Virtual function issue in C++ [duplicate] - c++

This question already has answers here:
Why is virtual function not being called?
(6 answers)
Closed 9 years ago.
AoA,
I am making a console game of chess, But I am stuck at polymorphism, below is the classes and functions definitions
/* old Part
//Base Class
class Piece /*Parent class */
{
protected:
Position* pCoord;
std::string color;
char symbol;
public:
Piece(Position* Coord,std::string Color,char symbol);
Position GetCurrentPos();
std::string GetColor();
void SetColor(std::string color);
void Draw();
virtual bool SetPos(Position* newPos){MessageBox(NULL,L"Virtual Running",L"Error",MB_OK); return true;};
virtual ~Piece();
};
/* Inherited classes */
//Child classes
class Pawn: public Piece
{
private:
std::vector<Position>* allowPos;
public:
Pawn(Position* Coord,std::string Color,char symbol);
~Pawn();
std::vector<Position>* GetThreatendFields();
bool isValidMove(Position* newPos);
bool SetPos(Position* newPos);
};
//Child classes
class Bishops: public Piece
{
private:
std::vector<Position>* allowPos;
public:
Bishops(Position* Coord,std::string Color,char symbol);
~Bishops();
std::vector<Position>* GetThreatendFields();
bool isValidMove(Position* newPos);
bool SetPos(Position* newPos);
};
//Here is the implementation of child class function SetPos
bool Pawn::SetPos(Position* newPos)
{
bool isSet = false;
this->pCoord = new Position();
this->pCoord = newPos;
isSet = true;
MessageBox(NULL,L"Child function running",L"Yuhuu!",MB_OK);
return isSet;
}
class ChessBoard
{
private:
Position ptr; //dummy
int SelectedPiece;
vector<Piece> pPieceSet;
bool isSelected;
public:
ChessBoard();
~ChessBoard();
void ShowPieces(Player *p1,Player *p2);
void Draw();
void MouseActivity();
void Place(Piece& p);
};
//it just shows the peices acquired from player objects..dummy vector pointer
void ChessBoard::ShowPieces(Player* p1,Player* p2)
{
std::vector<Piece>* vPiece = p1->GetPieces();
for( int i=0;i<vPiece->size();i++ )
{
Piece& piece = vPiece->at(i);
Place(piece);
piece.Draw();
}
vPiece = p2->GetPieces();
for( int i=0;i<vPiece->size();i++ )
{
Piece& piece = vPiece->at(i);
Place(piece);
piece.Draw();
}
}
*/
/*new part
I did what you say
Player::std::vector<Piece*> *vPieceSet;
Player::Player(int turn)
{
this->turn = turn%2;
this->vPieceSet = new std::vector<Piece*>;
}
void Player::Initialize() //Initial and final ranges for position
{
//Initialization of pieces to their respective position
Position pos;
Piece *pPiece;
if( this->turn == 0 )
{
this->SetName("Player 1");
for( int i=8;i<16;i++ )
{
pos.SetPosition(i);
Pawn pPawn(&pos,"blue",'P');
pPiece = &pPawn;
this->vPieceSet->push_back(pPiece);
}
//other classes same as above
}
It runs fine at initialzation function(stores all classes fine) but when use function to get the vector object
std::vector<Piece*>* Player::GetPieces()
{
std::vector<Piece*>* tPieces = this->vPieceSet;
return tPieces;
}
//In main.cpp
it doesnot return the vector object
Player p1(0),p2(1);
p1.Initialize();
p2.Initialize(); //initialization done perfectly while debugging
vector<Piece*> *obj = p1.GetPieces(); //returns garbage
Piece* pObj = obj->at(0); //garbage
cout<<pObj->GetColor(); // garbage
*/new part
Sounds like I have another problem!

When you use polymorphism, what you are really trying to do is instantiate an object of derived type and call the methods on that object through a pointer or reference to the base object.
class Foo
{
public:
virtual void DoIt () { cout << "Foo"; }
};
class Bar
:
public Foo
{
public:
void DoIt () { cout << "Bar"; }
};
int main()
{
Foo* foo = new Bar;
foo->DoIt(); // OUTPUT = "Bar"
Foo& fooRef = *foo;
fooRef.DoIt(); // OUTPUT = "Bar"
}
In order for this to work, you need to use either a pointer or a reference to the object. You can't make a copy of the object using a the base class. If you make a copy, you will slice the object.
int main()
{
Foo* foo = new Bar;
foo->DoIt(); // OK, output = "Bar"
Foo fooCopy = *foo; // OOPS! sliced Bar
fooCopy.DoIt(); // WRONG -- output = "Foo"
}
In your code, the Piece class is intended to be polymorphic, and in your ChessBoard class you have a vector of this class:
class ChessBoard
{
private:
vector<Piece> pPieceSet;
};
Since this is a vector of the Piece object itself, and not a pointer-to-Piece, anything you put in here will be sliced. You need to change pPieceSet to be a vector of pointers-to-Piece:
vector <Piece*> pPieceSet;
You have further problems in Initialize, which need to be refactored anyway. For one thing, you have another vector of Piece objects, and there are two problems here. First, it needs to be a vector of pointers, and second, why do you need another vector at all when there is already one associated with the ChessBoard? I didn't thouroughly examine your code so maybe you do need it, but this seems like an error. There should probably just be one collection of pieces, in the ChessBoard.
In your Initialize method:
Piece *pPiece;
// ...
Pawn pPawn(&pos,"blue",'P');
pPiece = &pPawn;
vPieceSet.push_back(*pPiece);
There are a couple of problems. One, you are pushing back a sliced copy of the Piece, which will be fixed when you change your vector to store pointers. Second, if you just change this like so:
Piece *pPiece;
// ...
Pawn pPawn(&pos,"blue",'P');
pPiece = &pPawn;
vPieceSet.push_back(pPiece); // <-- not dereferencing
You will have a new problem because you'll be storing the pointer to a local (automatic) variable. Best is to do this:
Piece* pPiece = new Pawn (...);
// ...
vPieceSet.push_back (pPiece);
Please don't forget to delete everything you new. This is best handled by using smart pointers rather than raw pointers. In C++03 we have auto_ptr, but those can't go in a vector. Instead you'll need to use Boost or something else, or just store raw pointers. In C++11, we now have unique_ptr (preferred) and shared_ptr, which can go in to a vector.
In C++11, the best solution here is to have a vector declared as:
vector <unique_ptr <Piece> > pPieceSet;
...unless you have some compelling need to use shared_ptr instead.

As others have mentioned, it is a slicing issue, and the issue is created here:
class Player
{
private:
std::string pName;
std::vector<Piece> vPieceSet; // <-- This is your problem
int turn;
public:
Player(int turn);
~Player();
void Initialize();
std::string GetName();
void SetName(std::string Name);
int GetTurn();
std::vector<Piece>* GetPieces();
};
You are storing them in the vector as instances of Piece, which is slicing off the details of the piece (e.g. the Bishop implementation). You should modify it to something like:
class Player
{
private:
std::string pName;
std::vector<Piece*> vPieceSet; // or better, use a smart pointer wrapper
int turn;
public:
Player(int turn);
~Player();
void Initialize();
std::string GetName();
void SetName(std::string Name);
int GetTurn();
std::vector<Piece*> GetPieces(); // note this change as well
};
With your additional question/edit, you are getting another unrelated problem:
void Player::Initialize() //Initial and final ranges for position
{
Position pos; // position is declared inside the scope of Initialize
Piece *pPiece;
if( this->turn == 0 )
{
this->SetName("Player 1");
for( int i=8;i<16;i++ )
{
pos.SetPosition(i);
Pawn pPawn(&pos,"blue",'P'); // you are passing the address of position to the Pawn, and Pawn is within the scope of this loop
pPiece = &pPawn; // you are storing the address of the Pawn
this->vPieceSet->push_back(pPiece);
}
// Pawn is now out of scope and pPiece points to the memory location Pawn *used* to be at (but will likely be overwritten soon).
// As soon as this function returns, you have the same problem with pos
}
You need to allocate those variables on the heap (hence the reason we suggested smart pointer wrappers).

Related

Impossible to store cocos2d::Animation * in a std::vector of structure?

I work on a project made with cocos2d-x framework (c++).
In my Player class, I have to manage the animations.
Iinitially I had this code that worked without any problem:
First, the animation object is a cocos2d Class cocos2d::Animation. Just remember that this object contains a cocos2d::Vector<AnimationFrame*> _frames; member.
Doc: http://www.cocos2d-x.org/reference/native-cpp/V3.5/d3/dc5/classcocos2d_1_1_animation.html#a0fdc0be158df7e09d04644be353db056
class Player : public cocos2d::Sprite {
private:
cocos2d::Map<std::string, cocos2d::Animation*> animations;
cocos2d::Vector<cocos2d::SpriteFrame*> getAnimation(const char *format, int frameStart, int count);
void update(float delta) override;
bool init() override;
public:
static Player* create();
bool init() override;
//...
};
And the implementation side:
bool Player::init() {
//...
animations.insert("idleN", Animation::createWithSpriteFrames(getAnimation("%04d", 207, 9), 0.1));
//...
}
Vector<SpriteFrame*> Player::getAnimation(const char *format, int frameStart, int count) {
auto spriteCache = SpriteFrameCache::getInstance();
Vector<SpriteFrame*> animFrames;
char str[100] = {0};
for (int i = 1; i <= count; i++)
{
sprintf(str, format, frameStart);
log("%s", str);
animFrames.pushBack(spriteCache->getSpriteFrameByName(str));
frameStart++;
}
return animFrames;
}
//later in the code execution
void Player::manageIdle() {
auto idleAnim = Animate::create(animations[0].anim);
runAction(idleAnim);
}
You can see each Animation is contained in cocos2d::Map<std::string, cocos2d::Animation*> and as I say before, this code worked perfectly, no error.
But I needed some more informations in addition to the name and the object itself so I decided to use a structure to store all infos for each animation. And I replaced the cocos2d::Map<std::string, cocos2d::Animation*> by std::vector<animData> with animData as structure. I refactored the code like so:
class Player : public cocos2d::Sprite {
public:
typedef struct animation {
std::string name;
cocos2d::Animation* anim;
//all others info needed, not relevant here, (just several enum type variables)
} animData;
private:
std::vector<animData > animations; //the new container
//rest of code stay unchanged
};
The changes in the implementation side:
bool Player::init() {
//...
animations.push_back({"idleN", Animation::createWithSpriteFrames(getAnimation("%04d", 207, 9), 0.1)});
//no problem here...
}
But now, when I try to create a new anim with a animation saved in my container (vector) I get a SegV on this line:
void Player::manageIdle() {
auto idleAnim = Animate::create(animations[0].anim); //SegV here, in Animate::create() funct
runAction(idleAnim);
}
After search, I find that each structure member anim which is type of cocos2d::Animation*, now conatains a empty cocos2d::Vector<AnimationFrame*> _frames; and there is the problem !
It’s as if they lose the cocos2d::Vector<AnimationFrame*> ref or something like that.
So my question is why cocos2d::Vector<AnimationFrame*> become empty with my refactored code and not whith the previous one ?
I found this with test like that:
auto test = animList[0].anim->getFrames();
if (test.empty()) {
log("empty"); //The test output empty
}
Debugguer screen in the end of the init() funct:
Debugguer screen in Player::manageIdle() funct:
Edit: when I add animations.back().anim->retain(); right after the line to add an element in the vector, it solves the problem !
animations.push_back({"idleN", Animation::createWithSpriteFrames(getAnimation("%04d", 207, 9), 0.1)});
animations.back().anim->retain();
Because cocos2d::Animation* inherit from cocos2d::Ref, it is an auto-release object. When used inside a cocos2d container like cocos2d::Map or cocos2d::Vector, it is auto managed by the container itself. But I use a std::vector so I lose the ref I think. Something like that.
Now I need to find a way to get rid of this additional line of code because this multiple by twice my number of line here !
So new question here: How I can get rid of the fact I have to call animations.back().anim->retain(); each time I add a new element in my vector ?
You might create a wrapper around Ref, which "retains" ownership, and store this wrapper instead, sort of a std::unique_ptr e.g.
template<typename T> class RefOwner {
public:
RefOwner(T *t) : ref(t) {
ref->retain();
}
~RefOwner() {
ref->release();
}
T *operator->() { return ref; }
private:
T *ref;
};
and then use it as
struct animData {
std::string name;
RefOwner<cocos2d::Animation> anim;
//all others info needed, not relevant here, (just several enum type variables)
};
Disclaimer: I have no experience with cocos2d-x, just looked at Animation and Ref

Virtual method being called instead of derived method

i'm having trouble with an inherited function and i can't seem to figure out why it's behaving the way it is, and haven't been able to find an answer in other questions on SO.
I'm working on a small game and the inherited function is responsible for the interactions between the player and objects, if the player attempts to move to a space that is already inhabited by one of the various child classes of "Obstacle", it will call the "Bool GetMove" method of that object, which then executes its unique rules and returns a True if the game can place the player on the space, or False if it cant.
This is the base class header and its getmove method:
class Obstacle
{
public:
const char* id;
Obstacle* _properlyinitialized; //a pointer that points to the object itself, required by the teacher who gave the assignment.
string Name;
mutable bool Moveable;
int x;
int y;
Obstacle();
Obstacle(string Name, bool Moveable, int x, int y);
virtual ~Obstacle();
bool properlyInitialized();
friend std::ostream& operator<<(std::ostream& stream, Obstacle& Obstacle);
virtual bool getmove(const char*, std::vector<std::vector<std::vector<Obstacle> > >&);
virtual void leavetile(std::vector<std::vector<std::vector<Obstacle> > >&);
};
bool Obstacle::getmove(const char* direction,std::vector<std::vector<std::vector<Obstacle> > >& _board){
cout << "wrong getmove" << endl; //this method should never be called.
return true;
};
One of the inherited classes and its getmove method:
class Barrel: public Obstacle
{
public:
Barrel():Obstacle(){};
Barrel(string Name, bool Moveable, int x, int y);
~Barrel(){};
bool getmove(const char*, std::vector<std::vector<std::vector<Obstacle> > >&);
void leavetile(std::vector<std::vector<std::vector<Obstacle> > >&);
};
bool Barrel::getmove(const char* direction,std::vector<std::vector<std::vector<Obstacle> > >& _board){
cout << "barrel getmove" << endl;
if(strcmp(direction, "OMHOOG") == 0){ //what direction to move?
if(_board[this->x][this->y-1][0].properlyInitialized()){ //is that object already inhabited by an object?
if(_board[this->x][this->y-1][0].Moveable){ //can the object be moved?
if(_board[this->x][this->y-1][0].getmove(direction, _board){//move the object
_board[this->x][this->y-1][0] = *this; //move the barrel
_board[this->x][this->y-1][0]._properlyinitialized = &_board[this->x][this->y-1][0];
return true; //return true
}
else{
return false; //an object is in the way, the barrel can't be moved
}
}
else{
return false; //an object is in the way, the barrel can't be moved
}
}
else{
_board[this->x][this->y-1][0] = *this; //move the barrel
_board[this->x][this->y-1][0]._properlyinitialized = &_board[this->x][this->y-1][0];
return true; //return true
}
} //This is for direction "up", i left the other directions out because they're almost equal.
The method is called as follows:
//"this" is a board object
if(this->playfield[this->_player->x][(this->_player->y)-1][0].getmove(direction, this->getBoard())){
//do some stuff
}
I have considered changing the Obstacle object to a pure virtual object, but i need dummy "Obstacle" objects elsewhere, so this isn't an option.
The second argument of getmove should be a
std::vector<std::vector<std::vector<Obstacle*>>>&
Note that the inner most vector is of Obstacle* and not Obstacle? This way the correct virtual function will get called, and more importantly, you won't run into object slicing

How to access an interface-implementing object stored as pointer in an std::vector

So I have this:
std::vector<EnemyInterface*> _activeEnemies;
where EnemyInterface looks like this:
#include "Ogre.h"
class EnemyInterface{
public:
virtual void update(const Ogre::Real deltaTime) = 0;
virtual void takeDamage(const int amountOfDamage, const int typeOfDamage) = 0;
virtual Ogre::Sphere getWorldBoundingSphere() const = 0;
virtual ~EnemyInterface(){}
};
I create a new enemy:
// Spikey implements EnemyInterface
activeEnemies.push_back( (EnemyInterface*) &Spikey(_sceneManager, Ogre::Vector3(8,0,0)) );
And I want to call the update function on every enemy, but it crashes:
// update enemies
for (std::vector<EnemyInterface*>::iterator it=_activeEnemies.begin(); it!=_activeEnemies.end(); ++it){
(**it).update(timeSinceLastFrame); // Option 1: access violation reading location 0xcccccccc
(*it)->update(timeSinceLastFrame); // Option 2: access violation reading location0xcccccccc
}
I can see the enemy on screen, but I cannot access it.
Any help would be appreciated.
Spikey.h looks like this:
#include "EnemyInterface.h"
class Spikey: virtual public EnemyInterface{
private:
int thisID;
static int ID;
Ogre::SceneNode* _node;
Ogre::Entity* _entity;
public:
Spikey(Ogre::SceneManager* sceneManager, const Ogre::Vector3 spawnPos);
// interface implementation
virtual void update(const Ogre::Real deltaTime);
virtual void takeDamage(const int amountOfDamage, const int typeOfDamage);
virtual Ogre::Sphere getWorldBoundingSphere() const;
};
It's because you create a temporary object in your push_back call. As soon as the push_back function returns that object is no more, and leaves you with a dangling pointer.
You have to create a new object using new instead:
activeEnemies.push_back(new Spikey(_sceneManager, Ogre::Vector3(8,0,0)));
change
activeEnemies.push_back( (EnemyInterface*) &Spikey(_sceneManager, Ogre::Vector3(8,0,0)) );
to
activeEnemies.push_back( new Spikey(_sceneManager, Ogre::Vector3(8,0,0)) );
And this is the correct call
(*it)->update(timeSinceLastFrame);
Your vector contains EnemyInterface*.
So *it gives you EnemyInterface* - i.e. a pointer to EnemyInterface. You can call a method using pointer to an object by using ->

Print out the values stored in vars of different classes, that have the same ancestor

I have this class:
class CComputer {
public:
// constructor
CComputer(string name) {
this->name = name;
};
// overloaded operator << for printing
friend ostream& operator<<(ostream& os, const CComputer& c);
// adds some component for this computer
CComputer & AddComponent(Component const & component) {
this->listOfComponents.push_back(component);
return *this;
};
// sets address for this computer
CComputer & AddAddress(const string & address) {
this->address = address;
return *this;
};
string name;
string address;
list<Component> listOfComponents;
};
and then these classes:
// ancestor for other classes...It's really dummy yet, but I dunno what to add there
class Component {
public:
Component() {};
~Component() {};
};
class CCPU : public Component {
public:
CCPU(int cores, int freq) {
this->cores = cores;
this->freq = freq;
};
int cores;
int freq;
};
class CMemory : public Component {
public:
CMemory(int mem) {
this->mem = mem;
};
int mem;
};
Now I feed my CComputer class with some values:
CComputer c("test.com");
c . AddAddress("123.45.678.910") .
AddComponent(CCPU(8, 2400)) .
AddComponent(CCPU(8, 1200)).
AddComponent(CMemory(2000)).
AddComponent(CMemory(2000)));
And now I would like to print it out with all the info I've put in there (CCPU & CMemory details including)
but how to implement it, to be able to iterate through CComputer::listOfComponents and don't care if I acctually access CCPU or CMemory ? I can add it to that list, but I have really no idea, how to make it, to be able to access the variables of those components.
So the output should look like:
##### STARTING #####
CComputer:
name:test.com
address:123.45.678.910
CCPU:
cores:8,freq:2400
CCPU:
cores:8, freq:1200
CMemory:
mem:2000
CMemory:
mem:2000
###### FINISHED! #####
As others have mentioned, you need to implement a virtual function (e.g. virtual std::string ToString() const = 0;) in the base class that is inherited and overridden by each child class.
However, that isn’t enough. Your code exhibits slicing which happens when you copy your child class instances into the list: the list contains objects of type Component, not of the relevant child class.
What you need to do is store polymorphic instances. Values themselves are never polymorphic, you need to use (smart) pointers or references for this. References are out, however, since you cannot store them in a standard container (such as std::list). Using raw pointers is considered bad style nowadays, but judging from the naming conventions of your classes you don’t learn modern C++ in your class (sorry!).
Therefore, raw pointers is probably the way to go. Change your code accordingly:
Store a list of pointers:
list<Component*> listOfComponents;
Make the argument type of AddComponent a pointer instead of const&.
Call the function by passing a newed object, e.g.:
AddComponent(new CCPU(8, 2400))
Now your code leaks memory left, right and center. You need to implement a destructor to free the memory:
~CComputer() {
typedef std::list<Component*>::iterator iter_t;
for (iter_t i = listOfComponents.begin(); i != listOfComponents.end(); ++i)
delete *i;
}
But now your code violates the Rule of Three (read this article! It’s important, and it may be the most useful thing about C++ you’re going to learn in this programming class) and consequently you also need to implement the copy constructor and copy assignment operator. However, we can’t. Sorry. In order to implement copying for your class, you would have to implement another virtual function in your Component class, namely one that clones an object (virtual Component* Clone() const = 0;). Only then can we proceed.
Here’s a sample implementation in CCPU:
Component* Clone() const {
return new CCPU(cores, freq);
}
… this needs to be done in all classes deriving from Component, otherwise we cannot correctly copy an object of a type that derives from Component and is hidden behind a pointer.
And now we can implement copying in the CComputer class:
CComputer(CComputer const& other)
: name(name)
, address(addess) {
typedef std::list<Component*>::iterator iter_t;
for (iter_t i = other.listOfComponents.begin(); i != other.listOfComponents.end(); ++i)
listOfComponents.push_back((*i)->Clone());
}
CComputer& operator =(CComputer const& other) {
if (this == &other)
return *this;
name = other.name;
address = other.address;
listOfComponents.clear();
for (iter_t i = other.listOfComponents.begin(); i != other.listOfComponents.end(); ++i)
listOfComponents.push_back((*i)->Clone());
return *this;
}
This code is brittle, not thread-safe and error-prone and no competent C++ programmer would ever write this1. Real code would for instance use smart pointers instead – but as mentioned before I’m pretty sure that this would be beyond the scope of the class.
1 What does this make me now, I wonder?
Just add a virtual method to Class Component called e.g. toString(), which returns a string describing the component. Then you can iterate through all components and call toString() without worrying about exactly what each component is. If you do that, then for each computer you would be able to print out the values of all the components.
However, as pointed out in one of the comments, the example output you give in the question outputs the CCPU for all computers, then all the memory for all computers. To order the output like that, you'll need to add another virtual method to Component called e.g. getType() which returns an enum or integer that represents the type of the information. You can then have two for-next loops, one nested inside the other, where the outer loop iterates through all the types and the inner loop iterating through all the computers calling the toString() on all components which match the type specified in the outer for loop.
Here's something that implements this idea.
#include <iostream>
#include <string>
#include <list>
using namespace std;
int const TYPE_CCPU = 1;
int const TYPE_MEMORY = 2;
class Component {
public:
virtual int GetType() { return -1; }
virtual std::string ToString() const {
return "OOPS! Default `ToString` called";
}
};
class CComputer {
public:
typedef std::list<Component*>::iterator iter_t;
// constructor
CComputer(string name) {
this->name = name;
};
~CComputer() {
for (iter_t i = listOfComponents.begin(); i != listOfComponents.end(); ++i) {
delete *i;
}
}
// overloaded operator << for printing
friend ostream& operator<<(ostream& os, const CComputer& c);
// adds some component for this computer
CComputer & AddComponent(Component *component) {
this->listOfComponents.push_back(component);
return *this;
};
// sets address for this computer
CComputer & AddAddress(const string & address) {
this->address = address;
return *this;
};
void PrintType(int type) {
for (iter_t i = listOfComponents.begin(); i != listOfComponents.end(); ++i) {
if ((*i)->GetType() == type)
std::cout << (*i)->ToString() << '\n';
}
}
string name;
string address;
list<Component*> listOfComponents;
};
class CCPU : public Component {
public:
CCPU(int cores, int freq) {
this->cores = cores;
this->freq = freq;
};
int GetType() { return TYPE_CCPU; }
std::string ToString() const {
return "CCPU::ToString()";
}
int cores;
int freq;
};
class CMemory : public Component {
public:
CMemory(int mem) { this->mem = mem; };
int GetType() { return TYPE_MEMORY; }
std::string ToString() const {
return "CMemory::ToString()";
}
int mem;
};
typedef std::list<CComputer*>::iterator iter_c;
int main() {
list<CComputer*> computerlist;
CComputer *c1 = new CComputer("test.com"), *c2 = new CComputer("test2.com");
c1->AddAddress("123.45.678.910").
AddComponent(new CCPU(8, 1200)).
AddComponent(new CMemory(2000));
computerlist.push_back(c1);
c2->AddAddress("987.65.432.10").
AddComponent(new CCPU(8, 2400)).
AddComponent(new CMemory(4000));
computerlist.push_back(c2);
for(int t=TYPE_CCPU; t<=TYPE_MEMORY; t++)
for (iter_c i = computerlist.begin(); i != computerlist.end(); ++i) {
(*i)->PrintType(t);
}
for (iter_c i = computerlist.begin(); i != computerlist.end(); ++i) {
delete (*i);
}
}
Implement ToString() in each of your classes. In .NET this is a standard even the "object" type implements.

copy local objects by reference

Here's my problem,
Class MClass {
public:
void Add(OtherClass* objects) {
_objects = objects;
}
private:
OtherClass* _objects;
}
//otherfile.cpp
void Setup() {
MClass myObj;
OtherClass obj[NUMBER_OF_OBJECTS];
//obj initialization here
//...
myObj.Add(obj);
}
It will cause a RT error because the *obj diminishes after the end of the function body.
But, how can make this one valid?
I like to initialized first an object before assigning it to other class.
EDIT
I don't want to use storage classes or something here, I just want a raw array since it is very expensive for me to use. Its functionality will not lessen my problem here.
So how do I do that in a raw-array style?
Class MClass {
public:
void Add(std::vector<OtherClass> objects) {
_objects = std::move(objects);
}
private:
std::vector<OtherClass> _objects;
}
//otherfile.cpp
void Setup() {
MClass myObj;
std::vector<OtherClass> obj(NUMBER_OF_OBJECTS);
myObj.Add(std::move(obj));
}
In your example, you store a pointer to a local array. If the method ends, the array goes out of scope and doesn't exist anymore.
This is the reason, your pointer is not valid anymore. If you want to solve this, learn about the scope of variables in C++.
It is not completely clear what you are trying to do, but you could store a collection of objects instead of a pointer:
class MClass
{
public:
void Add(const std::vector<OtherClass>& objects) {
objects_ = objects;
}
void Add(std::vector<OtherClass>&& objects) {
objects_ = std::move(objects);
}
private:
std::vector<OtherClass> objects_;
};
then
void Setup()
{
MClass myObj;
std::vector<OtherClass> obj(NUMBER_OF_OBJECTS);
//obj initialization here
//...
myObj.Add(std::move(obj)); // move obj's contents onto myObs's objects.
}
Stop using raw arrays, and use either std::vector or std::array. Then you don't have to worry about it anymore.
If you really want to do it manually, you have to copy is manually as well. Using e.g. std::vector and std::move is more effective, but here you go:
Class MClass {
public:
MClass()
: _objects(nullptr), _count(0)
{}
MClass(const MClass& other)
: _objects(nullptr), _count(0)
{
Add(other._objects, other._count);
}
~MClass()
{
if (_objects != nullptr)
delete [] _objects;
}
void Add(const OtherClass* objects, const size_t count)
{
if (_objects != nullptr)
delete [] _objects;
_objects = new [count];
for (size_t i = 0; i < count; i++)
_objects[i] = objects[i];
_count = count;
}
MClass& operator=(const MClass& other)
{
Add(other._objects, other._count);
}
private:
OtherClass* _objects;
size_t _count;
};
// ...
myObj.Add(obj, NUMBER_OF_OBJECTS);
As you can see, it's a lot of more code, which makes it harder to follow and debug, and also larger possibility of errors. And not as "effective" as I said above.