatekBledny) {
cout << "Wyjatek bledny" << endl;
throw 1;
}
catch (Wyjatek) {
cout << "Wyjatek" << endl;
}
catch (WyjatekNieoznaczony) {
cout << "Wyjatek nieoznaczony" << endl;
throw;
}
return 0;
}
int main()
{
double a = 0, b = 0;
try {
cout << g(a, b) << endl;
}
catch (...)
{
cout << "Inny wyjatek" << endl;
}
system("pause");
return 0;
}
Yes indeed a WyjatekNieoznaczony is thrown, but at the catch site, catch (Wyjatek) { is a match (due to the inheritance) so it's caught there.
A catch site is more like an if else block in behaviour - with each catch possibility being considered in the order they are written - rather than a switch block where you can put the labels in any order you like.
Note also that it's a good idea to catch exceptions by const reference than by value, else you can suffer the pitfalls of object slicing.
If you enabled (and read) compiler warnings, you would've encountered the following diagnostic:
warning: exception of type 'WyjatekNieoznaczony' will be caught [...] by earlier handler for 'Wyjatek'.
This basically means that WyjatekNieoznaczony, by inheriting from Wyjatek, will be first caught by catch(Wyjatek) clause, since it's convertible. The problem is that due to object slicing, it will lose its Nieoznaczonyness.
What I suggest is to reorder the catch clauses so the possibility of slicing disappears (in this case):
catch (WyjatekBledny) {
cout << "Wyjatek bledny" << endl;
throw 1;
}
catch (WyjatekNieoznaczony) {
cout << "Wyjatek nieoznaczony" << endl;
throw;
}
catch (Wyjatek) {
cout << "Wyjatek" << endl;
}
I'm trying to throw an exception in my code if a vector that is created from user input is not sorted in either descending or ascending order.
using namespace std;
#include <iostream>
#include <vector>
#include <algorithm>
int main () {
vector <int> vec;
//Let user fill a vector with 12 integers.
//cout << "Please note that input data should be either increasing or decreasing." << endl;
int n = 0;
int size = 0;
while(size < 12) {
cout << "Type integer to add to the vector." << endl;
cin >> n;
vec.push_back(n);
++size;
}
//throw exception if unsorted
try {
if (!((is_sorted(vec.begin(), vec.end())) || (is_sorted(vec.end(), vec.begin())))) {
throw "Input was not sorted.";
}
}
catch(exception &error){
cerr << "Error: " << error.what() << endl;
}
}
I have not included the rest of the code, which searches for a particular number, because I am pretty sure that it is irrelevant to this issue. When the data filled into the vector is ascending or descending, everything is fine, but when I test the exception, I get, "terminate called after throwing an instance of 'char const*' Aborted" instead of my desired error message. I don't understand what is going on here. Is it something wrong with the way I'm handling exceptions or am I using the sort() function incorrectly?
In C++, all types are throwable and catchable, but you are only catching subclasses of std::exception.
The best fix to your code would be changing your throw statement to:
throw std::runtime_error("Input was not sorted.");
If you want to catch an exception, you should throw an exception, not a const char*.
See this answer: c++ exception : throwing std::string
You're throwing a const char* not an std::exception. So catch it as a const char*:
catch(const char* error) {
std::cout << "Error: " << error << "\n";
}
Or throw an std::exception.
Remember that you can throw many types and have many catch blocks, the one that will be invoked is the one that matches the type of the thrown exception.
I have a function which takes an int value from another function. When I type a wrong int value it works as intended (calls the same function recursively & lets me enter a new number) but when I type anything other than an int (a, %, etc) it calls the function recursively but gets stuck in an infinite loop. Any help/insight would be great as I am in the learning stages of C++ Programming.
Here is my Full code snippet (49 Lines)
To summarize what I am asking is how would I properly go about displaying an error and returning back to the Main Menu without triggering the infinite loop when a non-int value is given.
int MainMenu();
void MainMenuSelection(int x);
int main()
{
MainMenuSelection(MainMenu());
return 0;
}
int MainMenu() {
int selection;
std::cout << "C++ Tutorials Main Menu\n";
std::cout << "----------------------------------------------\n";
std::cout << "1 - Chapter #1\n";
std::cout << "2 - Chapter #2\n";
std::cout << "3 - Chapter #3\n";
std::cout << "----------------------------------------------\n";
std::cout << "Please enter a cooresponding value: ";
std::cin >> selection;
if (std::cin.fail()) {
std::cout << "Input must be an integer";
}
else {
return selection;
}
}
void MainMenuSelection(int x) {
if (x == 1) {
std::cout << "\nChapter #1 is unavailable.\n";
std::cout << std::string(22, '\n');
MainMenuSelection(MainMenu());
}
else if (x == 2) {
std::cout << std::string(2, '\n');
ChTwoMenuSelection(ChTwoMenu());
}
else if (x == 3) {
std::cout << std::string(2, '\n');
ChThreeMenuSelection(ChThreeMenu());
}
else {
std::cout << "\nThere was an incorrect value submitted.";
std::cout << std::string(22, '\n');
MainMenuSelection(MainMenu());
}
}
The function MainMenuSelection( int x ) requires an int. The function call in the main function thinks it gets this by calling a function which should return an int namely int MainMenu(). But this function does not do what you should expect from a function which has been declared in this way. You should make sure that a function should ALWAYS return the value (except for a void of course).
There are static code analyzers like Cppcheck which can help you to analyse your code and find possible problems like the one you stated above.
Another tip would be to think about what happens when you execute the code. Especially when your code is still quite small you can manually go through the statements to see what path it takes, so you can find out where the program fails.
So I have an upcoming assignment dealing with exceptions and using them in my current address book program that most of the homework is centered around. I decided to play around with exceptions and the whole try catch thing, and using a class design, which is what I will eventually have to do for my assignment in a couple of weeks. I have working code that check the exception just fine, but what I want to know, is if there is a way to standardize my error message function, (i.e my what() call):
Here s my code:
#include <iostream>
#include <exception>
using namespace std;
class testException: public exception
{
public:
virtual const char* what() const throw() // my call to the std exception class function (doesn't nessasarily have to be virtual).
{
return "You can't divide by zero! Error code number 0, restarting the calculator..."; // my error message
}
void noZero();
}myex; //<-this is just a lazy way to create an object
int main()
{
void noZero();
int a, b;
cout << endl;
cout << "Enter a number to be divided " << endl;
cout << endl;
cin >> a;
cout << endl;
cout << "You entered " << a << " , Now give me a number to divide by " << endl;
cin >> b;
try
{
myex.noZero(b); // trys my exception from my class to see if there is an issue
}
catch(testException &te) // if the error is true, then this calls up the eror message and restarts the progrm from the start.
{
cout << te.what() << endl;
return main();
}
cout <<endl;
cout << "The two numbers divided are " << (a / b) << endl; // if no errors are found, then the calculation is performed and the program exits.
return 0;
}
void testException::noZero(int &b) //my function that tests what I want to check
{
if(b == 0 ) throw myex; // only need to see if the problem exists, if it does, I throw my exception object, if it doesn't I just move onto the regular code.
}
What I would like to be able to do is make it so my what() function can return a value dependent on what type of error is being called on. So for instance, if I were calling up an error that looked a the top number,(a), to see if it was a zero, and if it was, it would then set the message to say that "you can't have a numerator of zero", but still be inside the what() function. Here's an example:
virtual const char* what() const throw()
if(myex == 1)
{
return "You can't have a 0 for the numerator! Error code # 1 "
}
else
return "You can't divide by zero! Error code number 0, restarting the calculator..."; // my error message
}
This obviously wouldn't work, but is there a way to make it so I'm not writing a different function for each error message?
Your code contains a lot of misconceptions. The short answer is yes, you can change what() in order to return whatever you want. But let's go step by step.
#include <iostream>
#include <exception>
#include <stdexcept>
#include <sstream>
using namespace std;
class DivideByZeroException: public runtime_error {
public:
DivideByZeroException(int x, int y)
: runtime_error( "division by zero" ), numerator( x ), denominator( y )
{}
virtual const char* what() const throw()
{
cnvt.str( "" );
cnvt << runtime_error::what() << ": " << getNumerator()
<< " / " << getDenominator();
return cnvt.str().c_str();
}
int getNumerator() const
{ return numerator; }
int getDenominator() const
{ return denominator; }
template<typename T>
static T divide(const T& n1, const T& n2)
{
if ( n2 == T( 0 ) ) {
throw DivideByZeroException( n1, n2 );
}
return ( n1 / n2 );
}
private:
int numerator;
int denominator;
static ostringstream cnvt;
};
ostringstream DivideByZeroException::cnvt;
In the first place, runtime_error, derived from exception, is the adviced exception class to derive from. This is declared in the stdexcept header. You only have to initialize its constructor with the message you are going to return in the what() method.
Secondly, you should appropriately name your classes. I understand this is just a test, but a descriptive name will always help to read and understand your code.
As you can see, I've changed the constructor in order to accept the numbers to divide that provoked the exception. You did the test in the exception... well, I've respected this, but as a static function which can be invoked from the outside.
And finally, the what() method. Since we are dividing two numbers, it would be nice to show that two numbers that provoked the exception. The only way to achieve that is the use of ostringstream. Here we make it static so there is no problem of returning a pointer to a stack object (i.e., having cnvt a local variable would introduce undefined behaviour).
The rest of the program is more or less as you listed it in your question:
int main()
{
int a, b, result;
cout << endl;
cout << "Enter a number to be divided " << endl;
cout << endl;
cin >> a;
cout << endl;
cout << "You entered " << a << " , Now give me a number to divide by " << endl;
cin >> b;
try
{
result = DivideByZeroException::divide( a, b );
cout << "\nThe two numbers divided are " << result << endl;
}
catch(const DivideByZeroException &e)
{
cout << e.what() << endl;
}
return 0;
}
As you can see, I've removed your return main() instruction. It does not make sense, since you cannot call main() recursively. Also, the objective of that is a mistake: you'd expect to retry the operation that provoked the exception, but this is not possible, since exceptions are not reentrant. You can, however, change the source code a little bit, to achieve the same effect:
int main()
{
int a, b, result;
bool error;
do {
error = false;
cout << endl;
cout << "Enter a number to be divided " << endl;
cout << endl;
cin >> a;
cout << endl;
cout << "You entered " << a << " , Now give me a number to divide by " << endl;
cin >> b;
try
{
result = DivideByZeroException::divide( a, b ); // trys my exception from my class to see if there is an issue
cout << "\nThe two numbers divided are " << result << endl;
}
catch(const DivideByZeroException &e) // if the error is true, then this calls up the eror message and restarts the progrm from the start.
{
cout << e.what() << endl;
error = true;
}
} while( error );
return 0;
}
As you can see, in case of an error the execution follows until a "proper" division is entered.
Hope this helps.
You can create your own exception class for length error like this
class MyException : public std::length_error{
public:
MyException(const int &n):std::length_error(to_string(n)){}
};
class zeroNumerator: public std::exception
{
const char* what() const throw() { return "Numerator can't be 0.\n"; }
};
//...
try
{
myex.noZero(b); // trys my exception from my class to see if there is an issue
if(myex==1)
{
throw zeroNumerator(); // This would be a class that you create saying that you can't have 0 on the numerator
}
}
catch(testException &te)
{
cout << te.what() << endl;
return main();
}
You should always use std::exception&e. so do
catch(std::exception & e)
{
cout<<e.what();
}
You should consider a hierarchy of classes.
The reason for it might not be obvious when trying to use exceptions just for transferring a string, but actual intent of using exceptions should be a mechanism for advanced handling of exceptional situations. A lot of things are being done under the hood of C++ runtime environment while call stack is unwound when traveling from 'throw' to corresponded 'catch'.
An example of the classes could be:
class CalculationError : public std::runtime_error {
public:
CalculationError(const char * message)
:runtime_error(message)
{
}
};
class ZeroDeviderError : public CalculationError {
public:
ZeroDeviderError(int numerator, const char * message)
: CalculationError(message)
, numerator (numerator)
{
}
int GetNumerator() const { return numerator; }
private:
const int numerator;
};
Providing different classes for the errors, you give developers a chance to handle different errors in particular ways (not just display an error message)
Providing a base class for the types of error, allows developers to be more flexible - be as specific as they need.
In some cases, they might want to be specific
} catch (const ZeroDividerError & ex) {
// ...
}
in others, not
} catch (const CalculationError & ex) {
// ...
}
Some additional details:
You should not create objects of your exceptions before throwing in the manner you did. Regardless your intention, it is just useless - anyway, you are working with a copy of the object in the catch section (don't be confused by access via reference - another instance of the exception object is created when throwing)
Using a const reference would be a good style catch (const testException &te) unless you really need a non-constant object.
Also, please note that the type (classes) used for exceptions are not permitted to throw exceptions out of their copy constructors since, if the initial exception is attempted to be caught by value, a call of copy constructor is possible (in case is not elided by the compiler) and this additional exception will interrupt the initial exception handling before the initial exception is caught, which causes calling std::terminate.
Since C++11 compilers are permitted to eliminate the copying in some cases when catching, but both the elision is not always sensible and, if sensible, it is only permission but not obligation (see https://en.cppreference.com/w/cpp/language/copy_elision for details; before C++11 the standards of the language didn’t regulate the matter).
Also, you should avoid exceptions (will call them the additional) to be thrown out of constructors and move constructors of your types (classes) used for exceptions (will call them initial) since the constructors and move constructors could be called when throwing objects of the types as initial exceptions, then throwing out an additional exception would prevent creation of an initial exception object, and the initial would just be lost. As well as an additional exception from a copy constructor, when throwing an initial one, would cause the same.
I wrote a very simple solution however someone laughed and found a flaw as shown here http://ideone.com/IcWMEf
#include <iostream>
#include <ostream>
#include <functional>
#include <exception>
using namespace std;
// Wrong scope(failure)
class FailBlockT
{
typedef function<void()> T;
public:
T t;
FailBlockT(T t)
{
this->t=t;
}
~FailBlockT()
{
if (std::uncaught_exception())
{
t();
}
}
};
struct Test
{
~Test()
{
try
{
FailBlockT f([]()
{
cout << "failure" << endl;
});
// there is no any exception here, but "failure" is printed.
// See output below
}
catch(...)
{
cout << "some exception" << endl;
}
}
};
int main()
{
try
{
Test t;
throw 1;
}
catch(int){}
return 0;
}
In short the problem is my code looks at std::uncaught_exception(). When an exception is thrown and a normal destructor is executed. If i use scope failure there it will look at std::uncaught_exception() and think the object scope is lost due to exception rather then simply walking out of scope.
I can't think of any good solutions to differentiate leaving scope normally VS having an exception thrown IN it. Yes i know throwing is a bad idea in dtors BUT thats why I fail to notice this problem, because I never throw in exceptions.
How do I differentiate/solve this?
No exception was thrown but it thinks it has.
An exception was thrown, just not from right there.
There is no mechanism in C++11 to ask, "Was an exception thrown from code just below me, but not from code elsewhere in the call-stack?" std::uncaught_exception is doing exactly what it is supposed to do: say whether there is an exception currently in the process of being resolved at the time the function is called. And there is, so it returns true.
C++17 adds std::uncaught_exceptions (note the plural), which can be used to detect the difference. With such a tool, you can make your FailBlock object work:
template<typename Func>
class FailBlockT
{
private:
int e_count_;
T t_;
public:
FailBlockT(T t) : e_count_(std::uncaught_exceptions()), t_(t) {}
FailBlock(const FailBlock &) = delete; //The type should not be mobile.
~FailBlockT()
{
if (std::uncaught_exceptions() != e_count_)
{
t_();
}
}
};
std::uncaught_exceptions() returns the number of exceptions that are provoking stack unwinding at the time the call was made. If the number is the same during the constructor and destructor of an object (assuming it's a stack object), then the destructor is not being called due to an exception being thrown through where this type was used.
But without this tool, it, there's not much you can do to differentiate between an exception provoking the exiting of the scope rather than exiting a scope when exception unwinding just happens to be going on. So you're going to have to bite the bullet and catch the exception like everyone else.
Or just don't put this FailBlock thing in destructors. It seems to me that those should go directly into regular functions that can actually throw (and destructors should never throw). It seems to me that you're worried about a corner case that doesn't make any real sense.
I can't think of any good solutions to differentiate leaving scope normally VS having an exception thrown IN it.
Check stack_unwinding library - I have implemented scope(failure) and scope(success) features in C++.
It is based on platform specific function uncaught_exception_count. It is similar to std::uncaught_exception from standard library, but instead of boolean result it returns unsigned int showing current count of uncaught exceptions.
Currently it is tested on {Clang 3.2, GCC 3.4.6, GCC 4.1.2, GCC 4.4.6, GCC 4.4.7, MSVC2005SP1, MSVC2008SP1, MSVC2010SP1, MSVC2012} x {x32, x64}.
In C++11 folowing syntax is available:
try
{
int some_var=1;
cout << "Case #1: stack unwinding" << endl;
scope(exit)
{
cout << "exit " << some_var << endl;
++some_var;
};
scope(failure)
{
cout << "failure " << some_var << endl;
++some_var;
};
scope(success)
{
cout << "success " << some_var << endl;
++some_var;
};
throw 1;
} catch(int){}
{
int some_var=1;
cout << "Case #2: normal exit" << endl;
scope(exit)
{
cout << "exit " << some_var << endl;
++some_var;
};
scope(failure)
{
cout << "failure " << some_var << endl;
++some_var;
};
scope(success)
{
cout << "success " << some_var << endl;
++some_var;
};
}
In C++98 it is a bit more noisier:
try
{
cout << "Case #1: stack unwinding" << endl;
BOOST_SCOPE_EXIT(void) { cout << "exit" << endl; } BOOST_SCOPE_EXIT_END
SCOPE_FAILURE(void) { cout << "failure" << endl; } SCOPE_FAILURE_END
SCOPE_SUCCESS(void) { cout << "success" << endl; } SCOPE_SUCCESS_END
throw 1;
} catch(int){}
{
cout << "Case #2: normal exit" << endl;
BOOST_SCOPE_EXIT(void) { cout << "exit" << endl; } BOOST_SCOPE_EXIT_END
SCOPE_FAILURE(void) { cout << "failure" << endl; } SCOPE_FAILURE_END
SCOPE_SUCCESS(void) { cout << "success" << endl; } SCOPE_SUCCESS_END
}
Also, library has UNWINDING_AWARE_DESTRUCTOR feature. Example:
struct DestructorInClass
{
UNWINDING_AWARE_DESTRUCTOR(DestructorInClass,unwinding)
{
cout << "DestructorInClass, unwinding: "
<< ( unwinding ? "true" : "false" ) << endl;
}
};
However, there are some cases where UNWINDING_AWARE_DESTRUCTOR may give wrong results (though scope(success) and scope(failure) features are not affected by such issues).