why these 3 lines code are right?About *p - c++

int *p;
scanf("%d",&p);
printf("%d\n",p);
In my past understandings,the "p" is a address,but now it seems that the p is a simple variable.
I cant understand why these 3 lines code are right!!!
can you help me?

This will only work as long as a pointer is the same size as an integer because you are basically treating the pointer as an integer. That is, if int is a 32-bit integer, and a pointer void* is a 32-bit address.
The way it should be written:
int p; // not the lack of the *
scanf("%d",&p); // this gives scanf the address of p
printf("%d\n",p); // this uses p's value
Which will actually use p as an integer instead of declaring it as a pointer and treating it like an integer.

They are not right. They just seem to work, because you ask scanf to store an integer and the address where to store it is the address of the pointer p. You are basically treating the storage of the pointer itself as the storage of an integer. Likewise for printf, you pass the address of the pointer (which contains the integer) and ask printf to read it from there as... an integer. You could even change the first line to
float* p;
and it would still seem to work. In the end, this is a good example of why you should avoid C-style interfaces which are not type-safe.

If I will explain through your statements, then it will be
int *p; //Declaration of pointer variable p, which can hold the address of integer variable
scanf("%d",&p); //Getting input, will be stored at address of pointer variable p
printf("%d\n",p); //It will display the value stored at &p

The code above is not really correct, and it is built on top of a fair amount of assumptions and C constructs.
The first assumption is that a pointer and an int have the same size, which will break in most (all I know) 64bit platforms. It is then using a type unsafe interface (variadic function arguments) to pass the address of an int* as if it was the address of an int. The code inside the scanf will assume that it is writting to an int and write over the bits... but the type is not an int* and that bit pattern might or not make sense even in the platforms where the sizeof(int) = sizeof(int*)

That code is not right at all.
Some (bad) compilers may be unable to detect the problems because both printf and scanf are variadic functions... but for example g++ would warn you that the types passed don't match with the ones specified in the format strings.

Related

What is the difference between these two casts?

I have a function in my c++ application that needs an integer as an input. Sadly this integer is only available in form of an usigned char array, which inclines me to do this:
unsigned char c[4] = {'1','2','3','4'};
void myFuncThatBadlyNeedsInts(int i)
//compares some memory value(which is an int) with anotherone...
myFuncThatBadlyNeedsInts((int)c);
This gives me an error, which tells me that this is not allowed.
But if i decide to get tricky and do this:
myFuncThatBadlyNeedsInts(*((int*)&c));
Now the program goes about and gives me always the result i want. My question is: Why is there a diffrence in the result of the two casts?
Shouldn't they both do the same, with the diffrence i have two unneccessary pointers in the process?
Help or the guidance to an alredy existing answer to my qustion is much appreciated.
EDIT (since i can't comment): The need for this indeed silly conversion is inheritated from a project which compares a specific memory location (as an int) with a DWORD wich is retrived from a FGPA and comes as an array. The DWORD gets read in the end as one hex-number.
I'll try to get permission to change this and THANK YOU ALL for the quick responses. I really didn't get the part of this program nor did I understand why it worked like this in the first place. Now I know someone got lucky
P.S.: Since im new here and this my first qustion please let me know what other specifics you might need or just edit my newby misshabits away.
When you do myFuncThatBadlyNeedsInts((int)c) the compiler first decay the array c to a pointer to the first element, i.e. &c[0], you then cast this pointer to an int and pass that to the function.
When you do *((int*)&c) you take the address of the array (of type int (*)[4]) and tell the compiler that it's a pointer to an int (which is not correct) and then dereference that (incorrect) int*.
So both calls are actually incorrect. The casting just silences the compiler.
If you want to treat the four bytes of the array as a single 32-bit word, there are ways to do it, but they all breaks the strict aliasing rule.
The simplest way is very close to what you have now, and is done with casting. Using C-casting you cast the pointer that c decays to as a pointer to int and dereference that:
myFuncThatBadlyNeedsInts(*(int*)c);
Note that this is not the same thing as either of your attempts.
The second way is to use a union:
union my_union
{
char bytes[sizeof(int)];
int integer;
};
Then copy the data to your unions bytes member, and read out the integer.
In the first case you are trying to cast an char array to an int - this is obviously meaningless in that an list of characters is quite different to an int.
In The second case you first take the address of the array - the & operator gives you a character pointer to the first element of the array.
Specifically the type of &c is unsigned char * - it is legal (although dangerous) to cast between pointer types thus the cast from unsigned char * to int * is legal.
Then you dereference the pointer and get the integer that is at this spot which is probably some nasty (meaningless) number derived from the first couple of characters in the string which are those bytes.
So you second solution doesn't convert from char[] to int[] which is presumably what you want, instead it give you an integer representation of the first bytes of the char array.
In the second case you get pointer from unsigned char than cast it to integer, so in fact you always use your uchar and 3 bytes just after (in this case whole array c). Because of sizeof int is 4 (usually, but not always), and size of uchar is only 1. So don't do this unless you like to shoot yourself in leg.
To be honest I don't really understand what you are going to achive in this example

Trying to understand this variable definition

What exactly does this do?
int test = *(int*)(0x154512);
0x154512
is an integer, written in base 16.
(int*)(0x154512)
says to treat that number as the address of an int variable.
*(int*)(0x154512)
says to dereference that address, or get the int value at that address.
int test = *(int*)(0x154512)
says to declare the int variable test and assign it the int value located at address 0x154512.
Let's break this down into pieces.
0x154512 is a hex value, or base-16, which is often used for memory addresses for convenience reasons.
int* declares a pointer to a value of type int. So, (int*)(0x154512) means 0x154512 is being treated as a memory address, which we expect to hold an integer.
The last * on the left is the dereference operator, which means "get the value located at this pointer" more or less.
So it copies the integer at memory address 0x154512 to the variable "test".
For more information on pointers:
http://www.cplusplus.com/doc/tutorial/pointers/
If you're planning to do a lot of C++ in the future, make sure to give this a nice, long read. Pointers are fun.
One line get integer value stored at 0x154512 memory location

Is the name of a two dimensional array address of the address of its first element in C++?

When implementing a two dimensional array like this:
int a[3][3];
these hold: A=&A[0], at the same time A[0]=&A[0][0]. So, A=&(&A[0][0]), what basically says that A is the address of the address of the first element of the array, which is not quite true. What is my mistake here? Does A really decay to a pointer to a pointer?
Your mistake is that you have an incorrect understanding of the relationship between arrays and pointers. An array is not a pointer. It is an array. However, an array is implicitly convertible to a pointer to its own first element. So, while this expression does evaluate to true:
A == &A[0]
It is not correct to say that A is &A[0]. The conversion does not happen in all expressions. For example:
&A
This does not take the address of the address of the first element of A (that doesn't even make sense). It takes the actual address of A, who's type is int[3][3]. So the type of &A is int(*)[3][3], read as "pointer to array of 3 arrays of 3 ints".
The primary difference between &A and &A[0] is that if you add 1 to &A, you will get an address that is 3 * 3 * sizeof(int) bytes away, while if you add 1 to &A[0], you will get a pointer that is only 3 * sizeof(int) bytes away.
With all this in mind, you should be able to see where your mistake is. A[0] is not &A[0][0], but it is implicitly convertible to it. However, like all conversions, this results in a temporary, which you cannot take the address of. So the expression &(&A[0][0]) doesn't even make sense.
Because of reactions on my previous answer I did some research to learn more on whatever was wrong in my explanation.
Found a rather elaborate explanation of the topic here :
http://eli.thegreenplace.net/2009/10/21/are-pointers-and-arrays-equivalent-in-c
I'll try to summarize :
if you have following :
char array_place[100] = "don't panic";
char* ptr_place = "don't panic";
the way that this is represented in memory is entirely different.
whereas ptr_place is a real pointer, array_place is just a label.
char a = array_place[7];
char b = ptr_place[7];
The semantics of arrays in C dictate that the array name is the address of the first element of the array, which is not the same as saying that it is a pointer. Hence in the assignment to a, the 8th character of the array is taken by offsetting the value of array_place by 7, and moving the contents pointed to by the resulting address into the al register, and later into a.
The semantics of pointers are quite different. A pointer is just a regular variable that happens to hold the address of another variable inside. Therefore, to actually compute the offset of the 8th character of the string, the CPU will first copy the value of the pointer into a register and only then increment it. This takes another instruction [1].
This point is frequently ignored by programmers who don't actually hack on compilers. A variable in C is just a convenient, alphanumeric pseudonym of a memory location. Were we writing assembly code, we would just create a label in some memory location and then access this label instead of always hard-coding the memory value - and this is what the compiler does.
Well, actually the address is not hard-coded in an absolute way because of loading and relocation issues, but for the sake of this discussion we don't have to get into these details.
A label is something the compiler assigns at compile time. From here the great difference between arrays and pointers. This also explains why sizeof(array_place) gives the full size of the array where as the size of a pointer will give the size of a pointer.
I must say, I was not aware of these subtle differences myself, and I have been coding for quite a long time in C and C++ and with arrays too.
Nevertheless if the name of the array element is the address of the first element of the array. You can create a pointer and initialise it what that value
char* p = array_place
p will point to the memory location where the characters are.
to conclude :
There is one difference between an array name and a pointer that must be kept in mind. A pointer is a variable, so p=array_place and p++ are legal. But an array name is not a variable; constructions like array_place=p and array_place++ are illegal. That I did know ;-)

How to use strtof endPointer?

Looking at the examples presented by various google results, I don't really understand how the EndPtr works. For an example:
char szOrbits[] = "686.97 365.24";
char* pEnd;
float f1 = strtof (szOrbits, &pEnd);
The function takes the pointer of the pointer that is declared after the char array, does that mean that the actual type and contents of the pointer are irrelevant and the pointer is guaranteed to be allocated right after the array thus making its address the end point?
I tried using it like this:
ret.push_back(EquationPiece(strtof(&Source[mark], (char**)&Source[i])));
where ret is a vector, Source is a char array, mark is where the number begins and i is the next byte after the number but I'm getting some strange results. Is my usage incorrect or should I seek for the bug elsewhere?
Although the reference page describes the parameter pendptr as a reference to a char* object this might be misundestood. In C we have only pointers and the second parameter of strtof is a pointer to a pointer to char.
You can utilize this parameter to get the point in the input char array that could not be used to convert the char array to the output float. If the pointer points to a '\0' than the array has been converted entirely. If it points to something different you can start error handling or further processing of the char array.
You should never cast any pointer when you are not sure what it means. Cast tells the compiler that the programmer knows it better. Depending on the meaning of your EquationPiece it might be useful to pass the endPtr:
ret.push_back(EquationPiece(strtof(&Source[mark], pEnd));

Casting between integers and pointers in C++

#include<iostream>
using namespace std;
int main()
{
int *p,*c;
p=(int*)10;
c=(int*)20;
cout<<(int)p<<(int)c;
}
Somebody asked me "What is wrong with the above code?" and I couldn't figure it out. Someone please help me.
The fact that int and pointer data types are not required to have the same number of bits, according to the C++ standard, is one thing - that means you could lose precision.
In addition, casting an int to an int pointer then back again is silly. Why not just leave it as an int?
I actually did try to compile this under gcc and it worked fine but that's probably more by accident than good design.
Some wanted a quote from the C++ standard (I'd have put this in the comments of that answer if the format of comments wasn't so restricted), here are two from the 1999 one:
5.2.10/3
The mapping performed by reinterpret_cast is implementation defined.
5.2.10/5
A value of integral type or enumeration type can be explicitly converted to a pointer.
A pointer converted to an integer of sufficient size (if ant such exists on the implementation)
and back to the same pointer type will have its original value; mappings between pointers and
integers are otherwise implementation-defined.
And I see nothing mandating that such implementation-defined mapping must give a valid representation for all input. Otherwise said, an implementation on an architecture with address registers can very well trap when executing
p = (int*)10;
if the mapping does not give a representation valid at that time (yes, what is a valid representation for a pointer may depend of time. For instance delete may make invalid the representation of the deleted pointer).
Assuming I'm right about what this is supposed to be, it should look like this:
int main()
{
int *p, *c;
// Something that creates whatever p and c point to goes here, a trivial example would be.
int pValue, cValue;
p = &pValue;
c = &cValue;
// The & operator retrieves the memory address of pValue and cValue.
*p = 10;
*c = 20;
cout << *p << *c;
}
In order to assign or retrieve a value to a variable referenced by a pointer, you need to dereference it.
What your code is doing is casting 10 into pointer to int (which is the memory address where the actual int resides).
addresses p and c may be larger than int.
The problem on some platforms you need
p = (int*) (long) 10;
See GLIB documentation on type conversion macros.
And for the people who might not find a use for this type of expressions, it is possible to return data inside pointer value returning functions. You can find real-world examples, where this case it is better to use this idiom, instead of allocating a new integer on the heap, and return it back - poor performance, memory fragmentation, just ugly.
You're assigning values (10 and 20) to the pointers which obviously is a potential problem if you try to read the data at those addresses. Casting the pointer to an integer is also really ugly. And your main function does not have a return statement. That is just a few things.
there is more or less everything wrong with it:
int *p,*c;
p=(int*)10;
c=(int*)20;
afterwards p is pointing to memory address 10
afterwards c is pointing to memory address 20
This doesn't look very intentional.
And I suppose that the whole program will simply crash.