2D array calculation formula - c++

Suppose the address for A[10][10] is 40000, double takes 16 bytes, and byte addressing is used, what are the addresses for A[40, 50]?
I am just trying to calculate a simple point in a 2D and just wanted to double check that I plugged in the right values in the equation
BA + [n * (i - LBR) + (j - LBC)] * w
40000 +[10*(40-0)+(50-0)]*16
40000+[10*(40)+(50)]*16
40000+[900]*16 = 54400
Did I apply the formula correctly here? I wasn't sure if i plugged in the right values?

In C++ a 2d array is just an array of arrays, so in A the memory is used for
A[ 0][ 0] A[ 0][ 1] A[ 0][ 2] ... A[ 0][99]
A[ 1][ 0] A[ 1][ 1] A[ 1][ 2] ... A[ 1][99]
...
A[99][ 0] A[99][ 1] A[99][ 2] ... A[99][99]
where each row just follows the previous one in memory.
The address in of an element at (row, col) is
(unsigned char *)(&A[0][0]) + (row*row_size + col) * element_size
In your case you know that the element you are searching is 30 rows lower and 40 elements to the right of given element, therefore the address will be
40000 + ((40 - 10)*100 + (50 - 10)) * 16
totaling to 88640.
You can get to the same result by subtracting the relative address of element (10, 10) from the given address (to find the start of the array) and then by adding the relative address of (40, 50).

The answer is dependent on whether you are using row major ordering or column major ordering. In row major ordering the data is stored row wise. In column major ordering the data is stored column wise. Consider the following 2D array to be stored in memory,
11 22 33
44 55 66
77 88 99
In row major ordering the elements are stored contiguously as 11,22,33,44,55,66,77,88,99.
In column major ordering the the elements are stored contiguously 11,44,77,22,55,88,33,66,99.

The meaning of following equation:
BA + [n * (i - LBR) + (j - LBC)] * w
If you have an array A[n][n] and you know the address of entry A[LBR][LBC] as BA, then address of A[i][j] can be calculated as follows. Assuming n = 6,
00 01 02 03 04 05
10 11 12 13 14 15
20 21 22 23 24 25
30 31 32 33 34 35
40 41 42 43 44 45
50 51 52 53 54 55
Here suppose we know the address of A[2,1] = 1000. We need to calculate the address of A[4,2]. Now to reach [4,2] from [2,1], how many entries will we have to travel? Ofcourse as #Deepu specifies, we can do it two ways, either travel row-wise or column-wise. From the equation it appears that row-wise travel has been selected.
22 to 25 (4)
30 to 35 (6)
40 to 42.(3)
= 13 entries.
Hence address of A[4,2] = 1000 + 13*(numOfbytes per entry)
To verify with the equation,
i - LBR = 4 - 2 = 2.
j - LBC = 2 - 1 = 1.
Hence, n*( i - LBR ) + (j - LBC) = 6*2 + 1 = 13.

Related

Reading numbers from file to multidimensional arrays

I have integer numbers in a text file to be assigned to an array C[5][100].
My data is in this format:
17 40 35 24 50 15 31 38 48 18 16 44
41 10 26 50 48 20 24 12 48 24 34 39
...............
I am trying the code below but the error I get is this:
ValueError: cannot copy sequence with size 1005 to array axis with dimension 100
text_file = open("c051001.txt", "r")
C=np.zeros((5,100))
for i in range(agent):
C[i,]=map(int, (value for value in text_file.read().split()))
Number of integers in the file is more than 500 but I want to assign the remainder of numbers to another array.
You need to divide the data into appropriate chunks. A simple way to do this could be:
agent = 5
resource = 1
sz = 100
C = np.zeros((agent, sz))
idx = 0
chunk = sz
for i in range(agent):
C[i, ] = list(map(int, data[idx:idx + chunk]))
idx += chunk
# Assign the following 500 integers into another array of A[5,100,1]
A = np.zeros((agent, sz, resource))
for k in range(resource):
for i in range(agent):
A[i, :, k] = list(map(int, data[idx:idx + chunk]))
idx += chunk
trailing_data = data[idx:]

how can we find the nth 3 word combination from a word corpus of 3000 words

I have a word corpus of say 3000 words such as [hello, who, this ..].
I want to find the nth 3 word combination from this corpus.I am fine with any order as long as the algorithm gives consistent output.
What would be the time complexity of the algorithm.
I have seen this answer but was looking for something simple.
(Note that I will be using 1-based indexes and ranks throughout this answer.)
To generate all combinations of 3 elements from a list of n elements, we'd take all elements from 1 to n-2 as the first element, then for each of these we'd take all elements after the first element up to n-1 as the second element, then for each of these we'd take all elements after the second element up to n as the third element. This gives us a fixed order, and a direct relation between the rank and a specific combination.
If we take element i as the first element, there are (n-i choose 2) possibilities for the second and third element, and thus (n-i choose 2) combinations with i as the first element. If we then take element j as the second element, there are (n-j choose 1) = n-j possibilities for the third element, and thus n-j combinations with i and j as the first two elements.
Linear search in tables of binomial coefficients
With tables of these binomial coefficients, we can quickly find a specific combination, given its rank. Let's look at a simplified example with a list of 10 elements; these are the number of combinations with element i as the first element:
i
1 C(9,2) = 36
2 C(8,2) = 28
3 C(7,2) = 21
4 C(6,2) = 15
5 C(5,2) = 10
6 C(4,2) = 6
7 C(3,2) = 3
8 C(2,2) = 1
---
120 = C(10,3)
And these are the number of combinations with element j as the second element:
j
2 C(8,1) = 8
3 C(7,1) = 7
4 C(6,1) = 6
5 C(5,1) = 5
6 C(4,1) = 4
7 C(3,1) = 3
8 C(2,1) = 2
9 C(1,1) = 1
So if we're looking for the combination with e.g. rank 96, we look at the number of combinations for each choice of first element i, until we find which group of combinations the combination ranked 96 is in:
i
1 36 96 > 36 96 - 36 = 60
2 28 60 > 28 60 - 28 = 32
3 21 32 > 21 32 - 21 = 11
4 15 11 <= 15
So we know that the first element i is 4, and that within the 15 combinations with i=4, we're looking for the eleventh combination. Now we look at the number of combinations for each choice of second element j, starting after 4:
j
5 5 11 > 5 11 - 5 = 6
6 4 6 > 4 6 - 4 = 2
7 3 2 <= 3
So we know that the second element j is 7, and that the third element is the second combination with j=7, which is k=9. So the combination with rank 96 contains the elements 4, 7 and 9.
Binary search in tables of running total of binomial coefficients
Instead of creating a table of the binomial coefficients and then performing a linear search, it is of course more efficient to create a table of the running total of the binomial coefficient, and then perform a binary search on it. This will improve the time complexity from O(N) to O(logN); in the case of N=3000, the two look-ups can be done in log2(3000) = 12 steps.
So we'd store:
i
1 36
2 64
3 85
4 100
5 110
6 116
7 119
8 120
and:
j
2 8
3 15
4 21
5 26
6 30
7 33
8 35
9 36
Note that when finding j in the second table, you have to subtract the sum corresponding with i from the sums. Let's walk through the example of rank 96 and combination [4,7,9] again; we find the first value that is greater than or equal to the rank:
3 85 96 > 85
4 100 96 <= 100
So we know that i=4; we then subtract the previous sum next to i-1, to get:
96 - 85 = 11
Now we look at the table for j, but we start after j=4, and subtract the sum corresponding to 4, which is 21, from the sums. then again, we find the first value that is greater than or equal to the rank we're looking for (which is now 11):
6 30 - 21 = 9 11 > 9
7 33 - 21 = 12 11 <= 12
So we know that j=7; we subtract the previous sum corresponding to j-1, to get:
11 - 9 = 2
So we know that the second element j is 7, and that the third element is the second combination with j=7, which is k=9. So the combination with rank 96 contains the elements 4, 7 and 9.
Hard-coding the look-up tables
It is of course unnecessary to generate these look-up tables again every time we want to perform a look-up. We only need to generate them once, and then hard-code them into the rank-to-combination algorithm; this should take only 2998 * 64-bit + 2998 * 32-bit = 35kB of space, and make the algorithm incredibly fast.
Inverse algorithm
The inverse algorithm, to find the rank given a combination of elements [i,j,k] then means:
Finding the index of the elements in the list; if the list is sorted (e.g. words sorted alphabetically) this can be done with a binary search in O(logN).
Find the sum in the table for i that corresponds with i-1.
Add to that the sum in the table for j that corresponds with j-1, minus the sum that corresponds with i.
Add to that k-j.
Let's look again at the same example with the combination of elements [4,7,9]:
i=4 -> table_i[3] = 85
j=7 -> table_j[6] - table_j[4] = 30 - 21 = 9
k=9 -> k-j = 2
rank = 85 + 9 + 2 = 96
Look-up tables for N=3000
This snippet generates the look-up table with the running total of the binomial coefficients for i = 1 to 2998:
function C(n, k) { // binomial coefficient (Pascal's triangle)
if (k < 0 || k > n) return 0;
if (k > n - k) k = n - k;
if (! C.t) C.t = [[1]];
while (C.t.length <= n) {
C.t.push([1]);
var l = C.t.length - 1;
for (var i = 1; i < l / 2; i++)
C.t[l].push(C.t[l - 1][i - 1] + C.t[l - 1][i]);
if (l % 2 == 0)
C.t[l].push(2 * C.t[l - 1][(l - 2) / 2]);
}
return C.t[n][k];
}
for (var total = 0, x = 2999; x > 1; x--) {
total += C(x, 2);
document.write(total + ", ");
}
This snippet generates the look-up table with the running total of the binomial coefficients for j = 2 to 2999:
for (var total = 0, x = 2998; x > 0; x--) {
total += x;
document.write(total + ", ");
}
Code example
Here's a quick code example, unfortunately without the full hardcoded look-up tables, because of the size restriction on answers on SO. Run the snippets above and paste the results into the arrays iTable and jTable (after the leading zeros) to get the faster version with hard-coded look-up tables.
function combinationToRank(i, j, k) {
return iTable[i - 1] + jTable[j - 1] - jTable[i] + k - j;
}
function rankToCombination(rank) {
var i = binarySearch(iTable, rank, 1);
rank -= iTable[i - 1];
rank += jTable[i];
var j = binarySearch(jTable, rank, i + 1);
rank -= jTable[j - 1];
var k = j + rank;
return [i, j, k];
function binarySearch(array, value, first) {
var last = array.length - 1;
while (first < last - 1) {
var middle = Math.floor((last + first) / 2);
if (value > array[middle]) first = middle;
else last = middle;
}
return (value <= array[first]) ? first : last;
}
}
var iTable = [0]; // append look-up table values here
var jTable = [0, 0]; // and here
// remove this part when using hard-coded look-up tables
function C(n,k){if(k<0||k>n)return 0;if(k>n-k)k=n-k;if(!C.t)C.t=[[1]];while(C.t.length<=n){C.t.push([1]);var l=C.t.length-1;for(var i=1;i<l/2;i++)C.t[l].push(C.t[l-1][i-1]+C.t[l-1][i]);if(l%2==0)C.t[l].push(2*C.t[l-1][(l-2)/2])}return C.t[n][k]}
for (var iTotal = 0, jTotal = 0, x = 2999; x > 1; x--) {
iTable.push(iTotal += C(x, 2));
jTable.push(jTotal += x - 1);
}
document.write(combinationToRank(500, 1500, 2500) + "<br>");
document.write(rankToCombination(1893333750) + "<br>");

Density of fractions between 2 given numbers

I'm trying to do some analysis over a simple Fraction class and I want some data to compare that type with doubles.
The problem
Right know I'm looking for some good way to get the density of Fractions between 2 numbers. Fractions is basically 2 integers (e.g. pair< long, long>), and the density between s and t is the amount of representable numbers in that range. And it needs to be an exact, or very good approximation done in O(1) or very fast.
To make it a bit simpler, let's say I want all the numbers (not fractions) a/b between s and t, where 0 <= s <= a/b < t <= M, and 0 <= a,b <= M (b > 0, a and b are integers)
Example
If my fractions were of a data type which only count to 6 (M = 6), and I want the density between 0 and 1, the answer would be 12. Those numbers are:
0, 1/6, 1/5, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5, 5/6.
What I thought already
A very naive approach would be to cycle trough all the possible fractions, and count those which can't be simplified. Something like:
long fractionsIn(double s, double t){
long density = 0;
long M = LONG_MAX;
for(int d = 1; d < floor(M/t); d++){
for(int n = ceil(d*s); n < M; n++){
if( gcd(n,d) == 1 )
density++;
}
}
return density;
}
But gcd() is very slow so it doesn't works. I also try doing some math but i couldn't get to anything good.
Solution
Thanks to #m69 answer, I made this code for Fraction = pair<Long,Long>:
//this should give the density of fractions between first and last, or less.
double fractionsIn(unsigned long long first, unsigned long long last){
double pi = 3.141592653589793238462643383279502884;
double max = LONG_MAX; //i can't use LONG_MAX directly
double zeroToOne = max/pi * max/pi * 3; // = approx. amount of numbers in Farey's secuence of order LONG_MAX.
double res = 0;
if(first == 0){
res = zeroToOne;
first++;
}
for(double i = first; i < last; i++){
res += zeroToOne/(i * i+1);
if(i == i+1)
i = nextafter(i+1, last); //if this happens, i might not count some fractions, but i have no other choice
}
return floor(res);
}
The main change is nextafter, which is important with big numbers (1e17)
The result
As I explain at the begining, I was trying to compare Fractions with double. Here is the result for Fraction = pair<Long,Long> (and here how I got the density of doubles):
Density between 0,1: | 1,2 | 1e6,1e6+1 | 1e14,1e14+1 | 1e15-1,1e15 | 1e17-10,1e17 | 1e19-10000,1e19 | 1e19-1000,1e19
Doubles: 4607182418800017408 | 4503599627370496 | 8589934592 | 64 | 8 | 1 | 5 | 0
Fraction: 2.58584e+37 | 1.29292e+37 | 2.58584e+25 | 2.58584e+09 | 2.58584e+07 | 2585 | 1 | 0
Density between 0 and 1
If the integers with which you express the fractions are in the range 0~M, then the density of fractions between the values 0 (inclusive) and 1 (exclusive) is:
M: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
0~(1): 1 2 4 6 10 12 18 22 28 32 42 46 58 64 72 80 96 102 120 128 140 150 172 180 200 212 230 242 270 278 308 ...
This is sequence A002088 on OEIS. If you scroll down to the formula section, you'll find information about how to approximate it, e.g.:
Φ(n) = (3 ÷ π2) × n2 + O[n × (ln n)2/3 × (ln ln n)4/3]
(Unfortunately, no more detail is given about the constants involved in the O[x] part. See discussion about the quality of the approximation below.)
Distribution across range
The interval from 0 to 1 contains half of the total number of unique fractions that can be expressed with numbers up to M; e.g. this is the distribution when M = 15 (i.e. 4-bit integers):
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
72 36 12 6 4 2 2 2 1 1 1 1 1 1 1 1
for a total of 144 unique fractions. If you look at the sequence for different values of M, you'll see that the steps in this sequence converge:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1: 1 1
2: 2 1 1
3: 4 2 1 1
4: 6 3 1 1 1
5: 10 5 2 1 1 1
6: 12 6 2 1 1 1 1
7: 18 9 3 2 1 1 1 1
8: 22 11 4 2 1 1 1 1 1
9: 28 14 5 2 2 1 1 1 1 1
10: 32 16 5 3 2 1 1 1 1 1 1
11: 42 21 7 4 2 2 1 1 1 1 1 1
12: 46 23 8 4 2 2 1 1 1 1 1 1 1
13: 58 29 10 5 3 2 2 1 1 1 1 1 1 1
14: 64 32 11 5 4 2 2 1 1 1 1 1 1 1 1
15: 72 36 12 6 4 2 2 2 1 1 1 1 1 1 1 1
Not only is the density between 0 and 1 half of the total number of fractions, but the density between 1 and 2 is a quarter, and the density between 2 and 3 is close to a twelfth, and so on.
As the value of M increases, the distribution of fractions across the ranges 0-1, 1-2, 2-3 ... converges to:
1/2, 1/4, 1/12, 1/24, 1/40, 1/60, 1/84, 1/112, 1/144, 1/180, 1/220, 1/264 ...
This sequence can be calculated by starting with 1/2 and then:
0-1: 1/2 x 1/1 = 1/2
1-2: 1/2 x 1/2 = 1/4
2-3: 1/4 x 1/3 = 1/12
3-4: 1/12 x 2/4 = 1/24
4-5: 1/24 x 3/5 = 1/40
5-6: 1/40 x 4/6 = 1/60
6-7: 1/60 x 5/7 = 1/84
7-8: 1/84 x 6/8 = 1/112
8-9: 1/112 x 7/9 = 1/144 ...
You can of course calculate any of these values directly, without needing the steps inbetween:
0-1: 1/2
6-7: 1/2 x 1/6 x 1/7 = 1/84
(Also note that the second half of the distribution sequence consists of 1's; these are all the integers divided by 1.)
Approximating the density in given interval
Using the formulas provided on the OEIS page, you can calculate or approximate the density in the interval 0-1, and multiplied by 2 this is the total number of unique values that can be expressed as fractions.
Given two values s and t, you can then calculate and sum the densities in the intervals s ~ s+1, s+1 ~ s+2, ... t-1 ~ t, or use an interpolation to get a faster but less precise approximate value.
Example
Let's assume that we're using 10-bit integers, capable of expressing values from 0 to 1023. Using this table linked from the OEIS page, we find that the density between 0~1 is 318452, and the total number of fractions is 636904.
If we wanted to find the density in the interval s~t = 100~105:
100~101: 1/2 x 1/100 x 1/101 = 1/20200 ; 636904/20200 = 31.53
101~102: 1/2 x 1/101 x 1/102 = 1/20604 ; 636904/20604 = 30.91
102~103: 1/2 x 1/102 x 1/103 = 1/21012 ; 636904/21012 = 30.31
103~104: 1/2 x 1/103 x 1/104 = 1/21424 ; 636904/21424 = 29.73
104~105: 1/2 x 1/104 x 1/105 = 1/21840 ; 636904/21840 = 29.16
Rounding these values gives the sum:
32 + 31 + 30 + 30 + 29 = 152
A brute force algorithm gives this result:
32 + 32 + 30 + 28 + 28 = 150
So we're off by 1.33% for this low value of M and small interval with just 5 values. If we had used linear interpolation between the first and last value:
100~101: 31.53
104~105: 29.16
average: 30.345
total: 151.725 -> 152
we'd have arrived at the same value. For larger intervals, the sum of all the densities will probably be closer to the real value, because rounding errors will cancel each other out, but the results of linear interpolation will probably become less accurate. For ever larger values of M, the calculated densities should converge with the actual values.
Quality of approximation of Φ(n)
Using this simplified formula:
Φ(n) = (3 ÷ π2) × n2
the results are almost always smaller than the actual values, but they are within 1% for n ≥ 182, within 0.1% for n ≥ 1880 and within 0.01% for n ≥ 19494. I would suggest hard-coding the lower range (the first 50,000 values can be found here), and then using the simplified formula from the point where the approximation is good enough.
Here's a simple code example with the first 182 values of Φ(n) hard-coded. The approximation of the distribution sequence seems to add an error of a similar magnitude as the approximation of Φ(n), so it should be possible to get a decent approximation. The code simply iterates over every integer in the interval s~t and sums the fractions. To speed up the code and still get a good result, you should probably calculate the fractions at several points in the interval, and then use some sort of non-linear interpolation.
function fractions01(M) {
var phi = [0,1,2,4,6,10,12,18,22,28,32,42,46,58,64,72,80,96,102,120,128,140,150,172,180,200,212,230,242,270,278,308,
324,344,360,384,396,432,450,474,490,530,542,584,604,628,650,696,712,754,774,806,830,882,900,940,964,1000,
1028,1086,1102,1162,1192,1228,1260,1308,1328,1394,1426,1470,1494,1564,1588,1660,1696,1736,1772,1832,1856,
1934,1966,2020,2060,2142,2166,2230,2272,2328,2368,2456,2480,2552,2596,2656,2702,2774,2806,2902,2944,3004,
3044,3144,3176,3278,3326,3374,3426,3532,3568,3676,3716,3788,3836,3948,3984,4072,4128,4200,4258,4354,4386,
4496,4556,4636,4696,4796,4832,4958,5022,5106,5154,5284,5324,5432,5498,5570,5634,5770,5814,5952,6000,6092,
6162,6282,6330,6442,6514,6598,6670,6818,6858,7008,7080,7176,7236,7356,7404,7560,7638,7742,7806,7938,7992,
8154,8234,8314,8396,8562,8610,8766,8830,8938,9022,9194,9250,9370,9450,9566,9654,9832,9880,10060];
if (M < 182) return phi[M];
return Math.round(M * M * 0.30396355092701331433 + M / 4); // experimental; see below
}
function fractions(M, s, t) {
var half = fractions01(M);
var frac = (s == 0) ? half : 0;
for (var i = (s == 0) ? 1 : s; i < t && i <= M; i++) {
if (2 * i < M) {
var f = Math.round(half / (i * (i + 1)));
frac += (f < 2) ? 2 : f;
}
else ++frac;
}
return frac;
}
var M = 1023, s = 100, t = 105;
document.write(fractions(M, s, t));
Comparing the approximation of Φ(n) with the list of the 50,000 first values suggests that adding M÷4 is a workable substitute for the second part of the formula; I have not tested this for larger values of n, so use with caution.
Blue: simplified formula. Red: improved simplified formula.
Quality of approximation of distribution
Comparing the results for M=1023 with those of a brute-force algorithm, the errors are small in real terms, never more than -7 or +6, and above the interval 205~206 they are limited to -1 ~ +1. However, a large part of the range (57~1024) has fewer than 100 fractions per integer, and in the interval 171~1024 there are only 10 fractions or fewer per integer. This means that small errors and rounding errors of -1 or +1 can have a large impact on the result, e.g.:
interval: 241 ~ 250
fractions/integer: 6
approximation: 5
total: 50 (instead of 60)
To improve the results for intervals with few fractions per integer, I would suggest combining the method described above with a seperate approach for the last part of the range:
Alternative method for last part of range
As already mentioned, and implemented in the code example, the second half of the range, M÷2 ~ M, has 1 fraction per integer. Also, the interval M÷3 ~ M÷2 has 2; the interval M÷4 ~ M÷3 has 4. This is of course the Φ(n) sequence again:
M/2 ~ M : 1
M/3 ~ M/2: 2
M/4 ~ M/3: 4
M/5 ~ M/4: 6
M/6 ~ M/5: 10
M/7 ~ M/6: 12
M/8 ~ M/7: 18
M/9 ~ M/8: 22
M/10 ~ M/9: 28
M/11 ~ M/10: 32
M/12 ~ M/11: 42
M/13 ~ M/12: 46
M/14 ~ M/13: 58
M/15 ~ M/14: 64
M/16 ~ M/15: 72
M/17 ~ M/16: 80
M/18 ~ M/17: 96
M/19 ~ M/18: 102 ...
Between these intervals, one integer can have a different number of fractions, depending on the exact value of M, e.g.:
interval fractions
202 ~ 203 10
203 ~ 204 10
204 ~ 205 9
205 ~ 206 6
206 ~ 207 6
The interval 204 ~ 205 lies on the edge between intervals, because M ÷ 5 = 204.6; it has 6 + 3 = 9 fractions because M modulo 5 is 3. If M had been 1022 or 1024 instead of 1023, it would have 8 or 10 fractions. (This example is straightforward because 5 is a prime; see below.)
Again, I would suggest using the hard-coded values for Φ(n) to calculate the number of fractions for the last part of the range. If you use the first 17 values as listed above, this covers the part of the range with fewer than 100 fractions per integer, so that would reduce the impact of rounding errors below 1%. The first 56 values would give you 0.1%, the first 182 values 0.01%.
Together with the values of Φ(n), you could hard-code the number of fractions of the edge intervals for each modulo value, e.g.:
modulo: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
M/ 2 1 2
M/ 3 2 3 4
M/ 4 4 5 5 6
M/ 5 6 7 8 9 10
M/ 6 10 11 11 11 11 12
M/ 7 12 13 14 15 16 17 18
M/ 8 18 19 19 20 20 21 21 22
M/ 9 22 23 24 24 25 26 26 27 28
M/10 28 29 29 30 30 30 30 31 31 32
M/11 32 33 34 35 36 37 38 39 40 41 42
M/12 42 43 43 43 43 44 44 45 45 45 45 46
M/13 46 47 48 49 50 51 52 53 54 55 56 57 58
M/14 58 59 59 60 60 61 61 61 61 62 62 63 63 64
M/15 64 65 66 66 67 67 67 68 69 69 69 70 70 71 72
M/16 72 73 73 74 74 75 75 76 76 77 77 78 78 79 79 80
M/17 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
M/18 96 97 97 97 97 98 98 99 99 99 99 100 100 101 101 101 101 102
This is exactly the same as: (Sum of phi(k)) where m <= k <= M where phi(k) is the Euler Totient Function and with phi(0) = 1 (as defined by the problem). There is no known closed form for this sum. However there are many optimizations known as mentioned in the wiki link. This is known as the Totient Summatory Function in Wolfram. The same website also links to the series: A002088 and provides a few asymptotic approximations.
The reasoning is this: consider the number of values of the form {1/M, 2/M, ...., (M-1)/M, M/M}. All those fractions that will be reducible to a smaller value will not be counted in phi(M) because they are not relatively prime. They will appear in the summation of another totient.
For example, phi(6) = 12 and you have 1 + phi(6), since you also count the 0.

sas generate 5 digit id code that first 3 must be letters and last 2 numbers

How can I generate in SAS and ID code with 5 digits(letters & Numbers)? Where the first 3 must be letters and last 2 must be numbers.
You can create a unique mapping of the integers from 0 to 26^3 * 10^2 - 1 to a string of the format AAA00. This wikipedia page introduces the concept of different numerical bases quite well.
Your map would look something like this
value = 100 * (X * 26^2 + Y * 26^1 + Z * 26^0) + a * 10^1 + b * 10^0
where X, Y & Z are integers between 0 and 25 (which can be represented as the letters of the alphabet), and a & b are integers between 0 and 9.
As an example:
47416 = 100 * (0 * 26^2 + 18 * 26^1 + 6 * 26^0) + 1 * 10^1 + 6 * 10^0
Using:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
You get:
47416 -> [0] [18] [6] (1) (6)
A S G 1 6
So 47416 can be represented as ASG16.
To do this programatically you will need to step through your number splitting it into quotient and remainder through division by your bases (10 and 26), storing the remainder as part of your output and using the quotient for the next iteration.
you will probably want to use these functions:
mod() Modulo function to get the remainder from division
floor() Flooring function which returns the rounded down integer part of a real numer
A couple of similar (but slightly simpler) examples to get you started can be found here.
Have a go, and if you get stuck post a new question. You will probably get the best response from SO if you provide a detailed question, code showing your progress, a description of where and why you are stuck, any errors or warnings you are getting and some sample data.

Suggest an optimal algorithm for the sum of distances of the first match in two seqence

I have two list say L1 and L2, (minimum) sum of the lengths of the two lists.
For Example:
89 145 42 20 4 16 37 58 89
20 4 16 37 58 89
Output : 5
89 145 42 20 4 16 37 58 89
56 678 123 65467
Output : 0
19 82 68 100 1
100 1
Output : 5
Thanks,
PS: My language of choice is C and C++ hence the tag.
Add shorter list to hash (dictionary) key = number, value = index of first instance in list
Iterate through the other list and for each element try a lookup in the hash. When a match is made, add the indices together (value from hash plus current index in the list)
This runs in O(n)
boost::unordered_map or stdex::hash_map could be used for the hash
Here is a linear time algorithm using a hash table.
To start with hash elements of L1 (with element being the hash key and index being the value) if it is not already hashed.
Next, foreach element in L2 see if the element has been hashed, if yes print the sum of the index of the element in L2 and the hash value ( index of the same element in L1) and exit.
If no element of L2 is found in the hash table, print 0 and exit.
Algorithm:
foreach ele N in L1 at position pos
if N not in hash
hash[N] = pos
end-if
end-foreach
foreach ele N in L2 at position pos
if N in hash
print pos + hash[N]
exit
end-if
end-foreach
print 0
for (int sum = 0; sum < a.length + b.length - 1; sum++)
for (int i = 0; i < a.length && i <= sum; i++)
if(a[i] == b[sum-i])
return sum;
return -1;
This is O(1) in space and worst case O(n^2) in time. And best case O(1) in time! This algorithm is very quick for lists having a match in the first few elements.