simplifying overloaded class function - c++

I am having in my class gTexture two functions declared:
public:
gTexture():mActiveTexture(0){...}
virtual void DrawTexture();
virtual void DrawTexture(unsigned short int TextureNumber);
int mActiveTexture;
where
void gTexture::DrawTexture()
{
gTexture::DrawTexture(mActiveTexture);
}
I'd like to have this in one function something like
virtual void DrawTexture(unsigned short int TextureNumber=mActiveTexture);
This does no compile as mActiveTexture is an invalid use of non static data member. Is there any way to just have one function, which would make it easier to handle with my derived objects? Thanks.

I can see two ways. Both are workaround-ish, but could be useful.
One is to make the parameterless function non-virtual; it will simply always call the second one with mActiveTexture.
The other way is to use domain knowledge (specifically the fact that 0 is not a valid OpenGL texture name) and do this:
virtual void DrawTexture(unsigned short int TextureNumber = 0) {
if (TextureNumber == 0) TextureNumber = mActiveTexture;
// ... rest of the code
}

You could have a default argument value that is not valid (e.g. -1). Then your function can check if that value is the default and if it is, use mActiveTexture, otherwise it will use the argument.

No, you can't use members as defaults. Defaults are used at compile time.
You could however use a special value for the default, like -1 and then check in DrawTexture if the input values is -1 and if so set it to mActiveTexture.

Related

Two versions of the program depending on the input parameter without code duplication

I am solving the following problem. I am working on an optimization program in C ++ which, depending on the initial settings of the user, uses various regulations (standards) to calculate the target function. Suppose we have a method A based on some norm and a method B based on another norm to calculate the target function. The user is setting the right standard before starting the program. The rest of the code is the same. During optimization, the target function is iteratively called over and over again. Of course, there is a simple solution: each time the target function is called, the IF condition is used to decide which standard to use. But because the program has to make decisions in every iteration, it seems to be ineffective. The second option is to create 2 independent codes and run only the one with the required standard. This, in turn, is ugly in terms of duplicate code.
I imagined that I would create 2 different classes and use the selected class using the IF condition when constructing the object. This would make the program decide only once when creating the object, but during the iteration itself the object would be clearly defined. Unfortunately, this does not work because objects cannot be created in IF conditions.
//-----------------------------------------------------------
// Create object sensor based on input
if(data.sensors_tipe == "Uniaxial_025") Sensor_Uniaxial_025 sensor(data);
else if (data.sensors_tipe == "T_rosette_05") Sensor_T_rosette_05 sensor(data);
else report.error("some error");
// rotation test
int element_index = 1;
double orientation_angle = 3.490658503988659;
sensor.rotate(element_index, orientation_angle);
Another way I would like is to set the correct method using a parameter in the constructor. Unfortunately, that probably isn't possible either.
I am a beginner and I did not find the answer anywhere. So maybe someone can help. Thanks
This is a good job for templates, which are "recipes" to generate code.
The end result will be duplicated machine code, but without the duplication in the source.
template<typename MethodT>
float optimize(const MethodT& method) {
float v = method();
// etc...
}
float methodA();
float methodB();
int main() {
auto a = optimize(methodA);
auto b = optimize(methodB);
}
First, the solution with if may be not that bad. It is branch on each function call, but the branch should be predicted well.
Second, if the functions that implement method A and method B are large enough to miss inlining, use function pointer.
Otherwise, use static polymorphism with templates, method A and method B may be passed via template parameter as functors.
In case, the user can change standard after programm compilation (for example, before each run) you can create interface and 2 child from it.
So, at startup you should create the instance (one of 2) you need through new. And then you can use it.
You can't use that algorithm with stack instances.
One way is to use inheritance.
class Sensor
{
public:
virtual void rotate(int, double) = 0;
};
class Sensor_Uniaxial_025 : public Sensor
{
public:
virtual void rotate(int, double) {/*stuff*/};
};
class Sensor_T_rosette_05 : public Sensor
{
public:
virtual void rotate(int, double) {/*stuff*/};
};
Sensor* sensorToUse;
//-----------------------------------------------------------
// Create object sensor based on input
if(data.sensors_tipe == "Uniaxial_025") sensorToUse = new Sensor_Uniaxial_025(data);
else if (data.sensors_tipe == "T_rosette_05") sensorToUse = new
Sensor_T_rosette_05(data);
else report.error("some error");
// rotation test
int element_index = 1;
double orientation_angle = 3.490658503988659;
sensorToUse->rotate(element_index, orientation_angle);
The example above, with new, comes with serious memory management issues. But if you pre-allocate the sensor for each type, in a single instance, and use a look-up instead it works well.
The alternative is with template. See other answers for these approaches.

Pointer to function from another pointer

I'm new to c++ and I'm trying to make a generic switch (i.e. the device, not the C++ statement) that could be used to blink lights, turn beeps on and off, etc, in my Arduino project.
I could create a switchable interface and implement that in the classes that I want to "switch". But since I'm doing it as study purposes and I saw the pointer-to-functions ability in C++ (that is new to me since I come from C# and Java), I tough it would be a good opportunity to give it a try...
The problem is that I can pass the function in my code only if it's a local function but it won't work if I try to pass a function from another object like a led for example.
Some code to illustrate the problem. This is the switch.cpp, it recieves the On and Off functions in it's constructor and it has a update method that is called inside the loop method in the Arduino ino main class:
auto_switch.cpp
using switch_function = void(*)();
auto_switch::auto_switch(const switch_function on_function, const switch_function off_function, const int max_speed_count)
{
//sets all variables...
}
void auto_switch::update(const unsigned long millis)
{
//turn switch on and off...
}
And this is my ino file
ino file
#include <Arduino.h>
#include "led.h"
#include "auto_switch.h"
led* main_led;
auto_switch* led_switch;
int slow_speed;
//ugly code
void turn_led_on()
{
main_led->turn_on();
}
//ugly code
void turn_led_off()
{
main_led->turn_off();
}
void setup() {
main_led = new led(2, 3, 4, true, color::white);
//ugly code
led_switch = new auto_switch(turn_led_on, turn_led_off, 3);
slow_speed = led_switch->add_speed(100, 100, 3, 1000);
led_switch->set_active_speed(slow_speed);
led_switch->turn_on();
}
void loop() {
led_switch->update(millis());
}
It works but I had to make a local function (turn_led_on and turn_led_off) to be able to assign the inner functions as a parameter to the auto_switch constructor, the parts that I've wrote //ugly code
I wanted to do something like this, without the glue code in between:
//doesn't work
led_switch = new auto_switch(main_led->turn_on, main_led->turn_off, 3);
Is it possible? I've read something about static pointer to function and some std functions that help with that, if I get it right the glue code is necessary in this case so that the compiler can know where the functions are coming from I guess (from which object), but since the functions I need to call cannot be static I've discarded this option, and the std functions I believe it can't be used with the Arduino or could but shouldn't for performance limitations...
Anyway, does it make sense, can it be done using pointer to functions or should I create a interface or something different?
Before deciding how to do it, the qquestion is what do you want to do and why. Because, maybe there are better alternatives using simple C++ idioms.
Option 1: specialization with polymorphism
Do you want to specialize some functions of your switch, so instead of calling the function of the auto_switch you'd call dome more specialized ones ?
In this case you wouldn't do:
//doesn't work
led_switch = new auto_switch(main_led->turn_on, main_led->turn_off, 3);
but instead you would rely on polymorphism with virtual functions in the base class:
class auto_switch {
...
virtual void turn_on();
virtual void turn_off();
...
};
and write a specialized class for the leds:
class led_witch : public auto_switch {
...
void turn_on() override;
void turn_off() override;
...
};
In fact, the compiler will generate some function pointers behind the scene, but you don't have to care:
auto_switch s1=new auto_switch(...);
auto_switch s2=new led_switch(...); // no problem !!
s1->turn_on(); // calls auto_switch::turn_on()
s2->turn_on(); // calls led_switch::turn_on() since the real type of s2 is led_switch
But event if each object's behavior is dynamic on the the base of the real class of the object, the objects of the same class share a behavior that was predefined at compile time. If this is not ok, go to the next option.
Option 2: the member function pointer
The functions of another objects can only be invoked with that object at hand. So having a function pointer to a led function is not sufficient: you also need to know on which led it shall be applied.
This is why member function pointers are different and somewhat constraint: you can only invoke functions of class of your member function pointer. If polymorphism is sufficient (i.e. if derived class has a different implementation of a function already foreseen in the base classe) then you are lucky. If you want to use a function that only exists in the derived class and not in the base class, it won't compile.
Here a simplified version of auto_swith: I provide a function, but allso a pointer to the object on which the function has to be invoked:
class auto_switch{
void (led::*action)();
led *ld;
public:
auto_switch(void(led::*a)(), led*l) : action(a), ld(l) {}
void go () { (ld->*action)(); }
};
// usage:
auto_switch s(&led::turn_off, &l1);
s.go();
Online demo
Option 3 : the functional way (may that's what you're looking for ?)
Another variant would be to use the standard functional library to bind a member function and the object on which it shall be executed (as well as any need parameters):
class auto_switch{
std::function<void()> action;
public:
auto_switch(function<void()>a) : action(a) {}
void go () { action(); }
};
Here you can bind anything: any function of any class:
auto_switch s(bind(&led::turn_off, l1));
s.go();
auto_switch s2(bind(&blinking_led::blink, l2));
s2.go();
Online demo
Option 4 : command pattern
Now if you want to perform something on an object when you turn on and off the switch, but you need total flexibility, you can just implement the command pattern : this lets you execute anything on any object. And you don't even need a function pointer.

Char array initialisation in class

I am trying to unit test a C++ application that I am building and I'm having an issue initializing the array when used in a class. I've tried alot of different methods of loading this information, the only ones that work are inefficient / not suitable.
Here is the hex array that I have (randomised the parts)
0x24,0x54,0x3b,0x72,0x8b,0x03,0x24,0x29,0x23,0x43,0x66,0x22,0x53,0x41,0x11,0x62,0x10
And header file for my unit test:
class MessageParsingTest : public CPPUNIT_NS::TestFixture {
CPPUNIT_TEST_SUITE(MessageParsingTest);
CPPUNIT_TEST(testIdentifyFirstMessageType);
CPPUNIT_TEST_SUITE_END();
public:
MessageParsingTest();
virtual ~MessageParsingTest();
void setUp();
void tearDown();
private:
void testIdentifyFirstMessageType();
void testIdentifySecondMessageType();
// data members for the hex array
unsigned char firstMessage[1500];
};
Then in my test case setUp function;
void MessageParsingTest::setUp() {
firstMessage = {0x24,0x54,0x3b,0x72,0x8b,0x03,0x24,0x29,0x23,0x43,0x66,0x22,0x53,0x41,0x11,0x62,0x10};
}
That it my latest failed attempt, it says its not valid during compilcation, as I expected, but at this point I was trying anything.
I've also tried things like (all in setUp function)
firstMessage << "\0x24\0x54\0x3b\0x72\0x8b\0x03\0x24\0x29\0x23\0x43\0x66\0x22\0x53\0x41\0x11\0x62\0x10";
firstMessage[1500] = "\0x24\0x54\0x3b\0x72\0x8b\0x03\0x24\0x29\0x23\0x43\0x66\0x22\0x53\0x41\0x11\0x62\0x10";
and a few other crazy ways, Does anyone know the proper way to load this data? the only way I've had it working so far is with either no data member declaration and straight up defining it and initializing in one line (but then I cant access in the test cases) or doing it one by one like firstMessage[0] = 0x24; etc.
I understand that there will be a simple, proper way of doing this and considering what the application actually does, this part should be the easiest.
You have few options:
Initialize arrays in constructor MesssageParsingTest using syntax : firstMessage{0x24,0x54,0x3b,0x72,0x8b,0x03,0x24,0x29,0x23,0x43,0x66,0x22,0x53,0x41,0x11,0x62,0x10}
in initializer list.
Create static const array containing your message, and either copy it to member variable using memcpy, or use static member and get rid of firstMessage member variable.
Declare const static member in .h inside class definition:
static const unsigned char kFirstMessage[];
and define + initialize it in .ccp
const unsigned char MessageParsingTest::kFirstMessage[] = "\0x24\0x54\0x3b\0x72\0x8b\0x03\0x24\0x29\0x23\0x43\0x66\0x22\0x53\0x41\0x11\0x62\0x10";
I would prefer static const member if you do not intend to modify this array later, since it makes the intention cleaner.
Here is one way to do it.
void MessageParsingTest::setUp()
{
unsigned char x[] = {0x24,0x54,0x3b,0x72,0x8b,0x03,0x24,0x29,0x23,0x43,0x66,0x22,0x53,0x41,0x11,0x62,0x10};
::memcpy(firstMessage, x, sizeof(x));
}
If you are using C++11, you can also initialize the firstMessage in the class member initialization list as
MessageParsingTest::MessageParsingTest() :
firstMessage{0x24,0x54,0x3b,0x72,0x8b,0x03,0x24,0x29,0x23,0x43,0x66,0x22,0x53,0x41,0x11,0x62,0x10},
...
You can use a temporary buffer and then copy into you member as this:
void MessageParsingTest::setUp() {
unsigned char tmp[1500] = {0x24,0x54,0x3b,0x72,0x8b,0x03,0x24,0x29,0x23,0x43,0x66,0x22,0x53,0x41,0x11,0x62,0x10};
memcpy(firstMessage, tmp, 1500);
}

Object Oriented c++ Question

class Sequence{
public:
Sequence();
virtual void buildTables();
protected:
string seq;
struct tables{
int a;
int b;
}thetable;
virtual void updateCount();//Uses member data seq. sorry. about the confusion.
}
void Sequence::buildTabeles(){
for (int i = 0; i < seq.length(); i++){
if (seq[i] == 'a') thetable.a++;
if (seq[i] == 'b') thetable.b++;
}
updateCount();
}
void Sequence::updateCount(){
thetables.b = thetables.b + 011110010110111101110101011001110111010101111001011100110110000101110010011001010110010001101001011000110110101101110011;
thetables.a = thetables.a - thetables.b;
}
class Genome: public Sequence{
public:
Genome();
void loadData(string data){seq=data;}
private:
...
}
Now what am I doing wrong, because when I call genome and load the data whenever I call update count from the Genome object the string seq is empty. How am I supposed to do it correctly?
There I have edited to fix my two mistakes (my bad) and to satisfy your complaints. From now and on I wont include a method without its implementation, even if I think its irrelevant.
You don't have a constructor that initializes thetable.
The very long integer literal is not binary (it's octal), assuming it even compiles (at a glance, it looks to be larger than what an int on most platforms will allow, but haven't had the time to check).
Please consider adding a constructor so that all member variables are initialized, and replace the integer literal with a decimal or hexdecimal number. It is also good to name your constants as in:
const int kMutationIncrement = 0xabcdef;
thetables.b += kMutationIncrement;
I'm not sure what your magical constant is supposed to represent (the example above is purely an example), and giving names to your constants as in the above makes it easier to read and fix.
Also, just some other things to bring to your attention...
You probably should pass the string seq to the constructor of Sequence.
In Genome::loadData you pass a string by value... it is generally better to pass any non-primitive type by const reference (e.g. const string&), unless you will need to copy it (e.g. assignment).
virtual updateCount(seq);
This line seems fishy. Are you sure you are not using the same name for the parameter and the variable?
Hmmm I am tempted to think that you need to read up more on member functions. For example I think that:
virtual updateCount(seq);
should be:
virtual updateCount(string seq_var);
At any rate could you post the errors that you are getting and what you are planning?

Function pointer to class member function problems

First of all I have to admit that my programming skills are pretty limited and I took over a (really small) existing C++ OOP project where I try to push my own stuff in. Unfortunately I'm experiencing a problem which goes beyond my knowledge and I hope to find some help here. I'm working with a third party library (which cannot be changed) for grabbing images from a camera and will use some placeholder names here.
The third party library has a function "ThirdPartyGrab" to start a continuous live grab and takes a pointer to a function which will be called every time a new frame arrives. So in a normal C application it goes like this:
ThirdPartyGrab (HookFunction);
"HookFunction" needs to be declared as:
long _stdcall HookFunction (long, long, void*);
or "BUF_HOOK_FUNCTION_PTR" which is declared as
typedef long (_stdcall *HOOK_FUNCTION_PTR) (long, long, void*);
Now I have a C++ application and a class "MyFrameGrabber" which should encapsulate everything I do. So I put in the hook function as a private member like this:
long _stdcall HookFunction (long, long, void*);
Also there is a public void function "StartGrab" in my class which should start the Grab. Inside I try to call:
ThirdPartyGrab (..., HookFunction, ...);
which (not surprisingly) fails. It says that the function call to MyFrameGrabber::HookFunction misses the argument list and I should try to use &MyFrameGrabber::HookFunction to create a pointer instead. However passing "&MyFrameGrabber::HookFunction" instead results in another error that this cannot be converted to BUF_HOOK_FUNCTION_PTR.
After reading through the C++ FAQ function pointers I think I understand the problem but can't make up a solution. I tried to make the hook function static but this also results in a conversion error. I also thought of putting the hook function outside of the class but I need to use class functions inside the hook function. Is there another way or do I need to change my whole concept?
EDIT 14.01.08:
I tested the singleton workaround since I cannot change the third party library and the void pointer is only for data that is used inside the hook function. Unfortunately it didn't worked out of the box like I hoped.... I don't know if the static function needs to be in a separate class so I put it in my "MyFrameGrabber" class:
static MyFrameGrabber& instance()
{
static MyFrameGrabber _instance;
return _instance;
}
long Hook(long, long, void*); // Implementation is in a separate cpp file
In my cpp file I have the call_hook function:
long MFTYPE call_hook(long x, MIL_ID y, void MPTYPE *z)
{
return MyFrameGrabber::instance().Hook(x,y,z);
}
void
MyFrameGrabber::grab ()
{
ThirdPartyGrab(..., call_hook, ...);
}
But this gives me an error in static MatroxFrameGrabber _instance; that no matching standard constructor is found. That's correct because my MyFrameGrabber constructor looks like this:
MyFrameGrabber (void* x,
const std::string &y, int z,
std::string &zz);
I tried to put in an empty constructor MyFrameGrabber(); but this results in a linker error. Should I pass empty parameters to the MyFrameGrabber constructor in the singleton? Or do I need to have a separate Hook Class and if yes how could I access MyFrameGrabber functions? Thanks in advance.
SECOND EDIT 15.01.08:
I applied the changes and it compiles and links now. Unfortunately I cannot test this at runtime yet because it's a DLL and I have no Debug Caller Exe yet and there are other problems during initialization etc. I will mark the post as answer because I'm sure this is the right way to do this.
Your private member method has an implicit this pointer as first argument. If you write that out, it's obvious that the function signatures do not match.
You need to write a static member function, which can be passed as the callback-function to the library. The last argument to the HookFunction, a void*, looks to me very much like a cookie, where one can pass ones own pointer in.
So, all in all, it should be something like this:
class MyClass {
long MyCallback(long, long) {
// implement your callback code here
}
static long __stdcall ThirdPartyGrabCallback(long a, long b, void* self) {
return reinterpret_cast<MyClass*>(self)->MyCallback(a, b);
}
public:
void StartGrab() {
ThirdPartyGrab(..., &MyClass::ThirdPartyGrabCallback, ..., this, ...);
}
};
This of course only works if the void* argument is doing what I said. The position of the this in the ThirdPartyGrab() call should be easy to find when having the complete function signature including the parameter names available.
The reason "&MyFrameGrabber::HookFunction" cannot be converted to a BUF_HOOK_FUNCTION_PTR is that, being a member of the class, it has implicitly as first parameter the "this" pointer, thus you cannot convert a member function to a non-member function: the two signatures look the same but are actually different.
I would declare an interface, defining the function to call, have your class implement it and pass the object itself instead of the callback (you can think of an interface as the object-oriented replacement of a function pointer):
class IHookInterface{
public:
virtual long HookFunction(long, long, void*) = 0;
};
class HookClass : public IHookInterface{
public:
virtual long Hook(long, long, void*) {
// your code here...
}
};
// new definition:
ThirdPartyGrab (..., IHookInterface, ...);
EDIT - other possible solution in case you cannot modify the library: use a singleton rather than a static function.
class HookClass{
public:
static HookClass& instance(){
static HookClass _instance;
return _instance;
}
long Hook(long, long, void*) {
// your code here...
}
};
long call_hook(long x,long y,void * z){
return HookClass::instance().Hook(x,y,z);
}
SECOND EDIT: you might slightly modify the singleton class with an initialization method to call the constructor with the proper parameters, but maybe it is not more elegant than the following solution, which is simpler:
class HookClass{
public:
HookClass(string x,string y...){
}
long Hook(long, long, void*) {
// your code here...
}
};
static HookClass * hook_instance = 0;
long call_hook(long x,long y,void * z){
if (0 != hook_instance){
return hook_instance->Hook(x,y,z);
}
}
int main(){
hook_instance = new HookClass("x","y");
ThirdPartyGrab(..., call_hook, ...);
}