I am trying to do the below sample in unordered map in c++
my_dict = {'one': ['alpha','gamma'], 'two': ['beta'], 'three' : ['charlie']}
print(my_dict["one"]) // ['alpha','gamma']
I tried using find operator like below
int main ()
{
std::unordered_map<std::string, std::vector<std::string>> dict;
dict["one"].push_back("alpha");
dict["one"].push_back("beta");
dict["two"].push_back("gamma");
auto it = dict.find("one");
cout<<it->second<<endl; // expected output alphabeta
return 0;
}
But I am not able to retrieve the value for this key dict["one"]. Am i missing anything ?
Any help is highly appreciated.
Thanks
The failure you are encountering is due to it->second being a std::vector object, which cannot be printed to std::cout because it lacks an overload for operator<<(std::ostream&,...).
Unlike languages like Python that do this for you, in C++ you must manually loop through the elements and print each entry.
To fix this, you will need to change this line:
cout<<it->second<<endl; // expected output alphabeta
To instead print each object in the container. This could be something simple like looping through all elements and printing them:
for (const auto& v : it->second) {
std::cout << v << ' '; // Note: this will leave an extra space at the end
}
std::cout << std::endl;
Or you can go more complex if the exact formatting is important.
#DanielLangr posted a link in the comments to the question that summarizes all possible ways of doing this, and I recommend taking a look if you're wanting anything more complex: How do I print the contents to a Vector?
This is because your it->first will point to the key of the dictionary i.e. "One" and it->second will point to the value i.e. the vector.
So to print elements of the vector you need to specify the indexes of the vector that you are printing as well. The following code will give you the result you want:
int main() {
std::unordered_map <std::string, std::vector<std::string>> dict;
dict["one"].push_back("alpha");
dict["one"].push_back("beta");
dict["two"].push_back("gamma");
auto it = dict.find("one");
cout<<it->second[0]<<it->second[1]<<endl; // expected output alphabeta
return 0;
}
P.S. Please accept my answer if you find it useful as that would help me get some reputation points
I am creating a program where I am summarizing from a data file. The data file has information about first names, etc. The information are the fields in the csv file. The fields in the data file are included as instance variables in the class. I created setter and getter methods to return the data for one person. I created vectors to hold the collection of variables.
I am having trouble understanding how create a list of the 100 most common first names of all people in the collection. The list must be in descending order of occurrence.
I was able to print all the common names and its frequencies. But, I am unable to print the 100 most common names. I sorted the vector and got the following errors:
class std::pair<const std::string, int> has no member begin and end
Please help me resolve these issue. All processing of data in the vector must be done with iterators.I am not sure how to fix these issues since I am a beginner.
std::vector<std::string> commonNamesFirst; //vector
for (auto x : census) {
commonNamesFirst.push_back(x.getFirstName()); //populate vector
}
std::map<std::string, int> frequencies;
for (auto& x : census) { ++frequencies[x.getFirstName()]; }
for (auto& freq : frequencies) {
sort(freq.begin(), freq.end(), greater <>()); //error, need to sort in descending order
cout << freq.first << ": " << freq.second << endl; //print the 100 common names in descending order
}
std::map<std::string, int> frequencies;
This is generally the right direction. You're using this to count how many times each word occurs.
for (auto& freq : frequencies) {
This iterates over each individual word and a count of how many times it occured. This no longer makes any logical sense. You are looking to find the 100 most common ones, the one with the highest count values. Iterating, and looking at each one individually, in the manner that's done here, does not make any sense.
sort(freq.begin(), freq.end(), greater <>());
freq, here, is a single word and how many times it occured. You are using freq to iterate over all of the frequencies. Therefore, this is just one of the words, and its frequency value. This is a single std::pair value. And it does not have anything called begin, or end. And that's what your compiler is telling you, directly.
Furthermore, you cannot sort a std::map in the first place. This is not a sortable container. The simplest option is to extract the contents if the now-complete map into something that's sortable. Like, for example, a vector:
std::vector<std::pair<std::string, int>> vfrequencies{
frequencies.begin(),
frequencies.end()
};
So, you've now copied the contents of a map into a vector. Not the most efficient approach, but a workable one.
And now, you can sort this vector. Rather easily.
However, as one last detail, you can't just drop std::greater<> and expect the right thing to happen.
You are looking to sort on the frequency count value only, which is the .second of these std::pairs. A plain std::greater is not going to do this for you. The std::greater overload for a std::pair is not going to do what you think it will do, here.
You will need to provide your own custom lambda for the third parameter of std::sort, that compares the second value of the std::pairs in that vector.
And then, the first 100 most common words will be the first 100 values in the vector. Mission accomplished.
You cannot (re-)sort std::map, you can copy frequencies in vector or std::multimap as intermediate:
std::map<std::string, int> frequencies;
for (auto& x : census) { ++frequencies[x.getFirstName()]; }
std::vector<std::pair<std::string, int>> freqs{frequencies.begin(), frequencies.end()};
std::partial_sort(freqs.begin(), freqs.begin() + 100, freqs.end(),
[](const auto& lhs, const auto& rhs){ return lhs.second > rhs.second; });
for (std::size_t i = 0; i != 100; ++i)
{
std::cout << freqs[i].second << ":" << freqs[i] << std::endl;
}
Building on to #MichaĆ Kaczorowski's answer, you are trying to sort the values in each pair instead of the pairs in the map. However, as Sam mentoined, you cannot sort an std::map (the internal implementation stores things sorted by the key value, or the name in this case). You'd have to get the values out of the map and sort them then, or use a priority queue and heapsort (faster constant factor), or a monotonic queue (linear time but harder to implement). Here is an example heapsort implementation:
vector<string> commonNamesFirst; //vector
for (auto x : census) {
commonNamesFirst.push_back(x.getFirstName()); //populate vector
}
std::map<std::string, int> frequencies;
for (auto& x : census) { ++frequencies[x.getFirstName()]; }
std::priority_queue<pair<int, std::string> > top_names; // put the frequency before the name to take advantage of default pair compare
for (auto& freq : frequencies) top_names.push(std::make_pair(freq.second, freq.first));
for (int i=0; i<100; ++i)
{
outputFile << top_names.top().second << ": " << top_names.top().first << endl; //print the 100 common names in descending order
top_names.pop();
}
The error you get, says it all. You are trying to sort individual std::pair. I think the best way would be to transform your map into a std::vector of pairs and then sort that vector. Then just go through first 100 elements in a loop and print results.
I am creating a map. The map works fine though. I need to extract the character for a particular index (for another computation).
Code for map is below:
//site index, val type, num of val
typedef map<int, pair<char, int> > Maptype;
Maptype my_map;
for (i=0; i<SIZE; i++){ //create the system
char Type = 's';
int Count = 10;
//insert to map
my_map.insert( make_pair( i, make_pair(Type, i*Count)));
}
Now, I am trying to extract the character for a particular index. If I had two elements, I could've used the below one. But with three elements, I am not able to find the solution. Help please :)
for(auto &i: my_map)
cout << i.second << endl;
Iterating over my_map using auto gets you key-value pairs. In your case, the key is an int, the value is yet another std::pair.
i.second is the value of the key-value pair, so since it's a std::pair too, simply do i.second.first to get the value of Type and i.second.second for i*Count.
You might want to consider using const auto &i here instead, since you don't modify anything and don't intend to, as it seems. Also, std::endl flushes the stream buffer, which might be expensive if done in a loop. Just use '\n'.
i.second will be of type pair<char, int>& in your loop.
So in order to access the integer, simply use cout << i.second.second << endl;.
I have this multimap built to map the hamming distance of a string to its corresponding string.
Since the hamming distance of two strings could be the same, I want them to be sorted in ascending order. However when I print it out, it is not sorted. The hamdistArray is declared as an unsigned type.
typedef multimap<unsigned, string, less<unsigned> > Check;
Check pairs;
pairs.insert(Check::value_type(hamdistArray[j], d.sortedWordDatabase[j]));
for(Check::const_iterator iter = pairs.begin(); iter != pairs.end(); ++iter)
{
cout << iter->first << '\t' << iter->second<< endl;
}
Elements in a multimap are sorted by the key (in this case the unsigned hamming distance). Elements with the same key are not sorted by the value (in this case the string), they are usually kept in the order in which they were inserted.
This is not possible using std::multimap, because when keys are compared, it is not known which value they represent.
multimap only sorts by its key (length) not also by value (string). In this case I suspect your best approach is a std::map<unsigned, std::set<std::string> >. You could also use a std::set<std::pair<unsigned, std::string> > but searching would require you to construct dummy pairs to search on.
The less template function is not necessary since it's the default. Try declaring Check without as:
typedef multimap<unsigned, string> Check;
Edited: The best way to do this is to generate a hash-key as the *key_type* and than the value-type could be a std::pair<unsigned, string>
This is my code
map<string,int> persons;
persons["B"] = 123;
persons["A"] = 321;
for(map<string,int>::iterator i = persons.begin();
i!=persons.end();
++i)
{
cout<< (*i).first << ":"<<(*i).second<<endl;
}
Expected output:
B:123
A:321
But output it gives is:
A:321
B:123
I want it to maintain the order in which keys and values were inserted in the map<string,int>.
Is it possible? Or should I use some other STL data structure? Which one?
There is no standard container that does directly what you want. The obvious container to use if you want to maintain insertion order is a vector. If you also need look up by string, use a vector AND a map. The map would in general be of string to vector index, but as your data is already integers you might just want to duplicate it, depending on your use case.
Like Matthieu has said in another answer, the Boost.MultiIndex library seems the right choice for what you want. However, this library can be a little tough to use at the beginning especially if you don't have a lot of experience with C++. Here is how you would use the library to solve the exact problem in the code of your question:
struct person {
std::string name;
int id;
person(std::string const & name, int id)
: name(name), id(id) {
}
};
int main() {
using namespace::boost::multi_index;
using namespace std;
// define a multi_index_container with a list-like index and an ordered index
typedef multi_index_container<
person, // The type of the elements stored
indexed_by< // The indices that our container will support
sequenced<>, // list-like index
ordered_unique<member<person, string,
&person::name> > // map-like index (sorted by name)
>
> person_container;
// Create our container and add some people
person_container persons;
persons.push_back(person("B", 123));
persons.push_back(person("C", 224));
persons.push_back(person("A", 321));
// Typedefs for the sequence index and the ordered index
enum { Seq, Ord };
typedef person_container::nth_index<Seq>::type persons_seq_index;
typedef person_container::nth_index<Ord>::type persons_ord_index;
// Let's test the sequence index
persons_seq_index & seq_index = persons.get<Seq>();
for(persons_seq_index::iterator it = seq_index.begin(),
e = seq_index.end(); it != e; ++it)
cout << it->name << ":"<< it->id << endl;
cout << "\n";
// And now the ordered index
persons_ord_index & ord_index = persons.get<Ord>();
for(persons_ord_index::iterator it = ord_index.begin(),
e = ord_index.end(); it != e; ++it)
cout << it->name << ":"<< it->id << endl;
cout << "\n";
// Thanks to the ordered index we have fast lookup by name:
std::cout << "The id of B is: " << ord_index.find("B")->id << "\n";
}
Which produces the following output:
B:123
C:224
A:321
A:321
B:123
C:224
The id of B is: 123
Map is definitely not right for you:
"Internally, the elements in the map are sorted from lower to higher key value following a specific strict weak ordering criterion set on construction."
Quote taken from here.
Unfortunately there is no unordered associative container in the STL, so either you use a nonassociative one like vector, or write your own :-(
I had the same problem every once in a while and here is my solution: https://github.com/nlohmann/fifo_map. It's a header-only C++11 solution and can be used as drop-in replacement for a std::map.
For your example, it can be used as follows:
#include "fifo_map.hpp"
#include <string>
#include <iostream>
using nlohmann::fifo_map;
int main()
{
fifo_map<std::string,int> persons;
persons["B"] = 123;
persons["A"] = 321;
for(fifo_map<std::string,int>::iterator i = persons.begin();
i!=persons.end();
++i)
{
std::cout<< (*i).first << ":"<<(*i).second << std::endl;
}
}
The output is then
B:123
A:321
Besides Neil's recommendation of a combined vector+map if you need both to keep the insertion order and the ability to search by key, you can also consider using boost multi index libraries, that provide for containers addressable in more than one way.
maps and sets are meant to impose a strict weak ordering upon the data. Strick weak ordering maintains that no entries are equavalent (different to being equal).
You need to provide a functor that the map/set may use to perform a<b. With this functor the map/set sorts its items (in the STL from GCC it uses a red-black tree). It determines weather two items are equavalent if !a<b && !b<a -- the equavelence test.
The functor looks like follows:
template <class T>
struct less : binary_function<T,T,bool> {
bool operator() (const T& a, const T& b) const {
return a < b;
}
};
If you can provide a function that tells the STL how to order things then the map and set can do what you want. For example
template<typename T>
struct ItemHolder
{
int insertCount;
T item;
};
You can then easily write a functor to order by insertCount. If your implementation uses red-black trees your underlying data will remain balanced -- however you will get a lot of re-balancing since your data will be generated based on incremental ordering (vs. Random) -- and in this case a list with push_back would be better. However you cannot access data by key as fast as you would with a map/set.
If you want to sort by string -- provide the functor to search by string, using the insertCount you could potentiall work backwards. If you want to search by both you can have two maps.
map<insertcount, string> x; // auxhilary key
map<string, item> y; //primary key
I use this strategy often -- however I have never placed it in code that is run often. I'm considering boost::bimap.
Well, there is no STL container which actually does what you wish, but there are possibilities.
1. STL
By default, use a vector. Here it would mean:
struct Entry { std::string name; int it; };
typedef std::vector<Entry> container_type;
If you wish to search by string, you always have the find algorithm at your disposal.
class ByName: std::unary_function<Entry,bool>
{
public:
ByName(const std::string& name): m_name(name) {}
bool operator()(const Entry& entry) const { return entry.name == m_name; }
private:
std::string m_name;
};
// Use like this:
container_type myContainer;
container_type::iterator it =
std::find(myContainer.begin(), myContainer.end(), ByName("A"));
2. Boost.MultiIndex
This seems way overkill, but you can always check it out here.
It allows you to create ONE storage container, accessible via various indexes of various styles, all maintained for you (almost) magically.
Rather than using one container (std::map) to reference a storage container (std::vector) with all the synchro issues it causes... you're better off using Boost.
For preserving all the time complexity constrains you need map + list:
struct Entry
{
string key;
int val;
};
typedef list<Entry> MyList;
typedef MyList::iterator Iter;
typedef map<string, Iter> MyMap;
MyList l;
MyMap m;
int find(string key)
{
Iter it = m[key]; // O(log n)
Entry e = *it;
return e.val;
}
void put(string key, int val)
{
Entry e;
e.key = key;
e.val = val;
Iter it = l.insert(l.end(), e); // O(1)
m[key] = it; // O(log n)
}
void erase(string key)
{
Iter it = m[key]; // O(log n)
l.erase(it); // O(1)
m.erase(key); // O(log n)
}
void printAll()
{
for (Iter it = l.begin(); it != l.end(); it++)
{
cout<< it->key << ":"<< it->val << endl;
}
}
Enjoy
You could use a vector of pairs, it is almost the same as unsorted map container
std::vector<std::pair<T, U> > unsorted_map;
Use a vector. It gives you complete control over ordering.
I also think Map is not the way to go. The keys in a Map form a Set; a single key can occur only once. During an insert in the map the map must search for the key, to ensure it does not exist or to update the value of that key. For this it is important (performance wise) that the keys, and thus the entries, have some kind of ordering. As such a Map with insert ordering would be highly inefficient on inserts and retrieving entries.
Another problem would be if you use the same key twice; should the first or the last entry be preserved, and should it update the insert order or not?
Therefore I suggest you go with Neils suggestion, a vector for insert-time ordering and a Map for key-based searching.
Yes, the map container is not for you.
As you asked, you need the following code instead:
struct myClass {
std::string stringValue;
int intValue;
myClass( const std::string& sVal, const int& iVal ):
stringValue( sVal ),
intValue( iVal) {}
};
std::vector<myClass> persons;
persons.push_back( myClass( "B", 123 ));
persons.push_back( myClass( "A", 321 ));
for(std::vector<myClass>::iterator i = persons.begin();
i!=persons.end();
++i)
{
std::cout << (*i).stringValue << ":" << (*i).intValue << std::endl;
}
Here the output is unsorted as expected.
Map is ordered collection (second parametr in template is a order functor), as set. If you want to pop elements in that sequenses as pushd you should use deque or list or vector.
In order to do what they do and be efficient at it, maps use hash tables and sorting. Therefore, you would use a map if you're willing to give up memory of insertion order to gain the convenience and performance of looking up by key.
If you need the insertion order stored, one way would be to create a new type that pairs the value you're storing with the order you're storing it (you would need to write code to keep track of the order). You would then use a map of string to this new type for storage. When you perform a look up using a key, you can also retrieve the insertion order and then sort your values based on insertion order.
One more thing: If you're using a map, be aware of the fact that testing if persons["C"] exists (after you've only inserted A and B) will actually insert a key value pair into your map.
Instead of map you can use the pair function with a vector!
ex:
vector<::pair<unsigned,string>> myvec;
myvec.push_back(::pair<unsigned,string>(1,"a"));
myvec.push_back(::pair<unsigned,string>(5,"b"));
myvec.push_back(::pair<unsigned,string>(3,"aa"));`
Output:
myvec[0]=(1,"a"); myvec[1]=(5,"b"); myvec[2]=(3,"aa");
or another ex:
vector<::pair<string,unsigned>> myvec2;
myvec2.push_back(::pair<string,unsigned>("aa",1));
myvec2.push_back(::pair<string,unsigned>("a",3));
myvec2.push_back(::pair<string,unsigned>("ab",2));
Output: myvec2[0]=("aa",1); myvec2[1]=("a",3); myvec2[2]=("ab",2);
Hope this can help someone else in the future who was looking for non sorted maps like me!
struct Compare : public binary_function<int,int,bool> {
bool operator() (int a, int b) {return true;}
};
Use this to get all the elements of a map in the reverse order in which you entered (i.e.: the first entered element will be the last and the last entered element will be the first). Not as good as the same order but it might serve your purpose with a little inconvenience.
Use a Map along with a vector of iterators as you insert in Map. (Map iterators are guaranteed not to be invalidated)
In the code below I am using Set
set<string> myset;
vector<set<string>::iterator> vec;
void printNonDuplicates(){
vector<set<string>::iterator>::iterator vecIter;
for(vecIter = vec.begin();vecIter!=vec.end();vecIter++){
cout<<(*vecIter)->c_str()<<endl;
}
}
void insertSet(string str){
pair<set<string>::iterator,bool> ret;
ret = myset.insert(str);
if(ret.second)
vec.push_back(ret.first);
}
If you don't want to use boost::multi_index, I have put a proof of concept class template up for review here:
https://codereview.stackexchange.com/questions/233157/wrapper-class-template-for-stdmap-stdlist-to-provide-a-sequencedmap-which
using std::map<KT,VT> and std::list<OT*> which uses pointers to maintain the order.
It will take O(n) linear time for the delete because it needs to search the whole list for the right pointer. To avoid that would need another cross reference in the map.
I'd vote for typedef std::vector< std::pair< std::string, int > > UnsortedMap;
Assignment looks a bit different, but your loop remains exactly as it is now.
There is std::unordered_map that you can check out. From first view, it looks like it might solve your problem.