scheme word lists eq? - list

i've got a problem: I need to find if list equal to the second one, for example:
(set%eq? '(1 2 3) '(1 2 3)) ===> #t
(set%eq? '(1 2 3) '(2 3 4)) ===> #f
That examples are correct in my program, but this one is not:
(set%eq? (quote ((quote one) (quote two) (quote three))) (quote ((quote one) (quote two)
(quote three)))) ====> #f but i need #t
what's wrong?
this is my program:
(define (set-eq? xs ys)
(cond ((and (null? xs) (null? ys)) #t)
((null? ys) #f)
((eq? (car xs) (car ys)) (set-eq? (cdr xs) (cdr ys)))
((eq? (car xs) (car (reverse ys))) (set-eq? (cdr xs) (cdr (reverse ys))))
(else #f)))

There are a couple of mistakes in the posted code, and FYI, the procedure tests whether two lists are equal, it's not really testing for equality between two sets:
(define (set-eq? xs ys)
(cond ((and (null? xs) (null? ys)) #t)
((or (null? xs) (null? ys)) #f) ; missing case
((equal? (car xs) (car ys)) (set-eq? (cdr xs) (cdr ys))) ; use equal?
; deleted unnecessary case here. Anyway, why are you reversing the list?
(else #f)))
Now this will work:
(set-eq? '(1 2 3) '(1 2 3))
=> #t
(set-eq? '(1 2 3) '(2 3 4))
=> #f
(set-eq? (quote ((quote one) (quote two) (quote three)))
(quote ((quote one) (quote two) (quote three))))
=> #t
In fact, this will work, too:
(equal? '(1 2 3) '(1 2 3))
=> #t
(equal? '(1 2 3) '(2 3 4))
=> #f
(equal? (quote ((quote one) (quote two) (quote three)))
(quote ((quote one) (quote two) (quote three))))
=> #t
...But this won't work, the lists are clearly different:
(set-eq? '(1 2 3 4) '(4 1 2 3))
=> #f
If you intended to test for equality between two sets, you have to completely rethink the algorithm. Here's an idea: write asubset? procedure that tests if a list is a subset of another list (that is: if all the elements in one list are contained in the other list), and then test whether (and (subset? l1 l2) (subset? l2 l1)) is true, if that happens, then they're equal according to the set definition of equality.

Base on the comments from OP it's clear that these are set-eq?
(set-eq? '(a b c) '(c b a)) ; ==> #t
(set-eq? '(a b c) '(b c a)) ; ==> #t
(set-eq? '() '()) ; ==> #t
(set-eq? '(a b) '(a b c)) ; ==> #f
(set-eq? '(a b c) '(a c)) ; ==> #f
If the lists are without duplicates one could iterate the first list and try to find it in the second. If found we recurse with the two lists without the match.
#!r6rs
(import (rnrs)
(rnrs lists))
(define (set-eq? xs ys)
(if (null? xs)
(null? ys) ; #t if both sets are empty, otherwise #f
(let ((cur (car xs)))
(and (memq cur ys) ; first element is found
(set-eq? <??> (remq <??> <??>)))))) ; recurse without first in both lists
There are ways to get this faster. E.q. Hash the first list and iterate the second. If all matches and hashtable-size is the same as the number of iterations it's #t.

Related

Return a list without the last element

I've just started to learn Racket.
I have this code:
#lang racket
(define l1 '(1 2 3 4))
(car l1)
(cdr l1)
(car l1) returns 1.
(cdr l1) returns '(2 3 4)
Is there a function that returns '(1 2 3)?
I've tried this:
#lang racket
(define l1 '(1 2 3 4))
(map
(lambda (l i)
(if (not (= i (sub1 (length l1)))) l '()))
l1 (range 0 (length l1)))
But, it returns: '(1 2 3 ())
And I have also tried:
#lang racket
(define l1 '(1 2 3 4))
(map
(lambda (l i)
(cond ((not (= i (sub1 (length l1)))) l )))
l1 (range 0 (length l1)))
But, it returns: '(1 2 3 #<void>)
The map function always returns a list the same length as its input. You want an output list that is shorter than its input. The function you are looking for is traditionally called but-last:
(define (but-last xs) (reverse (cdr (reverse xs))))
What about something like this ?
(define (myCdr l)
(if (not (pair? (cdr l)))
'()
(cons (car l) (myCdr (cdr l)))
)
)
length is generally an anti-pattern in Scheme because the entire list needs to be read in order to get the result. W. Ness remarks that map does not alter the structure of the list, and the behavior of filter is based on the list's values, neither of which suit your needs.
Instead of making potentially expensive computations first or awkwardly applying the library functions, you can compute the init of a list using direct recursion -
(define (init l)
(cond ((null? l)
(error 'init "cannot get init of empty list"))
((null? (cdr l))
null)
(else
(cons (car l)
(init (cdr l))))))
(init '(a b c d e)) ;; '(a b c d)
(init '(a)) ;; '(a)
(init '()) ;; init: cannot get init of empty list
Or a tail-recursive form that only uses one reverse -
(define (init l)
(let loop ((acc null)
(l l))
(cond ((null? l)
(error 'init "cannot get init of empty list"))
((null? (cdr l))
(reverse acc))
(else
(loop (cons (car l) acc)
(cdr l))))))
(init '(a b c d e)) ;; '(a b c d)
(init '(a)) ;; '(a)
(init '()) ;; init: cannot get init of empty list
And lastly a tail-recursive form that does not use length or reverse. For more intuition on how this works, see "How do collector functions work in Scheme?" -
(define (init l (return identity))
(cond ((null? l)
(error 'init "cannot get init of empty list"))
((null? (cdr l))
(return null))
(else
(init (cdr l)
(lambda (r)
(return (cons (car l) r)))))))
(init '(a b c d e)) ;; '(a b c d)
(init '(a)) ;; '(a)
(init '()) ;; init: cannot get init of empty list
Here's one more, via zipping:
#lang racket
(require srfi/1)
(define (but-last-zip xs)
(if (null xs)
xs ; or error, you choose
(map (lambda (x y) x)
xs
(cdr xs))))
Here's another, emulating filtering via lists with appending, where empty lists disappear by themselves:
(define (but-last-app xs)
(if (null? xs)
xs
(let ((n (length xs)))
(apply append ; the magic
(map (lambda (x i)
(if (= i (- n 1)) '() (list x)))
xs
(range n))))))
Or we could use the decorate--filter--undecorate directly, it's even more code!
(define (but-last-fil xs)
(if (null? xs)
xs
(let ((n (length xs)))
(map car
(filter (lambda (x) (not (null? x)))
(map (lambda (x i)
(if (= i (- n 1)) '() (list x)))
xs
(range n)))))))
Here's yet another alternative, assuming that the list is non-empty. It's efficient (it performs a single pass over the list), and it doesn't get any simpler than this!
(define (delete-last lst)
(drop-right lst 1))
(delete-last '(1 2 3 4))
=> '(1 2 3)
Here is an equivalent of Will Ness's beautiful but-last-zip which does not rely on srfi/1 in Racket: without srfi/1 Racket's map insists that all its arguments are the same length (as does the R5RS version in fact) but it is common in other Lisps to have the function terminate at the end of the shortest list.
This function uses Racket's for/list and also wires in the assumption that the result for the empty list is the empty list.
#lang racket
(define (but-last-zip xs)
(for/list ([x xs] [y (if (null? xs) xs (rest xs))])
x))
I think Will's version is purer: mapping functions over things is a very Lisp thing to do I think, while for/list feels less Lispy to me. This version's only advantage is that it does not require a module.
My own solution using recursion:
#lang racket
(define but-last
(lambda (l)
(cond ((null? (cdr l)) '())
(else (cons (car l) (but-last (cdr l)))))))
And another solution using filter-not and map:
#lang racket
(define l1 '(1 2 3 4))
(filter-not empty? (map
(lambda (l i)
(if (not (= i (sub1 (length l1)))) l empty))
l1 (range 0 (length l1))))

Merging jumping pairs

How do I recursively merge jumping pairs of elements of a list of lists? I need to have
'((a b c) (e d f) (g h i))
from
'((a b) c (e d) f (g h) i)
My attempt
(define (f lst)
(if (or (null? lst)
(null? (cdr lst)))
'()
(cons (append (car lst) (list (cadr lst)))
(list (append (caddr lst) (cdddr lst))))))
works if I define
(define listi '((a b) c (d e) f))
from which I obtain
((a b c) (d e f))
by doing simply
(f listi)
but it does not work for longer lists. I know I need recursion but I don't know where to insert f again in the last sentence of my code.
A simpler case that your algorithm fails: (f '((1 2) 3)) should result in '((1 2 3)), but yours results in an error.
We will define some terms first:
An "element" is a regular element, like 1 or 'a.
A "plain list" is simply a list of "element"s with no nested list.
E.g., '(1 2 3) is a plain list. '((1 2) 3) is not a plain list.
A "plain list" is either:
an empty list
a cons of an "element" and the next "plain list"
A "list of jumping pairs" is a list of even length where the odd index has a "plain list", and the even index has an element. E.g., '((1) 2 (a) 4) is a "list of jumping pairs". A "list of jumping pairs" is either:
an empty list
a cons of
a "plain list"
a cons of an "element" and the next "list of jumping pairs"
We are done with terminology. Before writing the function, let's start with some examples:
(f '()) equivalent to (f empty)
should output '()
equivalent to empty
(f '((1 2) 3)) equivalent to (f (cons (cons 1 (cons 2 empty))
(cons 3
empty)))
should output '((1 2 3))
equivalent to (cons (cons 1 (cons 2 (cons 3 empty)))
empty)
(f '((1 2) 3 (4) a)) equivalent to (f (cons (cons 1 (cons 2 empty))
(cons 3
(cons (cons 4 empty)
(cons 'a
empty)))))
should output '((1 2 3) (4 a))
equivalent to (cons (cons 1 (cons 2 (cons 3 empty)))
(cons (cons 4 (cons 'a empty))
empty))
So, f is a function that consumes a "list of jumping pairs" and returns a list of "plain list".
Now we will write the function f:
(define (f lst)
???)
Note that the type of lst is a "list of jumping pairs", so we will perform a case analysis on it straightforwardly:
(define (f lst)
(cond
[(empty? lst) ???] ;; the empty list case
[else ??? ;; the cons case has
(first lst) ;; the "plain list",
(first (rest lst)) ;; the "element", and
(rest (rest lst)) ;; the next "list of jumping pairs"
???])) ;; that are available for us to use
From the example:
(f '()) equivalent to (f empty)
should output '()
equivalent to empty
we know that the empty case should return an empty list, so let's fill in the hole accordingly:
(define (f lst)
(cond
[(empty? lst) empty] ;; the empty list case
[else ??? ;; the cons case has
(first lst) ;; the "plain list",
(first (rest lst)) ;; the "element", and
(rest (rest lst)) ;; the next "list of jumping pairs"
???])) ;; that are available for us to use
From the example:
(f '((1 2) 3)) equivalent to (f (cons (cons 1 (cons 2 empty))
(cons 3
empty)))
should output '((1 2 3))
equivalent to (cons (cons 1 (cons 2 (cons 3 empty)))
empty)
we know that we definitely want to put the "element" into the back of the "plain list" to obtain the resulting "plain list" that we want:
(define (f lst)
(cond
[(empty? lst) empty] ;; the empty list case
[else ;; the cons case has:
???
;; the resulting "plain list" that we want
(append (first lst) (cons (first (rest lst)) empty))
;; the next "list of jumping pairs"
(rest (rest lst))
;; that are available for us to use
???]))
There's still the next "list of jumping pairs" left that we need to deal with, but we have a way to deal with it already: f!
(define (f lst)
(cond
[(empty? lst) empty] ;; the empty list case
[else ;; the cons case has:
???
;; the resulting "plain list" that we want
(append (first lst) (cons (first (rest lst)) empty))
;; the list of "plain list"
(f (rest (rest lst)))
;; that are available for us to use
???]))
And then we can return the answer:
(define (f lst)
(cond
[(empty? lst) empty] ;; the empty list case
[else ;; the cons case returns
;; the resulting list of "plain list" that we want
(cons (append (first lst) (cons (first (rest lst)) empty))
(f (rest (rest lst))))]))
Pattern matching (using match below) is insanely useful for this kind of problem -
(define (f xs)
(match xs
;; '((a b) c . rest)
[(list (list a b) c rest ...)
(cons (list a b c)
(f rest))]
;; otherwise
[_
empty]))
define/match offers some syntax sugar for this common procedure style making things even nicer -
(define/match (f xs)
[((list (list a b) c rest ...))
(cons (list a b c)
(f rest))]
[(_)
empty])
And a tail-recursive revision -
(define (f xs)
(define/match (loop acc xs)
[(acc (list (list a b) c rest ...))
(loop (cons (list a b c) acc)
rest)]
[(acc _)
acc])
(reverse (loop empty xs)))
Output for each program is the same -
(f '((a b) c (e d) f (g h) i))
;; '((a b c) (e d f) (g h i))
(f '((a b) c))
;; '((a b c))
(f '((a b) c x y z))
;; '((a b c))
(f '(x y z))
;; '()
(f '())
;; '()
As an added bonus, this answer does not use the costly append operation
There is no recursive case in your code so it will just work statically for a 4 element list. You need to support the following:
(f '()) ; ==> ()
(f '((a b c) d (e f g) h)) ; ==> (cons (append '(a b c) (list 'd)) (f '((e f g) h)))
Now this requires exactly even number of elements and that every odd element is a proper list. There is nothing wrong with that, but onw might want to ensure this by type checking or by adding code for what should happen when it isn't.

Scheme/Racket: A function which separates a list into two lists of elements that match a certain predicate and those that don't match it

I wish to create a function in Scheme that takes in a predicate and a list of elements, and then outputs two separate lists. One with elements of the original list that MATCH the given predicate, and one with elements that DON'T match it.
The code I have right now I believe should isolate those which match the predicate and output a list of them but the code will not work.
(define tear
(lambda (pred xs)
(cond[(null? xs) '()]
[(list? (car xs))(cons((tear (pred (car xs)))(tear (pred (cdr xs)))))]
[(pred (car xs))(cons((car xs)(tear (pred (cdr xs)))))]
[else tear (pred (cdr xs))])))
(tear number? '(1 2 3 a b c))
The resulting output on my compiler is:
tear: arity mismatch;
the expected number of arguments does not match the given number
expected: 2
given: 1
arguments...:
#f
context...:
/home/jdoodle.rkt:2:4: tear
Command exited with non-zero status 1
Any help/info that you can give would be much appreciated.
Lets fix your code step by step. Adding indentation and whitespace to make it readable:
(define tear
(lambda (pred xs)
(cond
[(null? xs)
'()]
[(list? (car xs))
(cons ((tear (pred (car xs))) (tear (pred (cdr xs)))))]
[(pred (car xs))
(cons ((car xs) (tear (pred (cdr xs)))))]
[else
tear (pred (cdr xs))])))
(tear number? '(1 2 3 a b c))
The first problem I see is a problem of putting parentheses on the inside (around the arguments) of a function call instead on the outside. You do this with cons and with the recursive calls to tear. For instance in tear (pred (cdr xs)) you should move the first paren to before the function. Remember that parentheses in an expression almost always mean a function call in the shape of (function argument ...).
(cons (A B)) should be rewritten to (cons A B)
(tear (Pred Xs)) should be rewritten to (tear Pred Xs)
tear (Pred Xs) should be rewritten to (tear Pred Xs)
With these fixes your code looks like this:
(define tear
(lambda (pred xs)
(cond
[(null? xs)
'()]
[(list? (car xs))
(cons (tear pred (car xs)) (tear pred (cdr xs)))]
[(pred (car xs))
(cons (car xs) (tear pred (cdr xs)))]
[else
(tear pred (cdr xs))])))
(tear number? '(1 2 3 a b c))
;=> (1 2 3)
(tear number? '(1 2 "not a number" 3 4))
;=> (1 2 3 4)
However, it still does something weird when there's a nested list:
(tear list? (list '(1 2 3) "not a list" '(4 5)))
;=error> (() ())
To be consistent it should put the two lists into a list: ((1 2 3) (4 5)). To do that just remove the second cond case:
(define tear
(lambda (pred xs)
(cond
[(null? xs)
'()]
[(pred (car xs))
(cons (car xs) (tear pred (cdr xs)))]
[else
(tear pred (cdr xs))])))
(tear number? '(1 2 3 a b c))
;=> (1 2 3)
(tear list? (list '(1 2 3) "not a list" '(4 5)))
;=> ((1 2 3) (4 5))
It now seems to do exactly half of what you want. You want it to return two lists: one for elements that passed, and one for the elements that failed. It currently is returning just the first list.
The first thing you should do is document how it returns those two lists. Since there are always exactly two, you can return them as multiple values.
;; tear returns two values:
;; - a list of the elements of `xs` that passed `pred`
;; - a list of the elements of `xs` that failed `pred`
There are two parts of using multiple values: returning them and receiving them. Use (values A B) to return them, and (let-values ([(A B) ....]) ....) to match on a result, like the result of a recursive call.
That means every recursive call like this (f .... (tear ....) ....) should become
(let-values ([(A B) (tear ....)])
(values (f .... A ....)
???))
Applying that to your code:
;; tear returns two values:
;; - a list of the elements of `xs` that passed `pred`
;; - a list of the elements of `xs` that failed `pred`
(define tear
(lambda (pred xs)
(cond
[(null? xs)
(values '()
???)]
[(pred (car xs))
(let-values ([(A B) (tear pred (cdr xs))])
(values (cons (car xs) A)
???))]
[else
(let-values ([(A B) (tear pred (cdr xs))])
(values A
???))])))
Now to fill in the ??? holes, use examples.
(tear number? '()) should return two empty lists: () ()
(tear number? '(1 2)) should return a full list and an empty list: (1 2) ()
(tear number? '(a b)) should return an empty list and a full list: () (a b)
The first example corresponds to the first ??? hole, the second example corresponds to the second hole, and so on.
This tells us that the first hole should be filled in with '(), the second hole should be filled in with B, and the third hole should be filled in with (cons (car xs) B).
(define tear
(lambda (pred xs)
(cond
[(null? xs)
(values '() '())]
[(pred (car xs))
(let-values ([(A B) (tear pred (cdr xs))])
(values (cons (car xs) A)
B))]
[else
(let-values ([(A B) (tear pred (cdr xs))])
(values A
(cons (car xs) B)))])))
(tear number? '(1 2 3 a b c))
;=> (1 2 3)
; (a b c)
(tear list? (list '(1 2 3) "not a list" '(4 5)))
;=> ((1 2 3) (4 5))
; ("not a list")
This is a classic fold use-case. You're aggregating the list into two lists :
(define tear (lambda (pred lst)
(fold-right ; Aggregate over lst
(lambda (elem agg)
(let ((accepted (car agg))
(rejected (cadr agg)))
(if (pred elem)
; Create a new agg by adding the current element to the accepted list
`(,(cons elem accepted) ,rejected)
; Or, if the predicate rejected the element,
; Create a new agg by adding the current element to the rejected list
`(,accepted ,(cons elem rejected)))))
`(() ())
lst)))
So, if you use even? as your predicate, you can get:
> (tear even? `(1 2 3 4 5 6 7 8))
((2 4 6 8) (1 3 5 7))
Here's another way you can do it using continuation-passing style; this puts the recursive call in tail position.
(define (partition p xs (return list))
(if (null? xs)
(return null null)
(partition p
(cdr xs)
(lambda (t f)
(if (p (car xs))
(return (cons (car xs) t)
f)
(return t
(cons (car xs) f)))))))
(partition number? '())
;; => '(() ())
(partition number? '(a 1 b 2 c 3))
;; => '((1 2 3) (a b c))
(partition list? '(1 2 (3 4) (5 6) 7 8))
;; => '(((3 4) (5 6)) (1 2 7 8))
Above, we make use of Racket's default arguments. Below we show how to define partition using a helper function instead
;; procedure above, renamed to partition-helper
(define (partition-helper p xs return)
...)
;; new procedure without optional parameter
(define (partition p xs)
;; call helper with default continuation, list
(partition-helper p xs list))
Comments may help distill some of the style's mysterious nature
;; default continuation is `list`, the list constructor procedure
(define (partition p xs (return list))
(if (null? xs)
;; base case: empty list; return the empty result
(return null null)
;; inductive case: at least one x; recur on the tail...
(partition p
(cdr xs)
;; ...specifying how to continue the pending computation
(lambda (t f)
(if (p (car xs))
;; if predicate passes, cons x onto the t result
(return (cons (car xs) t)
f)
;; otherwise cons x onto the f result
(return t
(cons (car xs) f)))))))
#WillNess asks why we delay evaluating the predicate; I don't have a reason other than I think the readability above is pretty good. We can alter the implementation to check the predicate right away, if we please. The impact here is very subtle. If you don't see it, I encourage you to play pen-and-paper evaluator and compare the two processes to understand it.
;; default continuation is `list`, the list constructor procedure
(define (partition p xs (return list))
(if (null? xs)
;; base case: empty list; return the empty result
(return null null)
;; inductive case: at least one x; recur on the tail...
(partition p
(cdr xs)
;; ...specifying how to continue the pending computation
(if (p (car xs))
(lambda (t f)
;; if predicate passes, cons x onto the t result
(return (cons (car xs) t)
f))
(lambda (t f)
;; otherwise cons x onto the f result
(return t
(cons (car xs) f)))))))

behavior differently with two input lists with same length vs. with different lengths (Scheme)

the code "tsFunc" gets two lists as input and it will pairs each elements from two lists.
It works most of cases.
but then I find a bit strange behavior when I give 2 equal length of lists (e.g. '(1 2) '(3 4).... or '(a b c) '(1 2 3).... , it works strangely. first, here are code.
[problem 1]
(define (tsFunc lst1 lst2)
(define (helper ls1 ls2 rst)
(reverse (if (or (null? ls1) (null? ls2))
rst
(helper (cdr ls1) (cdr ls2)
(cons (cons (car ls1) (car ls2)) rst)))))
(helper lst1 lst2 '()))
the behavior like this:
1) correct behavior with uneven length of lists :
(tsFunc '(1 2 3) '(a b)) ====> output: ((1 . a) (2 . b))
2) strange behavior with even length of lists
: (tsFunc '(1 2 3) '(a b c)) ===> output (wrong): ((3 . c) (2 . b) (1 . a))
===> expected : ((1 . a) (2 . b) (3 . c))
when the two input lists are same length, what is happening?
do the tsFunc logic have different behavior between the input lists with same lengths vs. the input lists with different lengths?
(Note. as I know, the code needs to have "reverse" for the final result. so it is not because of "reverse" in the code)
[problem 2] with the result of tsFunc => tsFunc result: (1 . 2) (3 . 4) => try to implement product like this (1*2)+(3*4) = 14, so I have like this..
(define (func l1 l2)
(tsFunc (l1 l2) ;; line 2 - how to call tsFunc's result??
(foldl (lambda (acc pair) ;; line 3
(+ acc (* (car pair) (cdr pair)))) ;; line 4
'()
l1 l2))) ;; like this?? or ??
line 3 , 4 ok..that's the logic what to do, then, how to call tsFunc result to use it as input and.. two lists for the last line.. unclear..
The first problem is that you keep reversing the lists at each iteration, if you really need to reverse the output, do it just once at the end:
(define (tsFunc lst1 lst2)
(define (helper ls1 ls2 rst)
(if (or (null? ls1) (null? ls2))
(reverse rst)
(helper (cdr ls1) (cdr ls2)
(cons (cons (car ls1) (car ls2)) rst))))
(helper lst1 lst2 '()))
Now, for the second problem - the code doesn't even compile: you're not correctly calling the tsFunc procedure, and you're calling it in the wrong point. Also the initial value for the accumulator parameter is wrong - you can't use a list if you intend to return a number:
(define (func l1 l2)
(foldl (lambda (acc pair)
(+ acc (* (car pair) (cdr pair))))
0
(tsFunc l1 l2)))
Using the sample input in the question, here's how it would work:
(func '(1 3) '(2 4))
=> 14
In the above tsFunc takes '(1 3) and '(2 4) as inputs, transforming them into '((1 . 2) (3 . 4)) and then foldl preforms the operation (1*2)+(3*4) = 14, as expected.
Since you are allowed to use higher order functions, why not use just SRFI-1 List library fold?
#!r6rs
(import (rnrs base)
(only (srfi :1) fold)) ;; srfi-1 fold stop at the shortest list
(define (func lst1 lst2)
(fold (lambda (x y acc)
(+ acc (* x y)))
0
lst1
lst2))
(func '(1 3) '(2 4 8)) ; ==> 14

Scheme zip function with possible uneven lists

I know this question has been asked before, and my solution is the same as many of the answers but I have a special test case that won't work correctly with the common solution to this problem.
The solution that I have found for the zip problem like many others is
(define (zip l1 l2)(map list l1 l2))
. . .which works great with given arguments such as
(zip '(a b c) '(1 2 3)) => ((a 1) (b 2) (c 3))
but I also want the zip function to work for cases where my arguments do not match length like
(zip '(a b c) '(1)) => ((a 1) (b ()) (c ()))
I have not found a solution to this problem and not really sure how to approach it where each list can be any length.
First, a simple iterative version that works for 2 lists only:
(define (zip lst1 lst2 (placeholder '()))
(define (my-car lst)
(if (empty? lst) placeholder (car lst)))
(define (my-cdr lst)
(if (empty? lst) lst (cdr lst)))
(let loop ((lst1 lst1) (lst2 lst2) (res '()))
(if (and (empty? lst1) (empty? lst2))
(reverse res)
(loop (my-cdr lst1) (my-cdr lst2)
(cons (list (my-car lst1) (my-car lst2)) res)))))
such as
(zip '(a b c) '(1 2 3))
=> '((a 1) (b 2) (c 3))
(zip '(a b c) '(1))
=> '((a 1) (b ()) (c ()))
From this, you can generalise to n lists, but to avoid keyword parameters you have to put the placeholder parameter first:
(define (zip placeholder . lsts)
(define (my-car lst)
(if (empty? lst) placeholder (car lst)))
(define (my-cdr lst)
(if (empty? lst) lst (cdr lst)))
(let loop ((lsts lsts) (res '()))
(if (andmap empty? lsts)
(reverse res)
(loop (map my-cdr lsts)
(cons (apply list (map my-car lsts)) res)))))
such as
(zip '() '(a b c) '(1 2 3))
==> '((a 1) (b 2) (c 3))
(zip '() '(a b c) '(1))
==> '((a 1) (b ()) (c ()))
(zip '() '(a b c) '(1) '(x y))
=> '((a 1 x) (b () y) (c () ()))
I believe that andmap is the only Racket-specific function here, which probably has some Scheme or SRFI equivalent depending on your implementation.
EDIT
Since the solution is based on creating lists of equal length, instead of duplicating the zip algorithm, you can also first add the placeholders to the lists before doing the classic map-list stuff:
(define (zip placeholder . lsts)
(let* ((max-len (apply max (map length lsts))) ; the length of the longest lists
(equal-length-lists ; adjusts all lists to the same length,
(map ; filling with placeholder
(lambda (lst) (append lst (make-list (- max-len (length lst)) placeholder)))
lsts)))
(apply map list equal-length-lists))) ; classical zip
It's not semantically correct to have (zip '(a b c) '(1)) => ((a 1) (b ()) (c ())) (unless you're specifically using () as a placeholder value); it's more sensible to have ((a 1) (b) (c)). Here's an implementation that achieves that:
(define (zip-with-uneven . lists)
(define (advance lst)
(if (null? lst)
lst
(cdr lst)))
(define (firsts lists)
(let loop ((lists lists)
(result '()))
(cond ((null? lists) (reverse result))
((null? (car lists)) (loop (cdr lists) result))
(else (loop (cdr lists) (cons (caar lists) result))))))
(let loop ((lists lists)
(results '()))
(if (andmap null? lists)
(reverse results)
(loop (map advance lists)
(cons (firsts lists) results)))))
andmap is from Racket. If you're not using Racket, you can use every from SRFI 1 instead.
If you really want to use a placeholder, here's a (Racket-specific) version that supports placeholders. The default placeholder is (void), which I presume is never a valid value you'd want to put in your result list.
(define (zip-with-uneven #:placeholder (ph (void)) . lists)
(define (advance lst)
(if (null? lst)
lst
(cdr lst)))
(define (cons-with-placeholder a d)
(if (void? a)
d
(cons a d)))
(define (firsts lists)
(let loop ((lists lists)
(result '()))
(cond ((null? lists) (reverse result))
((null? (car lists))
(loop (cdr lists) (cons-with-placeholder ph result)))
(else (loop (cdr lists) (cons (caar lists) result))))))
(let loop ((lists lists)
(results '()))
(if (andmap null? lists)
(reverse results)
(loop (map advance lists)
(cons (firsts lists) results)))))