Calling derived class method from generic base class reference - c++

I have a base class
class base {
public:
base();
int someData;
virtual void foo(){
std::cout << someData;
}
};
and a few derived classes like
class derived : public base {
public:
derived();
void foo(){
std::cout << someData * 5;
}
};
Basically they have the same kind of data but the operations on this data are different.
I have another class that doesn't need to know the details of my object, all it needs to do is to set data and call the derived foo().
class useData {
public:
useData();
base x;
int do() { x.someData = 5; return x.foo(); }
};
I want "useData" to be as generic as possible so I'm using the base class instead of the derived class in its definition.
Of course in this scenario it will call the base method and not the derived one. How can I rewrite my code or make it automatically (without type checking or similar) call the derived method?
Thank you

To use polymorphism you need some pointer or references. So in useData the variable x should be declared as a base *. Afterward, you can create is using a new with any derived class. Polymorphism will perform as expected..

Related

DerivedA pointer pointing to DerivedB

I have a base class which serves as an interface (if I use that word correctly). The idea is that the base class has some derived classes that implement one virtual function of the base class. Then I also need another class that extends the base class (lets call it extended base). What I would like is that I can store a class derived from base into an extended base pointer.
MWE:
class Base {
public:
virtual ~Base();
virtual double value();
}
class Derived : public Base{
public:
double value() override {return 5;}
}
class ExtendedBase : public Base {
public:
virtual ~ExtendedBase ();
virtual double value2(){return 10;}
}
int main() {
ExtendedBase * object;
object = new Derived();
std::cout << object->value(); //should give implementation in Derived, i.e. 5
std::cout << object->value2(); //should give implementation in ExtendedBase, i.e. 10
delete object;
return 0;
}
With this MWE I get a compile error at the second line in the main. error: cannot convert 'Derived*' to 'ExtendedBase*' in assignment object = new Derived();. Part of me understands why it doesn't work (although I can't explain), but I would like to know if I can get the desired behaviour in some other way.
P.S. Sorry about the bad question name, I couldn't think of another way to keep it short
P.S.2 I know raw pointers like this are not advised. In the future I will change to smart pointers but I don't think they are needed for this simple example
ExtendedBase and Derived are each derived from Base. If you want to use an ExtendedBase* pointer to point to a Derived object, you will need to derive Derived from ExtendedBase.
To use a different example,
class Feline{
virtual void run();
}
class Housecat : Feline{
void run() {}
}
class BigCat : Feline{
virtual void run();
virtual void roar();
}
Here Feline, Housecat, and BigCat are analogous to Base, Derived, and ExtendedBase. BigCat and Housecat are each Feline, but since Housecat is not a BigCat, you can't use a BigCat* pointer to point to a Housecat.
This is the desired behavior from a language architect perspective.
For instance, if you have
class Ship
{
public:
virtual void move() = 0;
}
class Steamboat : public Ship
{
public:
virtual void move() override { ... }
}
class Sailboat : public Ship
{
public:
virtual void move() override { ... }
virtual void setSails() { ... }
}
Now, you don't want a Steamboat to become a Sailboat all of a sudden, hence:
Steamboat* tootoo = new Sailboat;
cannot be valid.
That's why your code cannot work. Conceptually.
So giving a quick fix is not possible, because your concept is not really clear.
When you are assigning an address to a pointer that means you should be able to access all the members of the type the pointer is pointing to through the pointer.
For ex,
class B {};
class D : B {};
B *p = new D();
now through p, at least you can access all the members of base portion of the derived class.
But in your code,
ExtendedBase * object;
object = new Derived();
object should be able to access all the members of ExtendedBase portion of the derived class. But how is it possible as derived class is not derived from ExtendeBase. So compiler is throwing error.
You need to do some changes in your code to work.
To make base as interface (abstract class), you need to define at
least one member function as pure virtual.
If you want to access the member function of ExtendedBase through
Base pointer, you should define same function 'val' in your
ExtendedBase.
Below are the changes.
#include <iostream>
using namespace std;
class Base {
public:
virtual ~Base() {};
virtual double value() = 0;
};
class Derived : public Base{
public:
~Derived() {};
double value() {
return 5;
}
};
class ExtendedBase : public Base {
public:
virtual ~ExtendedBase () {};
double value()
{
return 10;
}
};
int main() {
Base *p = new Derived();
std::cout << p->value() << std::endl;
delete p;
Base *p1 = new ExtendedBase();
std::cout << p1->value() << std::endl;
delete p1;
return 0;
}

Pass derived class to function defined to take base class arguments

If I have a base class and a derived class, such as:
class Base {
protected:
int a;
public:
void setA(int);
void getA(int);
}
class Derived : public Base {
private:
int b;
public:
void doThing();
}
Then a third, additional class that uses the base class:
class OtherClass {
public:
Base doClassThing(Base*, Base*);
}
What's the best way to pass the derived class to a function that's defined to return a base class and take the base class as an argument. Like this:
Derived *x = new Derived();
Derived *y = new Derived();
doClassThing(x, y);
Would I pass the objects with a type cast? Or should I type cast the objects when they're first created?
To answer your two questions:
You would not cast the objects when they're first created.
There is no need to cast when calling; You do not need to modify the code in your question.

Base class functions that use derived class variables

In c++, Is there a standard way to create a function in a base class that can use the variables of derived classes?
class Foo{
private:
int x;
public:
Foo(){
x = 2;
}
void print(){
std::cout << x << std::endl;
}
};
class Derived : public Foo{
private:
int x;
public:
Derived(){
x = 4;
}
};
void main()
{
Derived a;
a.print();
}
This code prints the variable of the base class ( 2 ). Is there a way to make a function used by many derived classes to use the class's private variables without passing them as parameters?
Edit: My intentions are, to avoid writing the same code for each derived class.
For example, I want a get_var() in all, but this function should return the variable of that own class. I know I can make virtual and override, but I was looking for a way that I don't need to write again and again.
No, it is not possible for the base class to access anything in the derived class directly. The only way for a derived class to share anything with its base class is by overriding virtual member functions of the base class.
In your case, however, this is not necessary: the derived class can set variable x in the base class once you make it protected, and drop its own declaration as unnecessary:
class Foo{
protected: // Make x visible to derived classes
int x;
public:
Foo(){
x = 2;
}
void print(){
std::cout << x << std::endl;
}
};
class Derived : public Foo{
public:
Derived(){
x = 4;
}
};

assigning derived class pointer to base class pointer in C++

I have following
class base
{
};
class derived : public base
{
public:
derived() {}
void myFunc() { cout << "My derived function" << std::endl; }
};
now I have
base* pbase = new derived();
pbase->myFunc();
I am getting error myFunc is not a member function of base.
How to avoid this? and how to make myFunc get called?
Note I should have base class contain no function as it is part of design and above code is part of big function
If you are adamant that this function should NOT be a part of base, you have but 2 options to do it.
Either use a pointer to derived class
derived* pDerived = new derived();
pDerived->myFunc();
Or (uglier & vehemently discouraged) static_cast the pointer up to derived class type and then call the function
NOTE: To be used with caution. Only use when you are SURE of the type of the pointer you are casting, i.e. you are sure that pbase is a derived or a type derived from derived. In this particular case its ok, but im guessing this is only an example of the actual code.
base* pbase = new derived();
static_cast<derived*>(pbase)->myFunc();
myfunc needs to be accessible from the base class, so you would have to declare a public virtual myfunc in base. You could make it pure virtual if you intend for base to be an abstract base class, i.e one that cannot be instantiated and acts as an interface:
class base
{
public:
virtual void myfunc() = 0; // pure virtual method
};
If you ant to be able to instantiate base objects then you would have to provide an implementation for myfunc:
class base
{
public:
virtual void myfunc() {}; // virtual method with empty implementation
};
There is no other clean way to do this if you want to access the function from a pointer to a base class. The safetest option is to use a dynamic_cast
base* pbase = new derived;
....
derived* pderived = dynamic_cast<derived*>(pbase);
if (derived) {
// do something
} else {
// error
}
To use the base class pointer, you must change the base class definition to be:
class base
{
public:
virtual void myFunc() { }
};
I see no other way around it. Sorry.
You could add it as a member of base and make it a virtual or pure virtual function. If using this route however, you should also add a virtual destructor in the base class to allow successful destruction of inherited objects.
class base
{
public:
virtual ~base(){};
virtual void myFunc() = 0;
};
class derived : public base
{
public:
derived() {}
void myFunc() { cout << "My derived function" << std::endl; }
};

C++ Design (behavior in base class, private member supplied in derived class)

I have 6 classes which all perform the same actions. I would like to move common behavior to a common [base] class.
There are actions to be performed on 6 separate objects. The six objects are located in derived classes. Intuitively, the private member objects would be accessed through the child (derived class) in the base class.
What is the C++ pattern I am looking for?
class Base
{
// Common behavior, operate on m_object
...
void Foo()
{
m_object.Bar();
}
};
class Derived1 : public Base
{
// No methods, use Base methods
private:
MyObject1 m_object;
}
class Derived2 : public Base
{
// No methods, use Base methods
private:
MyObject2 m_object;
}
The thing that is boxing me into this situation is MyObject1, MyObject2, etc offer Bar(), but don't share a common base class. I really can't fix the derivation because the objects come from an external library.
If they are introduced in the derived classes, then the base class cannot directly access them. How would the base class know that all derived classes have a specific member?
You could use virtual protected methods like so:
class my_base
{
protected:
virtual int get_whatever();
virtual double get_whatever2();
private:
void process()
{
int y = get_whatever();
double x = get_whatever2();
//yay, profit?
}
}
class my_derived_1 : my_base
{
protected:
virtual int get_whatever()
{
return _my_integer;
}
virtual double get_whatever2()
{
return _my_double;
}
}
Another possibility (if you want to call the base methods from the derived classes) is to simply supply the arguments to the base methods.
class my_base
{
protected:
void handle_whatever(int & arg);
};
class my_derived : my_base
{
void do()
{
my_base::handle_whatever(member);
}
int member;
};
C++ does and doesn't. It has a very powerful multiple inheritance support, so there is no super keyword. Why? Imagine that your base class is, say, inherited by another two classes, or even is a part of virtual inheritance hierarchy. In that case you can't really tell what super is supposed to mean. On the other hand, there are virtual methods, you can always have them in base class and implement in derived classes (that's what languages like Java do, except that they they don't have multiple class inheritance support). If you don't want to go with polymorphism, you can use something like this:
#include <cstdio>
template <typename T>
struct Base
{
void foo ()
{
std::printf ("Base::foo\n");
static_cast<T *> (this)->bar ();
}
};
struct Derived : Base<Derived>
{
void bar ()
{
std::printf ("Derived::bar\n");
}
};
int
main ()
{
Derived d;
d.foo ();
}
This is an extremely simple example - you can extend the above example with access control, friends, compile-time assertions etcetera, but you get the idea.
Have you considered not using inheritance?
class FooBar
{
MyObject m_object;
public:
FooBar(MyObject m): m_object(m) {}
//operate on different m_objects all you want
};
What about deriving your six separate objects from a common base class? Then you can declare virtual methods in that base class to create your interface, and then implement them in the derived object classes.
Maybe you just need a template instead of superclass and 6 derived classes?
It seems that you need to access not the parent's, but child's field. You should do it by introducing an abstract method:
class ParentClass
{
public:
void f();
protected:
virtual int getSomething() = 0;
};
ParentClass::f()
{
cout << getSomething() << endl;
}
class DerivedClass : public ParentClass
{
protected:
virtual int getSomething();
}
DerivedClass::getSomething() { return 42; }
If you need to access parent's method, just use ParentClass::method(...):
class ParentClass
{
public:
virtual void f();
};
class DerivedClass : public ParentClass
{
public:
virtual void f();
};
void DerivedClass::f()
{
ParentClass::f();
}