#include <iostream>
using namespace std;
void print_array(int array[], int size)
{
cout<< "insertion sort steps: ";
int j;
for (j=0; j<size;j++)
cout <<" "<< array[j];
cout << endl;
}
void insertion_sort(int a[], int n)
{
int i;
for(int j = 1; j < n; j++) {
i = 0;
while ((a[j] > a[i])) {
i = i+1;
}
int m = a[j];
for(int k = 0; k <= (j-i-1); k++) {
a[j-k] = a[j-k-1];
}
a[i] = m;
print_array(a,n);
}
}
int main() {
int array[6]= {3,2,4,5,1,6};
insertion_sort(array,6);
return 0;
}
I am trying to modify this the insertion sort that it uses a linear search technique that inserts the jth element in the correct place by first comparing it with the (j − 1)st element, then the (j − 2)th element if necessary, and so on.
So where it says i = 0; it should now be i = j-1;
My attempt:
void insertion_sort(int a[], int n)
{
int i;
for(int j = 1; j < n; j++) {
i = j-1;
while ((a[j] > a[i]) && (i > 0)) {
i = i-1;
}
int m = a[j];
for(int k = (j-i-1); k >= 0; k--) {
a[j-k] = a[j-k-1];
}
a[i] = m;
print_array(a,n);
}
}
Here is the output
insertion sort steps: 2 3 4 5 1 6
insertion sort steps: 4 2 2 5 1 6
insertion sort steps: 5 4 4 4 1 6
insertion sort steps: 5 4 4 1 4 6
insertion sort steps: 6 5 5 5 5 5
The first step is works correct by the 2nd step is when it all starts to fail.
The
while ((a[j] > a[i]) && (i > 0)) {
i = i-1;
}
is wrong, because it causes insertion of a[j] at index 0 if a[j] were not to be moved. Change that to
while (0 <= i && a[j] < a[i]) --i;
++i;
Also, the shifting loop is wrong and complicated - change it to
int m = a[j];
for (int k = j; k > i; k--) a[k] = a[k-1];
a[i] = m;
Related
I'm practicing myself by doing some leetcode questions, however, I don't know why that's an overflow problem right here. I knew the way I sum the subarray was terrible, any tips for the sum of the subarray?
and the run time for this code would be forever
#include <numeric>
class Solution {
public:
int sumOddLengthSubarrays(vector<int>& arr) {
int size = arr.size();//5
int ans = 0;
int sumAll = 0;
int start = 3;
int tempsum;
for(int i =0; i< size; i++){ //sumitself
sumAll += arr[i];
}
ans = sumAll; //alreayd have the 1 index
if(size%2 == 0){//even number 6
int temp = size-1; //5
if(size == 2)
ans = sumAll;
else{
while(start <= temp){//3 < 5
for(int i = 0; i< size; i++){
for(int k =0; k< start; k++){//3
tempsum += arr[i+k];
if(i+k > temp) //reach 5
break;
}
}
start+=2;
}
}
ans+= tempsum;
}
else{//odd number
if(size == 1)
ans = sumAll;
else{
while(start < size){//3
for(int i = 0; i< size; i++){
for(int k =0; k< start; k++){//3
tempsum += arr[i+k];
if(i+k > size) //reach 5
break;
}
}
start+=2;
}
ans+= tempsum;
ans+= sumAll; //size index
}
}
return ans;
}
};
The problem is with arr[i+k]. The result of i + k can be equal to, or larger, than size. You check it after you have already gone out of bounds.
You should probably modify the inner loop condition so that never happens:
for(int k =0; k < start && (i + k) < size; k++){//3
Now you don't even need the inner check.
You can use prefix sum array technique and then for each index you can calculate the sub-array sum for each odd-length array using prefix sum array. I submitted the below solution in LeetCode and it beats runtime of 100% of submissions and memory usage of 56.95%
class Solution {
public:
int sumOddLengthSubarrays(vector<int>& arr) {
int n = arr.size();
vector<int> prefix(n+1,0);
int sum = 0;
prefix[1] = arr[0];
for(int i=1;i<n;i++)
prefix[i+1]=(arr[i]+prefix[i]);
for(int i=0;i<n;i++)
{
for(int j=i;j<n;j+=2)
sum+=prefix[j+1]-prefix[i];
}
return sum;
}
};
https://leetcode.com/problems/sum-of-all-odd-length-subarrays/discuss/1263893/Java-100-one-pass-O(n)-with-explanation
class Solution {
public int sumOddLengthSubarrays(int[] arr) {
// alt solution: O(n)
//for each i:
// if(n -1 - i) is odd, then arr[i] is counted (n-1-i)/2 + 1 times, each from 0 to i, total ((n-i)/2+1)*(i+1) times
// if(n -1 - i) is even, then arr[i] is counted (n-1-i)/2 + 1 times, if starting subseq index diff with i is even;
// (n-1-i)/2 times, if starting index diff with i s odd, total (n-i)/2 *(i+1) + (i+1)/2
// if i is even i - 1, i - 3, .. 1, total (i -2)/2 + 1 = i / 2 = (i+1) / 2
// if i is odd i-1, i-3, .., 0 total (i-1)/2 + 1 = (i+1) / 2
int total = 0;
int n = arr.length;
for(int i = 0; i < n; i++)
total += (((n - 1 - i) / 2 + 1) * (i + 1) - ((n-i) % 2)*((i+1) / 2)) * arr[i];
return total;
}
}
The description of a task goes like this:
We have n numbers, and we have to find quantity of unique sums of all the pairs in the array.
For example:
3 2 5 6 3
The sums of all the pairs(non-repeated) are 5 9 8 6 8 7 5 11 9 8
Unique are 5 9 8 6 7 11
Therefore output is 6
I have come up with this really primitive, and time-consuming (meaning complexity) solution:
int n = 0;
cin >> n;
vector<int> vec(n);
for (int i = 0; i < n; i++)
{
cin >> vec[i];
}
vector<int> sum;
for (int i = 0; i < n; i++)
{
for (int j = i+1; j < n; j++)
{
sum.push_back(vec[i] + vec[j]);
}
}
sort(sum.begin(), sum.end());
for (int i = 0; i < sum.size()-1;)
{
if (sum[i] == sum[i + 1]) sum.erase(sum.begin() + i);
else i++;
}
cout << endl << sum.size();
I feel like there could be a solution using Combinatorics or something easier. I have thought a lot and couldn't think of anything. So my request is if anyone can improve the solution.
As mentioned above what you need it is difficult to do this without computing the sum of all pairs, so I am not going to handle that, I am just going to advise about efficient data structures.
Analysis of your solution
Your code adds everything in advance O(n^2) then sorts O(n^2 log(n)), then remove duplicates. But since you are erasing from a vector, that ultimately has complexity linear with the number of elements to the end of the list. It means that the second loop will make the complexity of your algorithm O(n^4).
You can count the unique elements in a sorted array without removing
int count = 0;
for (int i = 0; i < sum.size()-1; ++i)
{
if (sum[i] != sum[i + 1]) ++count
}
This change alone makes your algorithm complexity O(n^2 log n).
Alternatives without sorting.
Here are alternatives that O(n^2) and storage depending on the range of the input values instead of the length of the vector (except for the last).
I am testing with 1000 elements smaller between 0 and 10000
vector<int> vec;
for(int i = 0; i < 1000; ++i){
vec.push_back(rand() % 10000);
}
Your implementation sum_pairs1(vec) (18 seconds)
int sum_pairs1(const vector<int> &vec){
vector<int> sum;
int n = vec.size();
for (int i = 0; i < n; i++)
{
for (int j = i+1; j < n; j++)
{
sum.push_back(vec[i] + vec[j]);
}
}
sort(sum.begin(), sum.end());
for (int i = 0; i < sum.size()-1;)
{
if (sum[i] == sum[i + 1]) sum.erase(sum.begin() + i);
else i++;
}
return sum.size();
}
If you know the range for the sum of the values you can use a bitset, efficient use of memory sum_pairs2<20000>(vec) (0.016 second).
template<size_t N>
int sum_pairs2(const vector<int> &vec){
bitset<N> seen;
int n = vec.size();
for (int i = 0; i < n; i++)
{
for (int j = i+1; j < n; j++)
{
seen[vec[i] + vec[j]] = true;
}
}
return seen.count();
}
If you know that the maximum sum is not so high (the vector is not very sparse), but you don't know at compilation time you can use a vector, you can keep track of minimum and maximum to allocate the minimum possible and also supporting negative values.
int sum_pairs2b(const vector<int> &vec){
int VMAX = vec[0];
int VMIN = vec[0]
for(auto v : vec){
if(VMAX < v) VMAX = v;
else if(VMIN > v) VMIN = v;
}
vector<bool> seen(2*(VMAX - VMIN) + 1);
int n = vec.size();
for (int i = 0; i < n; i++)
{
for (int j = i+1; j < n; j++)
{
seen[vec[i] + vec[j] - 2*VMIN] = true;
}
}
int count = 0;
for(auto c : seen){
if(c) ++count;
}
return count;
}
And If you want a more general solution that works well with sparse data sum_pairs3<int>(vec) (0.097 second)
template<typename T>
int sum_pairs3(const vector<T> &vec){
unordered_set<T> seen;
int n = vec.size();
for (int i = 0; i < n; i++)
{
for (int j = i+1; j < n; j++)
{
seen.insert(vec[i] + vec[j]);
}
}
return seen.size();
}
I have written a solution for the above problem but can someone please suggest an optimized way.
I have traversed through the array for count(2 to n) where count is finding subarrays of size count*count.
int n = 5; //Size of array, you may take a dynamic array as well
int a[5][5] = {{1,2,3,4,5},{2,4,7,-2,1},{4,3,9,9,1},{5,2,6,8,0},{5,4,3,2,1}};
int max = 0;
int **tempStore, size;
for(int count = 2; count < n; count++)
{
for(int i = 0; i <= (n-count); i++)
{
for(int j = 0; j <= (n-count); j++)
{
int **temp = new int*[count];
for(int i = 0; i < count; ++i) {
temp[i] = new int[count];
}
for(int k = 0; k < count; k++)
{
for(int l = 0; l <count; l++)
{
temp[k][l] = a[i+k][j+l];
}
}
//printing fetched array
int sum = 0;
for(int k = 0; k < count; k++)
{
for(int l = 0; l <count; l++)
{
sum += temp[k][l];
cout<<temp[k][l]<<" ";
}cout<<endl;
}cout<<"Sum = "<<sum<<endl;
if(sum > max)
{
max = sum;
size = count;
tempStore = new int*[count];
for(int i = 0; i < count; ++i) {
tempStore[i] = new int[count];
}
//Locking the max sum array
for(int k = 0; k < count; k++)
{
for(int l = 0; l <count; l++)
{
tempStore[k][l] = temp[k][l];
}
}
}
//printing finished
cout<<"------------------\n";
//Clear temp memory
for(int i = 0; i < size; ++i) {
delete[] temp[i];
}
delete[] temp;
}
}
}
cout<<"Max sum is = "<<max<<endl;
for(int k = 0; k < size; k++)
{
for(int l = 0; l <size; l++)
{
cout<<tempStore[k][l]<<" ";
}cout<<endl;
}cout<<"-------------------------";
//Clear tempStore memory
for(int i = 0; i < size; ++i) {
delete[] tempStore[i];
}
delete[] tempStore;
Example:
1 2 3 4 5
2 4 7 -2 1
4 3 9 9 1
5 2 6 8 0
5 4 3 2 1
Output:
Max sum is = 71
2 4 7 -2
4 3 9 9
5 2 6 8
5 4 3 2
This is a problem best solved using Dynamic Programming (DP) or memoization.
Assuming n is significantly large, you will find that recalculating the sum of every possible combination of matrix will take too long, therefore if you could reuse previous calculations that would make everything much faster.
The idea is to start with the smaller matrices and calculate sum of the larger one reusing the precalculated value of the smaller ones.
long long *sub_solutions = new long long[n*n*m];
#define at(r,c,i) sub_solutions[((i)*n + (r))*n + (c)]
// Winner:
unsigned int w_row = 0, w_col = 0, w_size = 0;
// Fill first layer:
for ( int row = 0; row < n; row++) {
for (int col = 0; col < n; col++) {
at(r, c, 0) = data[r][c];
if (data[r][c] > data[w_row][w_col]) {
w_row = r;
w_col = c;
}
}
}
// Fill remaining layers.
for ( int size = 1; size < m; size++) {
for ( int row = 0; row < n-size; row++) {
for (int col = 0; col < n-size; col++) {
long long sum = data[row+size][col+size];
for (int i = 0; i < size; i++) {
sum += data[row+size][col+i];
sum += data[row+i][col+size];
}
sum += at(row, col, size-1); // Reuse previous solution.
at(row, col, size) = sum;
if (sum > at(w_row, w_col, w_size)) { // Could optimize this part if you only need the sum.
w_row = row;
w_col = col;
w_size = size;
}
}
}
}
// The largest sum is of the sub_matrix starting a w_row, w_col, and has dimensions w_size+1.
long long largest = at(w_row, w_col, w_size);
delete [] sub_solutions;
This algorithm has complexity: O(n*n*m*m) or more precisely: 0.5*n*(n-1)*m*(m-1). (Now I haven't tested this so please let me know if there are any bugs.)
Try this one (using naive approach, will be easier to get the idea):
#include <iostream>
#include<vector>
using namespace std;
int main( )
{
int n = 5; //Size of array, you may take a dynamic array as well
int a[5][5] =
{{2,1,8,9,0},{2,4,7,-2,1},{5,4,3,2,1},{3,4,9,9,2},{5,2,6,8,0}};
int sum, partsum;
int i, j, k, m;
sum = -999999; // presume minimum part sum
for (i = 0; i < n; i++) {
partsum = 0;
m = sizeof(a[i])/sizeof(int);
for (j = 0; j < m; j++) {
partsum += a[i][j];
}
if (partsum > sum) {
k = i;
sum = partsum;
}
}
// print subarray having largest sum
m = sizeof(a[k])/sizeof(int); // m needs to be recomputed
for (j = 0; j < m - 1; j++) {
cout << a[k][j] << ", ";
}
cout << a[k][m - 1] <<"\nmax part sum = " << sum << endl;
return 0;
}
With a cumulative sum, you may compute partial sum in constant time
std::vector<std::vector<int>>
compute_cumulative(const std::vector<std::vector<int>>& m)
{
std::vector<std::vector<int>> res(m.size() + 1, std::vector<int>(m.size() + 1));
for (std::size_t i = 0; i != m.size(); ++i) {
for (std::size_t j = 0; j != m.size(); ++j) {
res[i + 1][j + 1] = m[i][j] - res[i][j]
+ res[i + 1][j] + res[i][j + 1];
}
}
return res;
}
int compute_partial_sum(const std::vector<std::vector<int>>& cumulative, std::size_t i, std::size_t j, std::size_t size)
{
return cumulative[i][j] + cumulative[i + size][j + size]
- cumulative[i][j + size] - cumulative[i + size][j];
}
live example
And I'm doing pretty good in fact I found the intersection and think I have the right code. Only problem is that it doesn't seem to print out the last value.
So if I have two sets:
9 12 7 8 1 19 11 2 14
15 10 8 2 5 16 14 7 19 0 11 3 13 18 9 17 1 12
My code will produce the following output:
1
2
7
8
9
11
12
14
But the right intersection of the sets should be:
1
2
7
8
9
11
12
14
19
So, my code doesn't print out the last value and I can't find out why.
void findIntersection(vector<int> A, vector<int> B)
{
vector<int> intersection;
int n1 = A.size();
int n2 = B.size();
int i = 0, j =0;
while(i <= n1 && j <= n2)
{
if(A[i] > B[j])
{
j++;
}
else if( B[j] > A[i])
{
i++;
}
else
{
intersection.push_back(A[i]);
i++;
j++;
}
}
for(unsigned int i = 0; i <= intersection.size(); i++)
{
cout << intersection[i] << endl;
}
}
void slowintersect(vector<vector<int> > v)
{
vector<int> vec;
vector<int> c;
int store_0;
int row = 0;
for(size_t j =0; j < v.at(row).size(); j++)
{
store_0 = v[row][j];
c.push_back(store_0);
}
for(size_t i = 0; i < v.size(); i++)
{
for(size_t k = 0; k < v.at(i).size(); k++)
{
vec.push_back(k);
}
}
findIntersection(c, vec);
}
#include <algorithm>
#include <set>
set<int> intersect;
set_intersection(s1.begin(),s1.end(),s2.begin(),s2.end(), // sorted!
std::inserter(intersect,intersect.begin()));
example
if you don't want std::algorithm, there are several errors in your code. i.e:
for(unsigned int i = 0; i <= intersection.size(); i++)
^
should be <
here is an important error:
int i = 0, j =0;
while(i <= n1 && j <= n2)
{ ^ ^
< <
if(A[i] > B[j])
{
j++;
you will skip all n-1 A elements if A[0] is greater than each B element, and end the loop
I'm assuming you do not want to use the C++ standard algorithm.
Couple of things.
1. Your algorithm shall work only if both vectors are initially sorted. Are they?
2. You shouldn't access vector[vector.size()] element as it is out of bounds.
My second point means:
while(i <= n1 && j <= n2)
Change this to
while(i < n1 && j < n2)
And change the following
for(unsigned int i = 0; i <= intersection.size(); i++)
to
for(unsigned int i = 0; i < intersection.size(); i++)
Also, MOST IMPORTANT ERROR!!!!
for(size_t k = 0; k < v.at(i).size(); k++)
{
vec.push_back(k);
}
Change it to:
for(size_t k = 0; k < v[i].size(); k++)
{
vec.push_back(v[i][k]);
}
Your while co dition is broken. You must continue until both indexes are at the end. Currently you stop when one of the indexes has reached the end.
When you fix that, you also must ensure that you don't increase i beyond n1; same for j and n2.
While you are developing you should rather use vector.at(i) instead of vector[i] to enable safety checks.
I'm trying to sort an array made of random numbers from 1 to 10 in an ascending order. I've come up with this function:
void Sort(int a[10], int n)
{
int j = 0;
for (int i = 0; i < n-1; i++)
{
j = i+1;
if (a[i] > a[j])
{
int aux = a[i];
a[i] = a[j];
a[j] = aux;
}
}
}
But when I try to output the array, the function doesn't seem to have worked:
Sort(array, 10);
cout<<endl;
for (int i = 0; i < 10; i++)
{
cout<<array[i]<<" ";
}
The algorithm in your Sort function is wrong. It doesn't sort at all.
Anyway, don't reinvent the wheel, better use std::sort as:
#include <algorithm>
std::sort(array, array+10);
As for your Sort function, which you want to implement using bubble-sort algorithm, possibly for learning purpose. the correct implementation is this:
void Sort(int *a, int n)
{
for (int i = 0; i < n ; i++)
{
for (int j = i + 1; j < n ; j++)
{
if (a[i] > a[j])
{
int aux = a[i];
a[i] = a[j];
a[j] = aux;
}
}
}
}
You are only making n swaps. You need an outer loop on sort (assuming it's bubble sort) so that you continue doing that until you stop doing swaps.
bool Sort(int a[10], int n)
{
bool swapped = false;
int j = 0;
for (int i = 0; i < n-1; i++)
{
j = i+1;
if (a[i] > a[j])
{
int aux = a[i];
a[i] = a[j];
a[j] = aux;
swapped = true;
}
}
return swapped;
}
int main(int argc, char** argv) {
int a[10] = {5,4,3,1,2,6,7,8,9,10};
while (Sort(a,10));
for (int i=0;i<10;++i) {
std::cout << a[i] << std::endl;
}
}
That only does one pass over the data, here is an example showing you what happens
8 7 9 2 3 4 5
After going through your function the result would be
7 8 2 3 4 5 9