std::is_pod vs subclassing - c++

Could someone please help me understand why the following code does not compile (g++ 4.8). My understanding is that one could initialize a POD
#include <iostream>
#include <type_traits>
struct my_int
{
int val_;
};
struct B : public my_int
{
};
int main()
{
std::cout << std::is_pod<my_int>::value << std::endl;
std::cout << std::is_pod<B>::value << std::endl;
const my_int v = { 123 };
//const B v2 = { 123 }; // does not compile with g++ 4.8.
return 0;
}
Compilation is:
g++ -std=c++11 t.cxx
t.cxx: In function 'int main()':
t.cxx:24:21: error: could not convert '{123}' from '<brace-enclosed initializer list>' to 'const B'
const B v = { 123 };
^
EDIT:
Thanks to everyone answer I now understand the concept of aggregate initialisation. I missed the fact that aggregate could not have base class. Therefore my current implementation plans needs to be changed. I wanted to do something like:
template < typename T >
struct base_class
{
int val_;
};
struct MyInt : public base_class<int>
{
void Func1() {}
};
struct MyDouble : public base_class<double>
{
void Func2() {}
};
I'll rework the above code to avoid the use of subclass to introduce special member functions, while avoid code duplication.

Disclaimer
Take the following with a grain of salt as it is my interpretation of things. I am by no means an expert. (Also I have some doubts about the aggregate - initializer list relation which I stated here.)
Answer
As far as I can tell this is not possible because the aggregate initialization of v2 would be applied to the non aggregate class type B.
From this answer you can take that aggregates must not have a base class,
which makes B a non aggregate and therefore not initializable by a brace enclosed initializer list.
On the other hand std::is_pod might not do what you think it does because the POD definition has changed in C++11. Therefore, it does not give you a hint if the type that is a POD can be initialized with such an aggregate initializer.
Addition
I am mainly discussing aggregate initialization here, but the more general term for this is list initialization which is less restrictive. However, checking all the cases I found in the linked resource there is no possibility to do list initialization either
because (following the resource's list of effects of an initializer list):
the initializer list is not empty
B is not an aggregate
B is not a specialization of std::initializer_list
B has no
constructor taking an initializer list
constructor fitting the signature of the list
B is no reference type
B cannot be copy-initialized from 123 and not direct-initialized because there is no constructor taking an int
B is not value-initialized because the initializer list ist not empty

Related

C++ | My code doesn't recognize my constructor from one class but does from the other [duplicate]

For example, I cannot write this:
class A
{
vector<int> v(12, 1);
};
I can only write this:
class A
{
vector<int> v1{ 12, 1 };
vector<int> v2 = vector<int>(12, 1);
};
Why is there a difference between these two declaration syntaxes?
The rationale behind this choice is explicitly mentioned in the related proposal for non static data member initializers :
An issue raised in Kona regarding scope of identifiers:
During discussion in the Core Working Group at the September ’07 meeting in Kona, a question arose about the scope of identifiers in the initializer. Do we want to allow class scope with the possibility of forward lookup; or do we want to require that the initializers be well-defined at the point that they’re parsed?
What’s desired:
The motivation for class-scope lookup is that we’d like to be able to put anything in a non-static data member’s initializer that we could put in a mem-initializer without significantly changing the semantics (modulo direct initialization vs. copy initialization):
int x();
struct S {
int i;
S() : i(x()) {} // currently well-formed, uses S::x()
// ...
static int x();
};
struct T {
int i = x(); // should use T::x(), ::x() would be a surprise
// ...
static int x();
};
Problem 1:
Unfortunately, this makes initializers of the “( expression-list )” form ambiguous at the time that the declaration is being parsed:
struct S {
int i(x); // data member with initializer
// ...
static int x;
};
struct T {
int i(x); // member function declaration
// ...
typedef int x;
};
One possible solution is to rely on the existing rule that, if a declaration could be an object or a function, then it’s a function:
struct S {
int i(j); // ill-formed...parsed as a member function,
// type j looked up but not found
// ...
static int j;
};
A similar solution would be to apply another existing rule, currently used only in templates, that if T could be a type or something else, then it’s something else; and we can use “typename” if we really mean a type:
struct S {
int i(x); // unabmiguously a data member
int j(typename y); // unabmiguously a member function
};
Both of those solutions introduce subtleties that are likely to be misunderstood by many users (as evidenced by the many questions on comp.lang.c++ about why “int i();” at block scope doesn’t declare a default-initialized int).
The solution proposed in this paper is to allow only initializers of the “= initializer-clause” and “{ initializer-list }” forms. That solves the ambiguity problem in most cases, for example:
HashingFunction hash_algorithm{"MD5"};
Here, we could not use the = form because HasningFunction’s constructor is explicit.
In especially tricky cases, a type might have to be mentioned twice. Consider:
vector<int> x = 3; // error: the constructor taking an int is explicit
vector<int> x(3); // three elements default-initialized
vector<int> x{3}; // one element with the value 3
In that case, we have to chose between the two alternatives by using the appropriate notation:
vector<int> x = vector<int>(3); // rather than vector<int> x(3);
vector<int> x{3}; // one element with the value 3
Problem 2:
Another issue is that, because we propose no change to the rules for initializing static data members, adding the static keyword could make a well-formed initializer ill-formed:
struct S {
const int i = f(); // well-formed with forward lookup
static const int j = f(); // always ill-formed for statics
// ...
constexpr static int f() { return 0; }
};
Problem 3:
A third issue is that class-scope lookup could turn a compile-time error into a run-time error:
struct S {
int i = j; // ill-formed without forward lookup, undefined behavior with
int j = 3;
};
(Unless caught by the compiler, i might be intialized with the undefined value of j.)
The proposal:
CWG had a 6-to-3 straw poll in Kona in favor of class-scope lookup; and that is what this paper proposes, with initializers for non-static data members limited to the “= initializer-clause” and “{ initializer-list }” forms.
We believe:
Problem 1: This problem does not occur as we don’t propose the () notation. The = and {} initializer notations do not suffer from this problem.
Problem 2: adding the static keyword makes a number of differences, this being the least of them.
Problem 3: this is not a new problem, but is the same order-of-initialization problem that already exists with constructor initializers.
One possible reason is that allowing parentheses would lead us back to the most vexing parse in no time. Consider the two types below:
struct foo {};
struct bar
{
bar(foo const&) {}
};
Now, you have a data member of type bar that you want to initialize, so you define it as
struct A
{
bar B(foo());
};
But what you've done above is declare a function named B that returns a bar object by value, and takes a single argument that's a function having the signature foo() (returns a foo and doesn't take any arguments).
Judging by the number and frequency of questions asked on StackOverflow that deal with this issue, this is something most C++ programmers find surprising and unintuitive. Adding the new brace-or-equal-initializer syntax was a chance to avoid this ambiguity and start with a clean slate, which is likely the reason the C++ committee chose to do so.
bar B{foo{}};
bar B = foo();
Both lines above declare an object named B of type bar, as expected.
Aside from the guesswork above, I'd like to point out that you're doing two vastly different things in your example above.
vector<int> v1{ 12, 1 };
vector<int> v2 = vector<int>(12, 1);
The first line initializes v1 to a vector that contains two elements, 12 and 1. The second creates a vector v2 that contains 12 elements, each initialized to 1.
Be careful of this rule - if a type defines a constructor that takes an initializer_list<T>, then that constructor is always considered first when the initializer for the type is a braced-init-list. The other constructors will be considered only if the one taking the initializer_list is not viable.

The difference between () and {} when using object in class declaration in C++ [duplicate]

For example, I cannot write this:
class A
{
vector<int> v(12, 1);
};
I can only write this:
class A
{
vector<int> v1{ 12, 1 };
vector<int> v2 = vector<int>(12, 1);
};
Why is there a difference between these two declaration syntaxes?
The rationale behind this choice is explicitly mentioned in the related proposal for non static data member initializers :
An issue raised in Kona regarding scope of identifiers:
During discussion in the Core Working Group at the September ’07 meeting in Kona, a question arose about the scope of identifiers in the initializer. Do we want to allow class scope with the possibility of forward lookup; or do we want to require that the initializers be well-defined at the point that they’re parsed?
What’s desired:
The motivation for class-scope lookup is that we’d like to be able to put anything in a non-static data member’s initializer that we could put in a mem-initializer without significantly changing the semantics (modulo direct initialization vs. copy initialization):
int x();
struct S {
int i;
S() : i(x()) {} // currently well-formed, uses S::x()
// ...
static int x();
};
struct T {
int i = x(); // should use T::x(), ::x() would be a surprise
// ...
static int x();
};
Problem 1:
Unfortunately, this makes initializers of the “( expression-list )” form ambiguous at the time that the declaration is being parsed:
struct S {
int i(x); // data member with initializer
// ...
static int x;
};
struct T {
int i(x); // member function declaration
// ...
typedef int x;
};
One possible solution is to rely on the existing rule that, if a declaration could be an object or a function, then it’s a function:
struct S {
int i(j); // ill-formed...parsed as a member function,
// type j looked up but not found
// ...
static int j;
};
A similar solution would be to apply another existing rule, currently used only in templates, that if T could be a type or something else, then it’s something else; and we can use “typename” if we really mean a type:
struct S {
int i(x); // unabmiguously a data member
int j(typename y); // unabmiguously a member function
};
Both of those solutions introduce subtleties that are likely to be misunderstood by many users (as evidenced by the many questions on comp.lang.c++ about why “int i();” at block scope doesn’t declare a default-initialized int).
The solution proposed in this paper is to allow only initializers of the “= initializer-clause” and “{ initializer-list }” forms. That solves the ambiguity problem in most cases, for example:
HashingFunction hash_algorithm{"MD5"};
Here, we could not use the = form because HasningFunction’s constructor is explicit.
In especially tricky cases, a type might have to be mentioned twice. Consider:
vector<int> x = 3; // error: the constructor taking an int is explicit
vector<int> x(3); // three elements default-initialized
vector<int> x{3}; // one element with the value 3
In that case, we have to chose between the two alternatives by using the appropriate notation:
vector<int> x = vector<int>(3); // rather than vector<int> x(3);
vector<int> x{3}; // one element with the value 3
Problem 2:
Another issue is that, because we propose no change to the rules for initializing static data members, adding the static keyword could make a well-formed initializer ill-formed:
struct S {
const int i = f(); // well-formed with forward lookup
static const int j = f(); // always ill-formed for statics
// ...
constexpr static int f() { return 0; }
};
Problem 3:
A third issue is that class-scope lookup could turn a compile-time error into a run-time error:
struct S {
int i = j; // ill-formed without forward lookup, undefined behavior with
int j = 3;
};
(Unless caught by the compiler, i might be intialized with the undefined value of j.)
The proposal:
CWG had a 6-to-3 straw poll in Kona in favor of class-scope lookup; and that is what this paper proposes, with initializers for non-static data members limited to the “= initializer-clause” and “{ initializer-list }” forms.
We believe:
Problem 1: This problem does not occur as we don’t propose the () notation. The = and {} initializer notations do not suffer from this problem.
Problem 2: adding the static keyword makes a number of differences, this being the least of them.
Problem 3: this is not a new problem, but is the same order-of-initialization problem that already exists with constructor initializers.
One possible reason is that allowing parentheses would lead us back to the most vexing parse in no time. Consider the two types below:
struct foo {};
struct bar
{
bar(foo const&) {}
};
Now, you have a data member of type bar that you want to initialize, so you define it as
struct A
{
bar B(foo());
};
But what you've done above is declare a function named B that returns a bar object by value, and takes a single argument that's a function having the signature foo() (returns a foo and doesn't take any arguments).
Judging by the number and frequency of questions asked on StackOverflow that deal with this issue, this is something most C++ programmers find surprising and unintuitive. Adding the new brace-or-equal-initializer syntax was a chance to avoid this ambiguity and start with a clean slate, which is likely the reason the C++ committee chose to do so.
bar B{foo{}};
bar B = foo();
Both lines above declare an object named B of type bar, as expected.
Aside from the guesswork above, I'd like to point out that you're doing two vastly different things in your example above.
vector<int> v1{ 12, 1 };
vector<int> v2 = vector<int>(12, 1);
The first line initializes v1 to a vector that contains two elements, 12 and 1. The second creates a vector v2 that contains 12 elements, each initialized to 1.
Be careful of this rule - if a type defines a constructor that takes an initializer_list<T>, then that constructor is always considered first when the initializer for the type is a braced-init-list. The other constructors will be considered only if the one taking the initializer_list is not viable.

std::initializer_list conversion in constructors

I'm new to C++11 and I was wondering how this code works internally:
class MyClass
{
public:
MyClass(int a, double b) {
cout << "ctor()" << endl;
}
};
int main()
{
MyClass i1{4, 7};
return 0;
}
My understanding of the new initializer list is that it is a class std::initializer_list constructed by special syntax { .... } in the code. So how does this class instance created by {4, 7} internally get transformed to a form that fits the constructor to MyClass? Thanks.
I think this is how it happens. Extracted from: Explanation of list initialization at cppreference.com
If the previous stage does not produce a match, all constructors of T participate in overload resolution against the set of arguments that consists of the elements of the braced-init-list, with the restriction that only non-narrowing conversions are allowed. If this stage produces an explicit constructor as the best match for a copy-list-initialization, compilation fails (note, in simple copy-initialization, explicit constructors are not considered at all)

class template with error "is not a type" [duplicate]

For example, I cannot write this:
class A
{
vector<int> v(12, 1);
};
I can only write this:
class A
{
vector<int> v1{ 12, 1 };
vector<int> v2 = vector<int>(12, 1);
};
Why is there a difference between these two declaration syntaxes?
The rationale behind this choice is explicitly mentioned in the related proposal for non static data member initializers :
An issue raised in Kona regarding scope of identifiers:
During discussion in the Core Working Group at the September ’07 meeting in Kona, a question arose about the scope of identifiers in the initializer. Do we want to allow class scope with the possibility of forward lookup; or do we want to require that the initializers be well-defined at the point that they’re parsed?
What’s desired:
The motivation for class-scope lookup is that we’d like to be able to put anything in a non-static data member’s initializer that we could put in a mem-initializer without significantly changing the semantics (modulo direct initialization vs. copy initialization):
int x();
struct S {
int i;
S() : i(x()) {} // currently well-formed, uses S::x()
// ...
static int x();
};
struct T {
int i = x(); // should use T::x(), ::x() would be a surprise
// ...
static int x();
};
Problem 1:
Unfortunately, this makes initializers of the “( expression-list )” form ambiguous at the time that the declaration is being parsed:
struct S {
int i(x); // data member with initializer
// ...
static int x;
};
struct T {
int i(x); // member function declaration
// ...
typedef int x;
};
One possible solution is to rely on the existing rule that, if a declaration could be an object or a function, then it’s a function:
struct S {
int i(j); // ill-formed...parsed as a member function,
// type j looked up but not found
// ...
static int j;
};
A similar solution would be to apply another existing rule, currently used only in templates, that if T could be a type or something else, then it’s something else; and we can use “typename” if we really mean a type:
struct S {
int i(x); // unabmiguously a data member
int j(typename y); // unabmiguously a member function
};
Both of those solutions introduce subtleties that are likely to be misunderstood by many users (as evidenced by the many questions on comp.lang.c++ about why “int i();” at block scope doesn’t declare a default-initialized int).
The solution proposed in this paper is to allow only initializers of the “= initializer-clause” and “{ initializer-list }” forms. That solves the ambiguity problem in most cases, for example:
HashingFunction hash_algorithm{"MD5"};
Here, we could not use the = form because HasningFunction’s constructor is explicit.
In especially tricky cases, a type might have to be mentioned twice. Consider:
vector<int> x = 3; // error: the constructor taking an int is explicit
vector<int> x(3); // three elements default-initialized
vector<int> x{3}; // one element with the value 3
In that case, we have to chose between the two alternatives by using the appropriate notation:
vector<int> x = vector<int>(3); // rather than vector<int> x(3);
vector<int> x{3}; // one element with the value 3
Problem 2:
Another issue is that, because we propose no change to the rules for initializing static data members, adding the static keyword could make a well-formed initializer ill-formed:
struct S {
const int i = f(); // well-formed with forward lookup
static const int j = f(); // always ill-formed for statics
// ...
constexpr static int f() { return 0; }
};
Problem 3:
A third issue is that class-scope lookup could turn a compile-time error into a run-time error:
struct S {
int i = j; // ill-formed without forward lookup, undefined behavior with
int j = 3;
};
(Unless caught by the compiler, i might be intialized with the undefined value of j.)
The proposal:
CWG had a 6-to-3 straw poll in Kona in favor of class-scope lookup; and that is what this paper proposes, with initializers for non-static data members limited to the “= initializer-clause” and “{ initializer-list }” forms.
We believe:
Problem 1: This problem does not occur as we don’t propose the () notation. The = and {} initializer notations do not suffer from this problem.
Problem 2: adding the static keyword makes a number of differences, this being the least of them.
Problem 3: this is not a new problem, but is the same order-of-initialization problem that already exists with constructor initializers.
One possible reason is that allowing parentheses would lead us back to the most vexing parse in no time. Consider the two types below:
struct foo {};
struct bar
{
bar(foo const&) {}
};
Now, you have a data member of type bar that you want to initialize, so you define it as
struct A
{
bar B(foo());
};
But what you've done above is declare a function named B that returns a bar object by value, and takes a single argument that's a function having the signature foo() (returns a foo and doesn't take any arguments).
Judging by the number and frequency of questions asked on StackOverflow that deal with this issue, this is something most C++ programmers find surprising and unintuitive. Adding the new brace-or-equal-initializer syntax was a chance to avoid this ambiguity and start with a clean slate, which is likely the reason the C++ committee chose to do so.
bar B{foo{}};
bar B = foo();
Both lines above declare an object named B of type bar, as expected.
Aside from the guesswork above, I'd like to point out that you're doing two vastly different things in your example above.
vector<int> v1{ 12, 1 };
vector<int> v2 = vector<int>(12, 1);
The first line initializes v1 to a vector that contains two elements, 12 and 1. The second creates a vector v2 that contains 12 elements, each initialized to 1.
Be careful of this rule - if a type defines a constructor that takes an initializer_list<T>, then that constructor is always considered first when the initializer for the type is a braced-init-list. The other constructors will be considered only if the one taking the initializer_list is not viable.

In class initialization and initializer list

I have recently discovered that you cant have at the same time in class initialization and initializer list.
The following code fails :
struct s
{
int i=0;
};
int main() {
s s1; //s1.i = 0
//s s2={42}; //fails
return 0;
}
If I remove the in class initialization, the initializer list works fine !
Can someone explains me why a such thing is no allowed ?
In fact this is allowed in C++14.
struct s
{
int i=0;
};
int main() {
s s1;
s s2 = {42}; // succeeds
}
It's likely that your compiler just isn't implementing the new rule in C++14. The latest version of clang, however, accepts this and does the correct thing in C++14 mode.
When in-class initialization was added to C++11 it was specified such that it prevented a class from being an aggregate. This was done because at the time the aggregate concept was closely related to PoD types which need to be trivially constructible. Having an in-class initialization means that a type is no longer trivially constructible. Since then, however, the two concepts have become more independent, and so for C++14 a short proposal reversing that decision was accepted.
This initialization:
s s1 = { 42 };
requires that s be an aggregate, or that it have a valid constructor taking e.g an int or an std::initializer_list.
When you add a member initialization at the point of declaration, you render your class s a non-aggregate, so you can no longer use aggregate initialization.
You could use the same initialization syntax for your non-aggregate by adding a constructor:
struct s
{
s(int i) : i(i) {}
int i=0;
};
I believe this restriction has been relaxed for C++14.
See What are aggregates... for more information.