Rounding to the 100 unit - c++

I don't know if the following idea is feasible or not to generalize it, but I want to round every calculated value to the 100 unit rounding up.
example:
double x;
int x_final;
...
if (x<400) x_final=400;
else if (x<500) x_final=500;
else if (x<600) x_final=600;
...

To round up, you can use this:
x_final = ((int)x / 100 + 1) * 100;

The obvious solution is to use remquo:
int
roundTo100( double x )
{
int results;
remquo( x, 100.0, &results );
return 100 * results;
}
You'll probably need a fairly recent compiler for this, however:
the function was added to C99, and to C++ with C++11. Depending
on the platform, you might not have it at all, or you might only
have it in <math.h> (but not in <cmath>). If the compiler
claims C++11 support, you should have it in <cmath>. But
don't believe it until you've seen it; no compiler actually
supports C++11 to any real degree yet. On platforms where there
is support for C99 (which would include pretty much all Unix
platforms, and CygWin under Windows), it should be present in
<math.h>, regardless. (But it is not present in Visual
Studios.)
In the absense of this function, something like:
int
roundTo100( double x )
{
int results = round( x / 100 );
return 100 * results;
}
might do the trick. Beware that the two functions round
slightly differently. The first is rounds up if the remainder
is exactly 50, the second is round to even. The second may
potentially introduce inaccuracies due to the division (or
not—I've not analysed it sufficiently to be sure one way
or the other).
Depending on where your x comes from, the rounding differences
or the potential inaccuracies may not be an issue. (If, for
example, the x is derived from some physical measurements with
only 3 decimal digits accuracy, the fact that it may round
"incorrectly" when x is distant from 50 by some 1E14 or the
like is probably irrelevant.)

ctry this:
#include <math.h>
...
x_final = ceil(x/100)*100;

Divide it by 100 (ignoring the remainder) and then multiply it by 100.
#include <iostream>
using namespace std;
int main() {
int val = 456;
int r = (val / 100) * 100;
cout << "r = " << r;
return 0;
}

Related

How to round a floating point type to two decimals or more in C++? [duplicate]

How can I round a float value (such as 37.777779) to two decimal places (37.78) in C?
If you just want to round the number for output purposes, then the "%.2f" format string is indeed the correct answer. However, if you actually want to round the floating point value for further computation, something like the following works:
#include <math.h>
float val = 37.777779;
float rounded_down = floorf(val * 100) / 100; /* Result: 37.77 */
float nearest = roundf(val * 100) / 100; /* Result: 37.78 */
float rounded_up = ceilf(val * 100) / 100; /* Result: 37.78 */
Notice that there are three different rounding rules you might want to choose: round down (ie, truncate after two decimal places), rounded to nearest, and round up. Usually, you want round to nearest.
As several others have pointed out, due to the quirks of floating point representation, these rounded values may not be exactly the "obvious" decimal values, but they will be very very close.
For much (much!) more information on rounding, and especially on tie-breaking rules for rounding to nearest, see the Wikipedia article on Rounding.
Using %.2f in printf. It only print 2 decimal points.
Example:
printf("%.2f", 37.777779);
Output:
37.77
Assuming you're talking about round the value for printing, then Andrew Coleson and AraK's answer are correct:
printf("%.2f", 37.777779);
But note that if you're aiming to round the number to exactly 37.78 for internal use (eg to compare against another value), then this isn't a good idea, due to the way floating point numbers work: you usually don't want to do equality comparisons for floating point, instead use a target value +/- a sigma value. Or encode the number as a string with a known precision, and compare that.
See the link in Greg Hewgill's answer to a related question, which also covers why you shouldn't use floating point for financial calculations.
How about this:
float value = 37.777779;
float rounded = ((int)(value * 100 + .5) / 100.0);
printf("%.2f", 37.777779);
If you want to write to C-string:
char number[24]; // dummy size, you should take care of the size!
sprintf(number, "%.2f", 37.777779);
Always use the printf family of functions for this. Even if you want to get the value as a float, you're best off using snprintf to get the rounded value as a string and then parsing it back with atof:
#include <math.h>
#include <stdio.h>
#include <stddef.h>
#include <stdlib.h>
double dround(double val, int dp) {
int charsNeeded = 1 + snprintf(NULL, 0, "%.*f", dp, val);
char *buffer = malloc(charsNeeded);
snprintf(buffer, charsNeeded, "%.*f", dp, val);
double result = atof(buffer);
free(buffer);
return result;
}
I say this because the approach shown by the currently top-voted answer and several others here -
multiplying by 100, rounding to the nearest integer, and then dividing by 100 again - is flawed in two ways:
For some values, it will round in the wrong direction because the multiplication by 100 changes the decimal digit determining the rounding direction from a 4 to a 5 or vice versa, due to the imprecision of floating point numbers
For some values, multiplying and then dividing by 100 doesn't round-trip, meaning that even if no rounding takes place the end result will be wrong
To illustrate the first kind of error - the rounding direction sometimes being wrong - try running this program:
int main(void) {
// This number is EXACTLY representable as a double
double x = 0.01499999999999999944488848768742172978818416595458984375;
printf("x: %.50f\n", x);
double res1 = dround(x, 2);
double res2 = round(100 * x) / 100;
printf("Rounded with snprintf: %.50f\n", res1);
printf("Rounded with round, then divided: %.50f\n", res2);
}
You'll see this output:
x: 0.01499999999999999944488848768742172978818416595459
Rounded with snprintf: 0.01000000000000000020816681711721685132943093776703
Rounded with round, then divided: 0.02000000000000000041633363423443370265886187553406
Note that the value we started with was less than 0.015, and so the mathematically correct answer when rounding it to 2 decimal places is 0.01. Of course, 0.01 is not exactly representable as a double, but we expect our result to be the double nearest to 0.01. Using snprintf gives us that result, but using round(100 * x) / 100 gives us 0.02, which is wrong. Why? Because 100 * x gives us exactly 1.5 as the result. Multiplying by 100 thus changes the correct direction to round in.
To illustrate the second kind of error - the result sometimes being wrong due to * 100 and / 100 not truly being inverses of each other - we can do a similar exercise with a very big number:
int main(void) {
double x = 8631192423766613.0;
printf("x: %.1f\n", x);
double res1 = dround(x, 2);
double res2 = round(100 * x) / 100;
printf("Rounded with snprintf: %.1f\n", res1);
printf("Rounded with round, then divided: %.1f\n", res2);
}
Our number now doesn't even have a fractional part; it's an integer value, just stored with type double. So the result after rounding it should be the same number we started with, right?
If you run the program above, you'll see:
x: 8631192423766613.0
Rounded with snprintf: 8631192423766613.0
Rounded with round, then divided: 8631192423766612.0
Oops. Our snprintf method returns the right result again, but the multiply-then-round-then-divide approach fails. That's because the mathematically correct value of 8631192423766613.0 * 100, 863119242376661300.0, is not exactly representable as a double; the closest value is 863119242376661248.0. When you divide that back by 100, you get 8631192423766612.0 - a different number to the one you started with.
Hopefully that's a sufficient demonstration that using roundf for rounding to a number of decimal places is broken, and that you should use snprintf instead. If that feels like a horrible hack to you, perhaps you'll be reassured by the knowledge that it's basically what CPython does.
Also, if you're using C++, you can just create a function like this:
string prd(const double x, const int decDigits) {
stringstream ss;
ss << fixed;
ss.precision(decDigits); // set # places after decimal
ss << x;
return ss.str();
}
You can then output any double myDouble with n places after the decimal point with code such as this:
std::cout << prd(myDouble,n);
There isn't a way to round a float to another float because the rounded float may not be representable (a limitation of floating-point numbers). For instance, say you round 37.777779 to 37.78, but the nearest representable number is 37.781.
However, you can "round" a float by using a format string function.
You can still use:
float ceilf(float x); // don't forget #include <math.h> and link with -lm.
example:
float valueToRound = 37.777779;
float roundedValue = ceilf(valueToRound * 100) / 100;
In C++ (or in C with C-style casts), you could create the function:
/* Function to control # of decimal places to be output for x */
double showDecimals(const double& x, const int& numDecimals) {
int y=x;
double z=x-y;
double m=pow(10,numDecimals);
double q=z*m;
double r=round(q);
return static_cast<double>(y)+(1.0/m)*r;
}
Then std::cout << showDecimals(37.777779,2); would produce: 37.78.
Obviously you don't really need to create all 5 variables in that function, but I leave them there so you can see the logic. There are probably simpler solutions, but this works well for me--especially since it allows me to adjust the number of digits after the decimal place as I need.
Use float roundf(float x).
"The round functions round their argument to the nearest integer value in floating-point format, rounding halfway cases away from zero, regardless of the current rounding direction." C11dr §7.12.9.5
#include <math.h>
float y = roundf(x * 100.0f) / 100.0f;
Depending on your float implementation, numbers that may appear to be half-way are not. as floating-point is typically base-2 oriented. Further, precisely rounding to the nearest 0.01 on all "half-way" cases is most challenging.
void r100(const char *s) {
float x, y;
sscanf(s, "%f", &x);
y = round(x*100.0)/100.0;
printf("%6s %.12e %.12e\n", s, x, y);
}
int main(void) {
r100("1.115");
r100("1.125");
r100("1.135");
return 0;
}
1.115 1.115000009537e+00 1.120000004768e+00
1.125 1.125000000000e+00 1.129999995232e+00
1.135 1.134999990463e+00 1.139999985695e+00
Although "1.115" is "half-way" between 1.11 and 1.12, when converted to float, the value is 1.115000009537... and is no longer "half-way", but closer to 1.12 and rounds to the closest float of 1.120000004768...
"1.125" is "half-way" between 1.12 and 1.13, when converted to float, the value is exactly 1.125 and is "half-way". It rounds toward 1.13 due to ties to even rule and rounds to the closest float of 1.129999995232...
Although "1.135" is "half-way" between 1.13 and 1.14, when converted to float, the value is 1.134999990463... and is no longer "half-way", but closer to 1.13 and rounds to the closest float of 1.129999995232...
If code used
y = roundf(x*100.0f)/100.0f;
Although "1.135" is "half-way" between 1.13 and 1.14, when converted to float, the value is 1.134999990463... and is no longer "half-way", but closer to 1.13 but incorrectly rounds to float of 1.139999985695... due to the more limited precision of float vs. double. This incorrect value may be viewed as correct, depending on coding goals.
Code definition :
#define roundz(x,d) ((floor(((x)*pow(10,d))+.5))/pow(10,d))
Results :
a = 8.000000
sqrt(a) = r = 2.828427
roundz(r,2) = 2.830000
roundz(r,3) = 2.828000
roundz(r,5) = 2.828430
double f_round(double dval, int n)
{
char l_fmtp[32], l_buf[64];
char *p_str;
sprintf (l_fmtp, "%%.%df", n);
if (dval>=0)
sprintf (l_buf, l_fmtp, dval);
else
sprintf (l_buf, l_fmtp, dval);
return ((double)strtod(l_buf, &p_str));
}
Here n is the number of decimals
example:
double d = 100.23456;
printf("%f", f_round(d, 4));// result: 100.2346
printf("%f", f_round(d, 2));// result: 100.23
I made this macro for rounding float numbers.
Add it in your header / being of file
#define ROUNDF(f, c) (((float)((int)((f) * (c))) / (c)))
Here is an example:
float x = ROUNDF(3.141592, 100)
x equals 3.14 :)
Let me first attempt to justify my reason for adding yet another answer to this question. In an ideal world, rounding is not really a big deal. However, in real systems, you may need to contend with several issues that can result in rounding that may not be what you expect. For example, you may be performing financial calculations where final results are rounded and displayed to users as 2 decimal places; these same values are stored with fixed precision in a database that may include more than 2 decimal places (for various reasons; there is no optimal number of places to keep...depends on specific situations each system must support, e.g. tiny items whose prices are fractions of a penny per unit); and, floating point computations performed on values where the results are plus/minus epsilon. I have been confronting these issues and evolving my own strategy over the years. I won't claim that I have faced every scenario or have the best answer, but below is an example of my approach so far that overcomes these issues:
Suppose 6 decimal places is regarded as sufficient precision for calculations on floats/doubles (an arbitrary decision for the specific application), using the following rounding function/method:
double Round(double x, int p)
{
if (x != 0.0) {
return ((floor((fabs(x)*pow(double(10.0),p))+0.5))/pow(double(10.0),p))*(x/fabs(x));
} else {
return 0.0;
}
}
Rounding to 2 decimal places for presentation of a result can be performed as:
double val;
// ...perform calculations on val
String(Round(Round(Round(val,8),6),2));
For val = 6.825, result is 6.83 as expected.
For val = 6.824999, result is 6.82. Here the assumption is that the calculation resulted in exactly 6.824999 and the 7th decimal place is zero.
For val = 6.8249999, result is 6.83. The 7th decimal place being 9 in this case causes the Round(val,6) function to give the expected result. For this case, there could be any number of trailing 9s.
For val = 6.824999499999, result is 6.83. Rounding to the 8th decimal place as a first step, i.e. Round(val,8), takes care of the one nasty case whereby a calculated floating point result calculates to 6.8249995, but is internally represented as 6.824999499999....
Finally, the example from the question...val = 37.777779 results in 37.78.
This approach could be further generalized as:
double val;
// ...perform calculations on val
String(Round(Round(Round(val,N+2),N),2));
where N is precision to be maintained for all intermediate calculations on floats/doubles. This works on negative values as well. I do not know if this approach is mathematically correct for all possibilities.
...or you can do it the old-fashioned way without any libraries:
float a = 37.777779;
int b = a; // b = 37
float c = a - b; // c = 0.777779
c *= 100; // c = 77.777863
int d = c; // d = 77;
a = b + d / (float)100; // a = 37.770000;
That of course if you want to remove the extra information from the number.
this function takes the number and precision and returns the rounded off number
float roundoff(float num,int precision)
{
int temp=(int )(num*pow(10,precision));
int num1=num*pow(10,precision+1);
temp*=10;
temp+=5;
if(num1>=temp)
num1+=10;
num1/=10;
num1*=10;
num=num1/pow(10,precision+1);
return num;
}
it converts the floating point number into int by left shifting the point and checking for the greater than five condition.

distribute two integers according to ratio

Say, I have some integer n and would like to subdivide it into two other integers according to some ratio. I have some approach where I ask myself whether it does work or not.
For example: 20 with ratio 70% should be subdivided into 14,6.
The obvious solution would be:
int n = 20;
double ratio = .7;
int n1 = static_cast<int>(n * ratio);
int n2 = static_cast<int>(n * (1 - ratio));
Since the cast always floors, however, I usually underrate my result. If I use std::round, there are still cases that are not working. For example, if the first decimal place is a 5, then both numbers will be rounded up.
Some colleagues suggested: Ceil the first number and floor the second one. In most of my tests, this works, however:
1) Does it really always work, also taking into accounting possible rounding errors that naturally occur in multiplying numbers? What I think of: 20*.7 could be 14, while 20*.3 could be 5.999999. So, my sum might be 14 + 5 = 19. This is just my guess, however, I do not know whether these kind of results can or cannot occur (otherwise the answer would be simply that this kind of rounding proposition does not work)
2) Even if it does work... Why?
(I have in mind that I could just calculate number 1 by n * ratio and calculate number 2 by n - n * ratio, but I would still be interested in the answer to this question)
How about this?
int n = 20;
double ratio = .7;
int n1 = static_cast<int>(n * ratio);
int n2 = n - n1;
Here is example that confirms your suspicion and shows that the ceil+floor method doesn't always work. It is caused by the finite precision of floating point numbers on computer:
#include <iostream>
#include <cmath>
int main() {
int n = 10;
double ratio = 0.7;
int n1 = static_cast<int>(floor(n * ratio));
int n2 = static_cast<int>(ceil(n * (1.0 - ratio)));
std::cout << n1 << " " << n2 << std::endl;
}
Output:
7 4
7 + 4 is 11, so it's wrong.
Your solution doesn't always work, take a ratio of 77%, you'll get 15 and 4 (See on coliru).
Welcome to the domain of numerical analysis.
First, your computer can't always perfectly store a floating number. As you can see in the example, .77 is stored as 0.77000000000000001776 (it is an approach of the number by a sum of powers of 2).
When doing floating point calculation, you will always have a loss in precision. You can get this precision with std::numeric_limits<double>::epsilon().
Moreover, you'll still get more precision loss when converting from a floating number to an integer, and in your case the difference is big enough to give you an incoherent result.
The solution provided by #ToniBig and your last sentence has the advantage of "hiding" this loss and keep coherent data.

Why does this double to int conversion not work?

I've been thoroughly searching for a proper explanation of why this is happening, but still don't really understand, so I apologize if this is a repost.
#include <iostream>
int main()
{
double x = 4.10;
double j = x * 100;
int k = (int) j;
std::cout << k;
}
Output: 409
I can't seem to replicate this behavior with any other number. That is, replace 4.10 with any other number in that form and the output is correct.
There must be some sort of low level conversion stuff I'm not understanding.
Thanks!
4.1 cannot be exactly represented by a double, it gets approximated by something ever so slightly smaller:
double x = 4.10;
printf("%.16f\n", x); // Displays 4.0999999999999996
So j will be something ever so slightly smaller than 410 (i.e. 409.99...). Casting to int discards the fractional part, so you get 409.
(If you want another number that exhibits similar behaviour, you could try 8.2, or 16.4, or 32.8... see the pattern?)
Obligatory link: What Every Computer Scientist Should Know About Floating-Point Arithmetic.
The fix
int k = (int)(j+(j<0?-0.5:0.5));
The logic
You're experiencing a problem with number bases.
Although on-screen, 4.10 is a decimal, after compilation, it gets expressed as a binary floating point number, and .10 doesn't convert exactly into binary, and you end up with 4.099999....
Casting 409.999... to int just drops the digits. If you add 0.5 before casting to int, it effectively rounds to the nearest number, or 410 (409.49 would go to 409.99, cast to 409)
Try this.
#include <iostream>
#include "math.h"
int main()
{
double x = 4.10;
double j = x * 100;
int k = (int) j;
std::cout << trunc(k);
std::cout << round(k);
}

float overflow?

The following code seems to always generate wrong result. I have tested it on gcc and windows visual studio. Is it because of float overflow or something else? Thanks in advance:)
#include <stdio.h>
#define N 51200000
int main()
{
float f = 0.0f;
for(int i = 0; i < N; i++)
f += 1.0f;
fprintf(stdout, "%f\n", f);
return 0;
}
float only has 23 bits of precision. 512000000 requires 26. Simply put, you do not have the precision required for a correct answer.
For more information on precision of data types in C please refer this.
Your code is expected to give abnormal behaviour when you exceed the defined precision.
Unreliable things to do with floating point arithmetic include adding two numbers together when they are very different in magnitude, and subtracting them when they are similar in magnitude. The first is what you are doing here; 1 << 51200000. The CPU normalises one of the numbers so they both have the same exponent; that will shift the actual value (1) off the end of the available precision when the other operand is large, so by the time you are part way through the calculation, one has become (approximately) equal to zero.
Your problem is the unit of least precision. Short: Big float values cannot be incremented with small values as they will be rounded to the next valid float. While 1.0 is enough to increment small values the minimal increment for 16777216 seems to be 2.0 (checked for java Math.ulp, but should work for c++ too).
Boost has some functions for this.
The precision of float is only 7 digits. Adding number 1 to a float larger than 2^24 gives a wrong result. With using double types instead of float you will get a correct result.
Whilst editing the code in your question, I came across an unblocked for loop:
#include <stdio.h>
#define N 51200000
int main() {
float f = 0.0f;
for(int i = 0; i < N; i++) {
f += 1.0f;
fprintf(stdout, "%f\n", f);
}
return 0;
}

C/C++ rounding up decimals with a certain precision, efficiently

I'm trying to optimize the following. The code bellow does this :
If a = 0.775 and I need precision 2 dp then a => 0.78
Basically, if the last digit is 5, it rounds upwards the next digit, otherwise it doesn't.
My problem was that 0.45 doesnt round to 0.5 with 1 decimalpoint, as the value is saved as 0.44999999343.... and setprecision rounds it to 0.4.
Thats why setprecision is forced to be higher setprecision(p+10) and then if it really ends in a 5, add the small amount in order to round up correctly.
Once done, it compares a with string b and returns the result. The problem is, this function is called a few billion times, making the program craw. Any better ideas on how to rewrite / optimize this and what functions in the code are so heavy on the machine?
bool match(double a,string b,int p) { //p = precision no greater than 7dp
double t[] = {0.2, 0.02, 0.002, 0.0002, 0.00002, 0.000002, 0.0000002, 0.00000002};
stringstream buff;
string temp;
buff << setprecision(p+10) << setiosflags(ios_base::fixed) << a; // 10 decimal precision
buff >> temp;
if(temp[temp.size()-10] == '5') a += t[p]; // help to round upwards
ostringstream test;
test << setprecision(p) << setiosflags(ios_base::fixed) << a;
temp = test.str();
if(b.compare(temp) == 0) return true;
return false;
}
I wrote an integer square root subroutine with nothing more than a couple dozen lines of ASM, with no API calls whatsoever - and it still could only do about 50 million SqRoots/second (this was about five years ago ...).
The point I'm making is that if you're going for billions of calls, even today's technology is going to choke.
But if you really want to make an effort to speed it up, remove as many API usages as humanly possible. This may require you to perform API tasks manually, instead of letting the libraries do it for you. Specifically, remove any type of stream operation. Those are slower than dirt in this context. You may really have to improvise there.
The only thing left to do after that is to replace as many lines of C++ as you can with custom ASM - but you'll have to be a perfectionist about it. Make sure you are taking full advantage of every CPU cycle and register - as well as every byte of CPU cache and stack space.
You may consider using integer values instead of floating-points, as these are far more ASM-friendly and much more efficient. You'd have to multiply the number by 10^7 (or 10^p, depending on how you decide to form your logic) to move the decimal all the way over to the right. Then you could safely convert the floating-point into a basic integer.
You'll have to rely on the computer hardware to do the rest.
<--Microsoft Specific-->
I'll also add that C++ identifiers (including static ones, as Donnie DeBoer mentioned) are directly accessible from ASM blocks nested into your C++ code. This makes inline ASM a breeze.
<--End Microsoft Specific-->
Depending on what you want the numbers for, you might want to use fixed point numbers instead of floating point. A quick search turns up this.
I think you can just add 0.005 for precision to hundredths, 0.0005 for thousands, etc. snprintf the result with something like "%1.2f" (hundredths, 1.3f thousandths, etc.) and compare the strings. You should be able to table-ize or parameterize this logic.
You could save some major cycles in your posted code by just making that double t[] static, so that it's not allocating it over and over.
Try this instead:
#include <cmath>
double setprecision(double x, int prec) {
return
ceil( x * pow(10,(double)prec) - .4999999999999)
/ pow(10,(double)prec);
}
It's probably faster. Maybe try inlining it as well, but that might hurt if it doesn't help.
Example of how it works:
2.345* 100 (10 to the 2nd power) = 234.5
234.5 - .4999999999999 = 234.0000000000001
ceil( 234.0000000000001 ) = 235
235 / 100 (10 to the 2nd power) = 2.35
The .4999999999999 was chosen because of the precision for a c++ double on a 32 bit system. If you're on a 64 bit platform you'll probably need more nines. If you increase the nines further on a 32 bit system it overflows and rounds down instead of up, i. e. 234.00000000000001 gets truncated to 234 in a double in (my) 32 bit environment.
Using floating point (an inexact representation) means you've lost some information about the true number. You can't simply "fix" the value stored in the double by adding a fudge value. That might fix certain cases (like .45), but it will break other cases. You'll end up rounding up numbers that should have been rounded down.
Here's a related article:
http://www.theregister.co.uk/2006/08/12/floating_point_approximation/
I'm taking at guess at what you really mean to do. I suspect you're trying to see if a string contains a decimal representation of a double to some precision. Perhaps it's an arithmetic quiz program and you're trying to see if the user's response is "close enough" to the real answer. If that's the case, then it may be simpler to convert the string to a double and see if the absolute value of the difference between the two doubles is within some tolerance.
double string_to_double(const std::string &s)
{
std::stringstream buffer(s);
double d = 0.0;
buffer >> d;
return d;
}
bool match(const std::string &guess, double answer, int precision)
{
const static double thresh[] = { 0.5, 0.05, 0.005, 0.0005, /* etc. */ };
const double g = string_to_double(guess);
const double delta = g - answer;
return -thresh[precision] < delta && delta <= thresh[precision];
}
Another possibility is to round the answer first (while it's still numeric) BEFORE converting it to a string.
bool match2(const std::string &guess, double answer, int precision)
{
const static double thresh[] = {0.5, 0.05, 0.005, 0.0005, /* etc. */ };
const double rounded = answer + thresh[precision];
std::stringstream buffer;
buffer << std::setprecision(precision) << rounded;
return guess == buffer.str();
}
Both of these solutions should be faster than your sample code, but I'm not sure if they do what you really want.
As far as i see you are checking if a rounded on p points is equal b.
Insted of changing a to string, make other way and change string to double
- (just multiplications and addion or only additoins using small table)
- then substract both numbers and check if substraction is in proper range (if p==1 => abs(p-a) < 0.05)
Old time developers trick from the dark ages of Pounds, Shilling and pence in the old country.
The trick was to store the value as a whole number fo half-pennys. (Or whatever your smallest unit is). Then all your subsequent arithmatic is straightforward integer arithimatic and rounding etc will take care of itself.
So in your case you store your data in units of 200ths of whatever you are counting,
do simple integer calculations on these values and divide by 200 into a float varaible whenever you want to display the result.
I beleive Boost does a "BigDecimal" library these days, but, your requirement for run time speed would probably exclude this otherwise excellent solution.