I have a number of unrelated types that all support the same operations through overloaded free functions (ad hoc polymorphism):
struct A {};
void use(int x) { std::cout << "int = " << x << std::endl; }
void use(const std::string& x) { std::cout << "string = " << x << std::endl; }
void use(const A&) { std::cout << "class A" << std::endl; }
As the title of the question implies, I want to store instances of those types in an heterogeneous container so that I can use() them no matter what concrete type they are. The container must have value semantics (ie. an assignment between two containers copies the data, it doesn't share it).
std::vector<???> items;
items.emplace_back(3);
items.emplace_back(std::string{ "hello" });
items.emplace_back(A{});
for (const auto& item: items)
use(item);
// or better yet
use(items);
And of course this must be fully extensible. Think of a library API that takes a vector<???>, and client code that adds its own types to the already known ones.
The usual solution is to store (smart) pointers to an (abstract) interface (eg. vector<unique_ptr<IUsable>>) but this has a number of drawbacks -- from the top of my head:
I have to migrate my current ad hoc polymorphic model to a class hierarchy where every single class inherits from the common interface. Oh snap! Now I have to write wrappers for int and string and what not... Not to mention the decreased reusability/composability due to the free member functions becoming intimately tied to the interface (virtual member functions).
The container loses its value semantics: a simple assignment vec1 = vec2 is impossible if we use unique_ptr (forcing me to manually perform deep copies), or both containers end up with shared state if we use shared_ptr (which has its advantages and disadvantages -- but since I want value semantics on the container, again I am forced to manually perform deep copies).
To be able to perform deep copies, the interface must support a virtual clone() function which has to be implemented in every single derived class. Can you seriously think of something more boring than that?
To sum it up: this adds a lot of unnecessary coupling and requires tons of (arguably useless) boilerplate code. This is definitely not satisfactory but so far this is the only practical solution I know of.
I have been searching for a viable alternative to subtype polymorphism (aka. interface inheritance) for ages. I play a lot with ad hoc polymorphism (aka. overloaded free functions) but I always hit the same hard wall: containers have to be homogeneous, so I always grudgingly go back to inheritance and smart pointers, with all the drawbacks already listed above (and probably more).
Ideally, I'd like to have a mere vector<IUsable> with proper value semantics, without changing anything to my current (absence of) type hierarchy, and keep ad hoc polymorphism instead of requiring subtype polymorphism.
Is this possible? If so, how?
Different alternatives
It is possible. There are several alternative approaches to your problem. Each one has different advantages and drawbacks (I will explain each one):
Create an interface and have a template class which implements this interface for different types. It should support cloning.
Use boost::variant and visitation.
Blending static and dynamic polymorphism
For the first alternative you need to create an interface like this:
class UsableInterface
{
public:
virtual ~UsableInterface() {}
virtual void use() = 0;
virtual std::unique_ptr<UsableInterface> clone() const = 0;
};
Obviously, you don't want to implement this interface by hand everytime you have a new type having the use() function. Therefore, let's have a template class which does that for you.
template <typename T> class UsableImpl : public UsableInterface
{
public:
template <typename ...Ts> UsableImpl( Ts&&...ts )
: t( std::forward<Ts>(ts)... ) {}
virtual void use() override { use( t ); }
virtual std::unique_ptr<UsableInterface> clone() const override
{
return std::make_unique<UsableImpl<T>>( t ); // This is C++14
// This is the C++11 way to do it:
// return std::unique_ptr<UsableImpl<T> >( new UsableImpl<T>(t) );
}
private:
T t;
};
Now you can actually already do everything you need with it. You can put these things in a vector:
std::vector<std::unique_ptr<UsableInterface>> usables;
// fill it
And you can copy that vector preserving the underlying types:
std::vector<std::unique_ptr<UsableInterface>> copies;
std::transform( begin(usables), end(usables), back_inserter(copies),
[]( const std::unique_ptr<UsableInterface> & p )
{ return p->clone(); } );
You probably don't want to litter your code with stuff like this. What you want to write is
copies = usables;
Well, you can get that convenience by wrapping the std::unique_ptr into a class which supports copying.
class Usable
{
public:
template <typename T> Usable( T t )
: p( std::make_unique<UsableImpl<T>>( std::move(t) ) ) {}
Usable( const Usable & other )
: p( other.clone() ) {}
Usable( Usable && other ) noexcept
: p( std::move(other.p) ) {}
void swap( Usable & other ) noexcept
{ p.swap(other.p); }
Usable & operator=( Usable other )
{ swap(other); }
void use()
{ p->use(); }
private:
std::unique_ptr<UsableInterface> p;
};
Because of the nice templated contructor you can now write stuff like
Usable u1 = 5;
Usable u2 = std::string("Hello usable!");
And you can assign values with proper value semantics:
u1 = u2;
And you can put Usables in an std::vector
std::vector<Usable> usables;
usables.emplace_back( std::string("Hello!") );
usables.emplace_back( 42 );
and copy that vector
const auto copies = usables;
You can find this idea in Sean Parents talk Value Semantics and Concepts-based Polymorphism. He also gave a very brief version of this talk at Going Native 2013, but I think this is to fast to follow.
Moreover, you can take a more generic approach than writing your own Usable class and forwarding all the member functions (if you want to add other later). The idea is to replace the class Usable with a template class. This template class will not provide a member function use() but an operator T&() and operator const T&() const. This gives you the same functionality, but you don't need to write an extra value class every time you facilitate this pattern.
A safe, generic, stack-based discriminated union container
The template class boost::variant is exactly that and provides something like a C style union but safe and with proper value semantics. The way to use it is this:
using Usable = boost::variant<int,std::string,A>;
Usable usable;
You can assign from objects of any of these types to a Usable.
usable = 1;
usable = "Hello variant!";
usable = A();
If all template types have value semantics, then boost::variant also has value semantics and can be put into STL containers. You can write a use() function for such an object by a pattern that is called the visitor pattern. It calls the correct use() function for the contained object depending on the internal type.
class UseVisitor : public boost::static_visitor<void>
{
public:
template <typename T>
void operator()( T && t )
{
use( std::forward<T>(t) );
}
}
void use( const Usable & u )
{
boost::apply_visitor( UseVisitor(), u );
}
Now you can write
Usable u = "Hello";
use( u );
And, as I already mentioned, you can put these thingies into STL containers.
std::vector<Usable> usables;
usables.emplace_back( 5 );
usables.emplace_back( "Hello world!" );
const auto copies = usables;
The trade-offs
You can grow the functionality in two dimensions:
Add new classes which satisfy the static interface.
Add new functions which the classes must implement.
In the first approach I presented it is easier to add new classes. The second approach makes it easier to add new functionality.
In the first approach it it impossible (or at least hard) for client code to add new functions. In the second approach it is impossible (or at least hard) for client code to add new classes to the mix. A way out is the so-called acyclic visitor pattern which makes it possible for clients to extend a class hierarchy with new classes and new functionality. The drawback here is that you have to sacrifice a certain amount of static checking at compile-time. Here's a link which describes the visitor pattern including the acyclic visitor pattern along with some other alternatives. If you have questions about this stuff, I'm willing to answer.
Both approaches are super type-safe. There is not trade-off to be made there.
The run-time-costs of the first approach can be much higher, since there is a heap allocation involved for each element you create. The boost::variant approach is stack based and therefore is probably faster. If performance is a problem with the first approach consider to switch to the second.
Credit where it's due: When I watched Sean Parent's Going Native 2013 "Inheritance Is The Base Class of Evil" talk, I realized how simple it actually was, in hindsight, to solve this problem. I can only advise you to watch it (there's much more interesting stuff packed in just 20 minutes, this Q/A barely scratches the surface of the whole talk), as well as the other Going Native 2013 talks.
Actually it's so simple it hardly needs any explanation at all, the code speaks for itself:
struct IUsable {
template<typename T>
IUsable(T value) : m_intf{ new Impl<T>(std::move(value)) } {}
IUsable(IUsable&&) noexcept = default;
IUsable(const IUsable& other) : m_intf{ other.m_intf->clone() } {}
IUsable& operator =(IUsable&&) noexcept = default;
IUsable& operator =(const IUsable& other) { m_intf = other.m_intf->clone(); return *this; }
// actual interface
friend void use(const IUsable&);
private:
struct Intf {
virtual ~Intf() = default;
virtual std::unique_ptr<Intf> clone() const = 0;
// actual interface
virtual void intf_use() const = 0;
};
template<typename T>
struct Impl : Intf {
Impl(T&& value) : m_value(std::move(value)) {}
virtual std::unique_ptr<Intf> clone() const override { return std::unique_ptr<Intf>{ new Impl<T>(*this) }; }
// actual interface
void intf_use() const override { use(m_value); }
private:
T m_value;
};
std::unique_ptr<Intf> m_intf;
};
// ad hoc polymorphic interface
void use(const IUsable& intf) { intf.m_intf->intf_use(); }
// could be further generalized for any container but, hey, you get the drift
template<typename... Args>
void use(const std::vector<IUsable, Args...>& c) {
std::cout << "vector<IUsable>" << std::endl;
for (const auto& i: c) use(i);
std::cout << "End of vector" << std::endl;
}
int main() {
std::vector<IUsable> items;
items.emplace_back(3);
items.emplace_back(std::string{ "world" });
items.emplace_back(items); // copy "items" in its current state
items[0] = std::string{ "hello" };
items[1] = 42;
items.emplace_back(A{});
use(items);
}
// vector<IUsable>
// string = hello
// int = 42
// vector<IUsable>
// int = 3
// string = world
// End of vector
// class A
// End of vector
As you can see, this is a rather simple wrapper around a unique_ptr<Interface>, with a templated constructor that instantiates a derived Implementation<T>. All the (not quite) gory details are private, the public interface couldn't be any cleaner: the wrapper itself has no member functions except construction/copy/move, the interface is provided as a free use() function that overloads the existing ones.
Obviously, the choice of unique_ptr means that we need to implement a private clone() function that is called whenever we want to make a copy of an IUsable object (which in turn requires a heap allocation). Admittedly one heap allocation per copy is quite suboptimal, but this is a requirement if any function of the public interface can mutate the underlying object (ie. if use() took non-const references and modified them): this way we ensure that every object is unique and thus can freely be mutated.
Now if, as in the question, the objects are completely immutable (not only through the exposed interface, mind you, I really mean the whole objects are always and completely immutable) then we can introduce shared state without nefarious side effects. The most straightforward way to do this is to use a shared_ptr-to-const instead of a unique_ptr:
struct IUsableImmutable {
template<typename T>
IUsableImmutable(T value) : m_intf(std::make_shared<const Impl<T>>(std::move(value))) {}
IUsableImmutable(IUsableImmutable&&) noexcept = default;
IUsableImmutable(const IUsableImmutable&) noexcept = default;
IUsableImmutable& operator =(IUsableImmutable&&) noexcept = default;
IUsableImmutable& operator =(const IUsableImmutable&) noexcept = default;
// actual interface
friend void use(const IUsableImmutable&);
private:
struct Intf {
virtual ~Intf() = default;
// actual interface
virtual void intf_use() const = 0;
};
template<typename T>
struct Impl : Intf {
Impl(T&& value) : m_value(std::move(value)) {}
// actual interface
void intf_use() const override { use(m_value); }
private:
const T m_value;
};
std::shared_ptr<const Intf> m_intf;
};
// ad hoc polymorphic interface
void use(const IUsableImmutable& intf) { intf.m_intf->intf_use(); }
// could be further generalized for any container but, hey, you get the drift
template<typename... Args>
void use(const std::vector<IUsableImmutable, Args...>& c) {
std::cout << "vector<IUsableImmutable>" << std::endl;
for (const auto& i: c) use(i);
std::cout << "End of vector" << std::endl;
}
Notice how the clone() function has disappeared (we don't need it any more, we just share the underlying object and it's no bother since it's immutable), and how copy is now noexcept thanks to shared_ptr guarantees.
The fun part is, the underlying objects have to be immutable, but you can still mutate their IUsableImmutable wrapper so it's still perfectly OK to do this:
std::vector<IUsableImmutable> items;
items.emplace_back(3);
items[0] = std::string{ "hello" };
(only the shared_ptr is mutated, not the underlying object itself so it doesn't affect the other shared references)
Maybe boost::variant?
#include <iostream>
#include <string>
#include <vector>
#include "boost/variant.hpp"
struct A {};
void use(int x) { std::cout << "int = " << x << std::endl; }
void use(const std::string& x) { std::cout << "string = " << x << std::endl; }
void use(const A&) { std::cout << "class A" << std::endl; }
typedef boost::variant<int,std::string,A> m_types;
class use_func : public boost::static_visitor<>
{
public:
template <typename T>
void operator()( T & operand ) const
{
use(operand);
}
};
int main()
{
std::vector<m_types> vec;
vec.push_back(1);
vec.push_back(2);
vec.push_back(std::string("hello"));
vec.push_back(A());
for (int i=0;i<4;++i)
boost::apply_visitor( use_func(), vec[i] );
return 0;
}
Live example: http://coliru.stacked-crooked.com/a/e4f4ccf6d7e6d9d8
The other answers earlier (use vtabled interface base class, use boost::variant, use virtual base class inheritance tricks) are all perfectly good and valid solutions for this problem, each with a difference balance of compile time versus run time costs. I would suggest though that instead of boost::variant, on C++ 11 and later use eggs::variant instead which is a reimplementation of boost::variant using C++ 11/14 and it is enormously superior on design, performance, ease of use, power of abstraction and it even provides a fairly full feature subset on VS2013 (and a full feature set on VS2015). It's also written and maintained by a lead Boost author.
If you are able to redefine the problem a bit though - specifically, that you can lose the type erasing std::vector in favour of something much more powerful - you could use heterogenous type containers instead. These work by returning a new container type for each modification of the container, so the pattern must be:
newtype newcontainer=oldcontainer.push_back(newitem);
These were a pain to use in C++ 03, though Boost.Fusion makes a fair fist of making them potentially useful. Actually useful usability is only possible from C++ 11 onwards, and especially so from C++ 14 onwards thanks to generic lambdas which make working with these heterogenous collections very straightforward to program using constexpr functional programming, and probably the current leading toolkit library for that right now is proposed Boost.Hana which ideally requires clang 3.6 or GCC 5.0.
Heterogeneous type containers are pretty much the 99% compile time 1% run time cost solution. You'll see a lot of compiler optimiser face plants with current compiler technology e.g. I once saw clang 3.5 generate 2500 opcodes for code which should have generated two opcodes, and for the same code GCC 4.9 spat out 15 opcodes 12 of which didn't actually do anything (they loaded memory into registers and did nothing with those registers). All that said, in a few years time you will be able to achieve optimal code generation for heterogeneous type containers, at which point I would expect they'll become the next gen form of C++ metaprogramming where instead of arsing around with templates we'll be able to functionally program the C++ compiler using actual functions!!!
Heres an idea I got recently from std::function implementation in libstdc++:
Create a Handler<T> template class with a static member function that knows how to copy, delete and perform other operations on T.
Then store a function pointer to that static functon in the constructor of your Any class. Your Any class doesn't need to know about T then, it just needs this function pointer to dispatch the T-specific operations. Notice that the signature of the function is independant of T.
Roughly like so:
struct Foo { ... }
struct Bar { ... }
struct Baz { ... }
template<class T>
struct Handler
{
static void action(Ptr data, EActions eAction)
{
switch (eAction)
{
case COPY:
call T::T(...);
case DELETE:
call T::~T();
case OTHER:
call T::whatever();
}
}
}
struct Any
{
Ptr handler;
Ptr data;
template<class T>
Any(T t)
: handler(Handler<T>::action)
, data(handler(t, COPY))
{}
Any(const Any& that)
: handler(that.handler)
, data(handler(that.data, COPY))
{}
~Any()
{
handler(data, DELETE);
}
};
int main()
{
vector<Any> V;
Foo foo; Bar bar; Baz baz;
v.push_back(foo);
v.push_back(bar);
v.push_back(baz);
}
This gives you type erasure while still maintaining value semantics, and does not require modification of the contained classes (Foo, Bar, Baz), and doesn't use dynamic polymorphism at all. It's pretty cool stuff.
Related
I am working with an existing C library (that I can't modify) where some structures have opaque fields that must be accessed through specific setters and getters, like in the following crude example (imagining x is private, even though it's written in C).
struct CObject {
int x;
};
void setCObjectX(CObject* o, int x) {
o->x = x;
}
int getCObjectX(CObject* o) {
return o->x;
}
I am writing classes that privately own these types of structures, kind of like wrappers, albeit more complex. I want to expose the relevant fields in a convenient way. At first, I was simply writing setters and getters wherever necessary. However, I thought of something else, and I wanted to know if there are any downsides to the method. It uses function pointers (std::function) to store the C setter-getter pairs and present them as if directly accessing a field instead of functions.
Here is the generic class I wrote to help define such "fake" fields:
template<typename T>
struct IndirectField {
void operator=(const T& value) {
setter(value);
}
auto operator()() const -> T {
return *this;
}
operator T() const {
return getter();
}
std::function<void(const T&)> setter;
std::function<T()> getter;
};
It is used by defining an instance in the C++ class and setting up setter and getter with the corresponding C functions:
IndirectField<int> x;
// ...
x.setter = [=](int x) {
setCObjectX(innerObject.get(), x);
};
x.getter = [=]() {
return getCObjectX(innerObject.get());
};
Here is a complete, working code for testing.
Are there any disadvantages to using this method? Could it lead to eventual dangerous behaviors or something?
The biggest problem I see with your solution is that std::function objects take space inside each instance of IndirectField inside CPPObject, even when CObject type is the same.
You can fix this problem by making function pointers into template parameters:
template<typename T,typename R,void setter(R*,T),T getter(R*)>
struct IndirectField {
IndirectField(R *obj) : obj(obj) {
}
void operator=(const T& value) {
setter(obj, value);
}
auto operator()() const -> T {
return *this;
}
operator T() const {
return getter(obj);
}
private:
R *obj;
};
Here is how to use this implementation:
class CPPObject {
std::unique_ptr<CObject,decltype(&freeCObject)> obj;
public:
CPPObject()
: obj(createCObject(), freeCObject)
, x(obj.get())
, y(obj.get()) {
}
IndirectField<int,CObject,setCObjectX,getCObjectX> x;
IndirectField<double,CObject,setCObjectY,getCObjectY> y;
};
This approach trades two std::function objects for one CObject* pointer per IndirectField. Unfortunately, storing this pointer is required, because you cannot get it from the context inside the template.
Your modified demo.
Are there any disadvantages to using this method?
There's a few things to highlight in your code:
Your getters & setters, being not part of the class, break encapsulation. (Do you really want to tie yourself permanently to this library?)
Your example shows a massive amount of copying being done; which will be slower than it needs to be. (auto operator()(), operator T() to name but 2).
It's taking up more memory than you need to and adds more compexity than just passing around a Cobject. If you don't want things to know that it's a CObject, then create an abstract class and pass that abstract class around (see below for example).
Could it lead to eventual dangerous behaviors or something?
The breaking of encapsulation will result in x changing from any number of routes; and force other things to know about how it's stored in the object. Which is bad.
The creation of IndirectField Means that every object will have to have getters and setters in this way; which is going to be a maintenance nightmare.
Really I think what you're looking for is something like:
struct xProvider {
virtual int getX() const = 0;
virtual void setX() = 0;
};
struct MyCObject : xProvider {
private:
CObject obj;
public:
int getX() const override {return obj.x;}
CObject& getRawObj() {return obj;}
// etc ...
}
And then you just pass a reference / pointer to an xProvider around.
This will remove the dependence on this external C library; allowing you to replace it with your own test struct or a whole new library if you see fit; without having to re-write all your code using it
in a struct by default (as you post) all the fields are public, so they are accessible by client software. I you want to make them accessible to derived classes (you don't need to reimplement anything if you know the field contract and want to access it in a well defined way) they are made protected. And if you want them to be accessed by nobody, then mark them as private.
If the author of such a software doesn't want the fields to be touched by you, he will mark them as private, and then you'll have nothing to do, but to adapt to this behaviour. Failing to do will give you bad consequences.
Suppose you make a field that is modified with a set_myField() method, that calls a list of listeners anytime you make a change. If you bypass the method accessing function, all the listeners (many of them of unknown origin) will be bypassed and won't be notified of the field change. This is quite common in object programming, so you must obey the rules the authors impose to you.
If I store a polymorphic functor in an std::function, is there a way to extract the functor without knowing the concrete type?
Here is a simplified version of the code:
struct Base {
//...
virtual int operator()(int foo) const = 0;
void setBar(int bar){}
};
struct Derived : Base {
//...
int operator()(int foo) const override {}
};
std::function<int(int)> getFunction() {
return Derived();
}
int main() {
auto f = getFunction();
// How do I call setBar() ?
if (Base* b = f.target<Base>()) {} // Fails: returns nullptr
else if(Derived* d = f.target<Derived>()) {
d->setBar(5); // Works but requires Derived type
}
std::cout << f(7) << std::endl;
return 0;
}
I want the client to be able to provide their own function, and for my handler to use the functionality of the Base if it's available.
The fall back would be of course to just use the abstract base class instead of std::function and clients would implement the ABC interface as they would have pre-C++11:
std::shared_ptr<Base> getFunction {
return std::make_shared<Derived>();
}
but I wanted to know if it's possible to create a more flexible and easier to use interface with C++14. It seems all that's missing is a cast inside std::function::target
It seems all that's missing is a cast inside std::function::target
All target<T> currently needs is to check target_id<T> == stored_type_info.
Being able to cast back to the real (erased) type in a context where that type may not be visible, and then check how it's related to the requested type ... is not really feasible.
Anyway, std::function is polymorphic only on the function signature. That's the thing it abstracts. If you want general-purpose polymorphism, just return a unique_ptr<Base> and use that.
If you really want function<int(int)> for the function-call syntax, instantiate it with a pimpl wrapper for unique_ptr<Base>.
Possible solution would be to have a thin wrapper:
struct BaseCaller {
BaseCaller( std::unique_ptr<Base> ptr ) : ptr_( std::move( ptr ) ) {}
int operator()( int foo ) { return (*ptr)( foo ); }
std::unique_ptr<Base> ptr_;
};
now user must create all derived from Base classed through this wrapper:
std::function<int(int)> getFunction() {
return BaseCaller( std::make_unique<Derived>() );
}
and you check in your call that target is a BaseCaller.
I want the client to be able to provide their own function, and for my handler to use the functionality of the Base if it's available.
The main drawback to using virtual dispatch is that it may create an optimization barrier. For instance, the virtual function calls cannot usually be inlined, and "devirtualization" optimizations are generally pretty difficult for the compiler to actually do in practical situations.
If you are in a situation where the code is performance critical, you can roll your own type-erasure and avoid any vtable / dynamic allocations.
I'm going to follow a pattern demonstrated in an old (but well-known) article, the "Impossibly Fast Delegates".
// Represents a pointer to a class implementing your interface
class InterfacePtr {
using ObjectPtr = void*;
using CallOperator_t = int(*)(ObjectPtr, int);
using SetBar_t = void(ObjectPtr, int);
ObjectPtr obj_;
CallOperator_t call_;
SetBar_t set_bar_;
// Ctor takes any type that implements your interface,
// stores pointer to it as void * and lambda functions
// that undo the cast and forward the call
template <typename T>
InterfacePtr(T * t)
: obj_(static_cast<ObjectPtr>(t))
, call_(+[](ObjectPtr ptr, int i) { return (*static_cast<T*>(ptr))(i); })
, set_bar_(+[](ObjectPtr ptr, int i) { static_cast<T*>(ptr)->set_bar(i); })
{}
int operator()(int i) {
return call_(obj_, i);
}
void set_bar()(int i) {
return set_bar_(obj_, i);
}
};
Then, you would take InterfacePtr instead of a pointer to Base in your API.
If you want the interface member set_bar to be optional, then you could use SFINAE to detect whether set_bar is present, and have two versions of the constructor, one for when it is, and one for when it isn't. There is recently a really great exposition of the "detection idiom" at various C++ standards on Tartan Llama's blog, here. The advantage of that would be that you get something similar to what virtual gives you, with the possibility to optionally override functions, but the dispatch decisions get made at compile-time, and you aren't forced to have a vtable. And all of the functions can potentially be inlined if the optimizer can prove to itself that e.g. in some compilation unit using this, only one type is actually passed to your API through this mechanism.
A difference is that this InterfacePtr is non-owning and doesn't have the dtor or own the storage of the object it's pointing to.
If you want InterfacePtr to be owning, like std::function, and copy the functor into its own memory and take care of deleting it when it goes out of scope, then I'd recommend to use std::any to represent the object instead of void *, and use std::any_cast in the lambdas instead of static_cast<T*> in my implementation. There's some good further discussion of std::any and why it's good for this usecase on /r/cpp here.
I don't think there's any way to do what you were originally asking, and recover the "original" functor type from std::function. Type erasure erases the type, you can't get it back without doing something squirrelly.
Edit: Another alternative you might consider is to use a type-erasure library like dyno
std::function<X>::target<T> can only cast back to exactly T*.
This is because storing how to convert to every type that can be converted to T* would require storing more information. It takes information to convert a pointer-to-derived to a pointer-to-base in the general case in C++.
target is intended to simply permit replacing some function-pointer style machinery with std::functions and have the existing machinery work, and do so with nearly zero cost (just compare typeids). Extending that cost to every base type of the stored type would have been hard, so it wasn't done, and won't be free, so it probably won't be done in the future.
std::function is, however, just an example of type erasure, and you can roll your own with additional functionality.
The first thing I'd do is I would do away with your virtual operator(). Type-erasure based polymorphism doesn't need that.
The second thing is get your hands on an any -- either boost::any or c++17's std::any.
That writes the hard part of type erasure -- small buffer optimization and value storage -- for you.
Add to that your own dispatch table.
template<class Sig>
struct my_extended_function;
template<class R, class...Args>
struct my_extended_function<R(Args...)> {
struct vtable {
R(*f)(any&, Args&&...) = 0;
void*(*cast)(any&, std::type_info const&) = 0;
};
template<class...Bases, class T>
my_extended_function make_with_bases( T t ) {
return {
get_vtable<T, Bases...>(),
std::move(t)
};
}
R operator()(Args...args)const {
return (*p_vtable->f)(state, std::forward<Args>(args)...);
}
private:
template<class T, class...Bases>
static vtable make_vtable() {
vtable ret{
// TODO: R=void needs different version
+[](any& ptr, Args&&...args)->R {
return (*any_cast<T*>(ptr))(std::forward<Args>(args)...);
},
+[](any& ptr, std::type_info const& tid)->void* {
T* pt = any_cast<T*>(ptr);
if (typeid(pt)==tid) return pt;
// TODO: iterate over Bases, see if any match tid
// implicitly cast pt to the Bases* in question, and return it.
}
};
}
template<class T, class...Bases>
vtable const* get_vtable() {
static vtable const r = make_vtable<T,Bases...>();
return &r;
}
vtable const* p_vtable = nullptr;
mutable std::any state;
my_extended_function( vtable const* vt, std::any s ):
p_vtable(vt),
state(std::move(s))
{}
};
So, I have something along the lines of these structs:
struct Generic {}
struct Specific : Generic {}
At some point I have the the need to downcast, ie:
Specific s = (Specific) GetGenericData();
This is a problem because I get error messages stating that no user-defined cast was available.
I can change the code to be:
Specific s = (*(Specific *)&GetGenericData())
or using reinterpret_cast, it would be:
Specific s = *reinterpret_cast<Specific *>(&GetGenericData());
But, is there a way to make this cleaner? Perhaps using a macro or template?
I looked at this post C++ covariant templates, and I think it has some similarities, but not sure how to rewrite it for my case. I really don't want to define things as SmartPtr. I would rather keep things as the objects they are.
It looks like GetGenericData() from your usage returns a Generic by-value, in which case a cast to Specific will be unsafe due to object slicing.
To do what you want to do, you should make it return a pointer or reference:
Generic* GetGenericData();
Generic& GetGenericDataRef();
And then you can perform a cast:
// safe, returns nullptr if it's not actually a Specific*
auto safe = dynamic_cast<Specific*>(GetGenericData());
// for references, this will throw std::bad_cast
// if you try the wrong type
auto& safe_ref = dynamic_cast<Specific&>(GetGenericDataRef());
// unsafe, undefined behavior if it's the wrong type,
// but faster if it is
auto unsafe = static_cast<Specific*>(GetGenericData());
I assume here that your data is simple.
struct Generic {
int x=0;
int y=0;
};
struct Specific:Generic{
int z=0;
explicit Specific(Generic const&o):Generic(o){}
// boilerplate, some may not be needed, but good habit:
Specific()=default;
Specific(Specific const&)=default;
Specific(Specific &&)=default;
Specific& operator=(Specific const&)=default;
Specific& operator=(Specific &&)=default;
};
and bob is your uncle. It is somewhat important that int z hae a default initializer, so we don't have to repeat it in the from-parent ctor.
I made thr ctor explicit so it will be called only explicitly, instead of by accident.
This is a suitable solution for simple data.
So the first step is to realize you have a dynamic state problem. The nature of the state you store changes based off dynamic information.
struct GenericState { virtual ~GenericState() {} }; // data in here
struct Generic;
template<class D>
struct GenericBase {
D& self() { return *static_cast<D&>(*this); }
D const& self() const { return *static_cast<D&>(*this); }
// code to interact with GenericState here via self().pImpl
// if you have `virtual` behavior, have a non-virtual method forward to
// a `virtual` method in GenericState.
};
struct Generic:GenericBase<Generic> {
// ctors go here, creates a GenericState in the pImpl below, or whatever
~GenericState() {} // not virtual
private:
friend struct GenericBase<Generic>;
std::unique_ptr<GenericState> pImpl;
};
struct SpecificState : GenericState {
// specific stuff in here, including possible virtual method overrides
};
struct Specific : GenericBase<Specific> {
// different ctors, creates a SpecificState in a pImpl
// upcast operators:
operator Generic() && { /* move pImpl into return value */ }
operator Generic() const& { /* copy pImpl into return value */ }
private:
friend struct GenericBase<Specific>;
std::unique_ptr<SpecificState> pImpl;
};
If you want the ability to copy, implement a virtual GenericState* clone() const method in GenericState, and in SpecificState override it covariantly.
What I have done here is regularized the type (or semiregularized if we don't support move). The Specific and Generic types are unrelated, but their back end implementation details (GenericState and SpecificState) are related.
Interface duplication is avoided mostly via CRTP and GenericBase.
Downcasting now can either involve a dynamic check or not. You go through the pImpl and cast it over. If done in an rvalue context, it moves -- if in an lvalue context, it copies.
You could use shared pointers instead of unique pointers if you prefer. That would permit non-copy non-move based casting.
Ok, after some additional study, I am wondering if what is wrong with doing this:
struct Generic {}
struct Specific : Generic {
Specific( const Generic &obj ) : Generic(obj) {}
}
Correct me if I am wrong, but this works using the implicit copy constructors.
Assuming that is the case, I can avoid having to write one and does perform the casting automatically, and I can now write:
Specific s = GetGenericData();
Granted, for large objects, this is probably not a good idea, but for smaller ones, will this be a "correct" solution?
I have a class messenger which relies on a printer instance. printer is a polymorphic base class and the actual object is passed to the messenger in the constructor.
For a non-polymorphic object, I would just do the following:
class messenger {
public:
messenger(printer const& pp) : pp(pp) { }
void signal(std::string const& msg) {
pp.write(msg);
}
private:
printer pp;
};
But when printer is a polymorphic base class, this no longer works (slicing).
What is the best way to make this work, considering that
I don’t want to pass a pointer to the constructor, and
The printer class shouldn’t need a virtual clone method (= needs to rely on copy construction).
I don’t want to pass a pointer to the constructor because the rest of the API is working with real objects, not pointers and it would be confusing / inconsistent to have a pointer as an argument here.
Under C++0x, I could perhaps use a unique_ptr, together with a template constructor:
struct printer {
virtual void write(std::string const&) const = 0;
virtual ~printer() { } // Not actually necessary …
};
struct console_printer : public printer {
void write(std::string const& msg) const {
std::cout << msg << std::endl;
}
};
class messenger {
public:
template <typename TPrinter>
messenger(TPrinter const& pp) : pp(new TPrinter(pp)) { }
void signal(std::string const& msg) {
pp->write(msg);
}
private:
std::unique_ptr<printer> pp;
};
int main() {
messenger m((console_printer())); // Extra parens to prevent MVP.
m.signal("Hello");
}
Is this the best alternative? If so, what would be the best way in pre-0x? And is there any way to get rid of the completely unnecessary copy in the constructor? Unfortunately, moving the temporary doesn’t work here (right?).
There is no way to clone polymorphic object without a virtual clone method. So you can either:
pass and hold a reference and ensure the printer is not destroyed before the messenger in the code constructing messenger,
pass and hold a smart pointer and create the printer instance with new,
pass a reference and create printer instance on the heap using clone method or
pass a reference to actual type to a template and create instance with new while you still know the type.
The last is what you suggest with C++0x std::unique_ptr, but in this case C++03 std::auto_ptr would do you exactly the same service (i.e. you don't need to move it and they are otherwise the same).
Edit: Ok, um, one more way:
Make the printer itself a smart pointer to the actual implementation. Than it's copyable and polymorphic at the same time at the cost of some complexity.
Expanding the comment into a proper answer...
The primary concern here is ownership. From you code, it is appears that each instance of messenger owns its own instance of printer - but infact you are passing in a pre-constructed printer (presumably with some additional state), which you need to then copy into your own instance of printer. Given the implied nature of the object printer (i.e. to print something), I would argue that the thing to which is it is printing is a shared resource - in that light, it makes no sense for each messenger instance to have it's own copy of printer (for example, what if you need to lock to access to std::cout)?
From a design point of view, what messenger needs on construction is actually really a pointer to some shared resource - in that light, a shared_ptr (better yet, a weak_ptr) is a better option.
Now if you don't want to use a weak_ptr, and you would rather store a reference, think about whether you can couple messenger to the type of printer, the coupling is left to the user, you don't care - of course the major drawback of this is that messenger will not be containable. NOTE: you can specify a traits (or policy) class which the messenger can be typed on and this provides the type information for printer (and can be controlled by the user).
A third alternative is if you have complete control over the set of printers, in which case hold a variant type - it's much cleaner IMHO and avoids polymorphism.
Finally, if you cannot couple, you cannot control the printers, and you want your own instance of printer (of the same type), the conversion constructor template is the way forward, however add a disable_if to prevent it being called incorrectly (i.e. as normal copy ctor).
All-in-all, I would treat the printer as a shared resource and hold a weak_ptr as frankly it allows better control of that shared resource.
Unfortunately, moving the temporary doesn’t work here (right?).
Wrong. To be, uh, blunt. This is what rvalue references are made for. A simple overload would quickly solve the problem at hand.
class messenger {
public:
template <typename TPrinter>
messenger(TPrinter const& pp) : pp(new TPrinter(pp)) { }
template <typename TPrinter>
messenger(TPrinter&& pp) : pp(new TPrinter(std::move(pp))) { }
void signal(std::string const& msg) {
pp->write(msg);
}
private:
std::unique_ptr<printer> pp;
};
The same concept will apply in C++03, but swap unique_ptr for auto_ptr and ditch the rvalue reference overload.
In addition, you could consider some sort of "dummy" constructor for C++03 if you're OK with a little dodgy interface.
class messenger {
public:
template <typename TPrinter>
messenger(TPrinter const& pp) : pp(new TPrinter(pp)) { }
template<typename TPrinter> messenger(const TPrinter& ref, int dummy)
: pp(new TPrinter())
{
}
void signal(std::string const& msg) {
pp->write(msg);
}
private:
std::unique_ptr<printer> pp;
};
Or you could consider the same strategy that auto_ptr uses for "moving" in C++03. To be used with caution, for sure, but perfectly legal and doable. The trouble with that is that you're influencing all printer subclasses.
Why don't you want to pass a pointer or a smart pointer?
Anyway, if you're always initializing the printer member in the constructor you can just use a reference member.
private:
printer& pp;
};
And initialize in the constructor initialization list.
When you have a golden hammer everything looks like nails
Well, my latest golden hammer is type erasure. Seriously I would not use it, but then again, I would pass a pointer and have the caller create and inject the dependency.
struct printer_iface {
virtual void print( text const & ) = 0;
};
class printer_erasure {
std::shared_ptr<printer_iface> printer;
public:
template <typename PrinterT>
printer_erasure( PrinterT p ) : printer( new PrinterT(p) ) {}
void print( text const & t ) {
printer->print( t );
}
};
class messenger {
printer_erasure printer;
public:
messenger( printer_erasure p ) : printer(p) {}
...
};
Ok, arguably this and the solutions provided with a template are the exact same thing, with the only slight difference that the complexity of type erasure is moved outside of the class. The messenger class has its own responsibilities, and the type erasure is not one of them, it can be delegated.
How about templatizing the class messanger ?
template <typename TPrinter>
class messenger {
public:
messenger(TPrinter const& obj) : pp(obj) { }
static void signal(printer &pp, std::string const& msg) //<-- static
{
pp->write(msg);
}
private:
TPrinter pp; // data type should be template
};
Note that, signal() is made static. This is to leverage the virtual ability of class printer and to avoid generating a new copy of signal(). The only effort you have to make is, call the function like,
signal(this->pp, "abc");
Suppose you have other datatypes then pp which are not related to template type, then those can be moved to a non template base class and that base can be inherited by messenger. I am not describing in much details but, I wish the point should be clearer.
There's this one thing in C++ which has been making me feel uncomfortable for quite a long time, because I honestly don't know how to do it, even though it sounds simple:
How do I implement Factory Method in C++ correctly?
Goal: to make it possible to allow the client to instantiate some object using factory methods instead of the object's constructors, without unacceptable consequences and a performance hit.
By "Factory method pattern", I mean both static factory methods inside an object or methods defined in another class, or global functions. Just generally "the concept of redirecting the normal way of instantiation of class X to anywhere else than the constructor".
Let me skim through some possible answers which I have thought of.
0) Don't make factories, make constructors.
This sounds nice (and indeed often the best solution), but is not a general remedy. First of all, there are cases when object construction is a task complex enough to justify its extraction to another class. But even putting that fact aside, even for simple objects using just constructors often won't do.
The simplest example I know is a 2-D Vector class. So simple, yet tricky. I want to be able to construct it both from both Cartesian and polar coordinates. Obviously, I cannot do:
struct Vec2 {
Vec2(float x, float y);
Vec2(float angle, float magnitude); // not a valid overload!
// ...
};
My natural way of thinking is then:
struct Vec2 {
static Vec2 fromLinear(float x, float y);
static Vec2 fromPolar(float angle, float magnitude);
// ...
};
Which, instead of constructors, leads me to usage of static factory methods... which essentially means that I'm implementing the factory pattern, in some way ("the class becomes its own factory"). This looks nice (and would suit this particular case), but fails in some cases, which I'm going to describe in point 2. Do read on.
another case: trying to overload by two opaque typedefs of some API (such as GUIDs of unrelated domains, or a GUID and a bitfield), types semantically totally different (so - in theory - valid overloads) but which actually turn out to be the same thing - like unsigned ints or void pointers.
1) The Java Way
Java has it simple, as we only have dynamic-allocated objects. Making a factory is as trivial as:
class FooFactory {
public Foo createFooInSomeWay() {
// can be a static method as well,
// if we don't need the factory to provide its own object semantics
// and just serve as a group of methods
return new Foo(some, args);
}
}
In C++, this translates to:
class FooFactory {
public:
Foo* createFooInSomeWay() {
return new Foo(some, args);
}
};
Cool? Often, indeed. But then- this forces the user to only use dynamic allocation. Static allocation is what makes C++ complex, but is also what often makes it powerful. Also, I believe that there exist some targets (keyword: embedded) which don't allow for dynamic allocation. And that doesn't imply that the users of those platforms like to write clean OOP.
Anyway, philosophy aside: In the general case, I don't want to force the users of the factory to be restrained to dynamic allocation.
2) Return-by-value
OK, so we know that 1) is cool when we want dynamic allocation. Why won't we add static allocation on top of that?
class FooFactory {
public:
Foo* createFooInSomeWay() {
return new Foo(some, args);
}
Foo createFooInSomeWay() {
return Foo(some, args);
}
};
What? We can't overload by the return type? Oh, of course we can't. So let's change the method names to reflect that. And yes, I've written the invalid code example above just to stress how much I dislike the need to change the method name, for example because we cannot implement a language-agnostic factory design properly now, since we have to change names - and every user of this code will need to remember that difference of the implementation from the specification.
class FooFactory {
public:
Foo* createDynamicFooInSomeWay() {
return new Foo(some, args);
}
Foo createFooObjectInSomeWay() {
return Foo(some, args);
}
};
OK... there we have it. It's ugly, as we need to change the method name. It's imperfect, since we need to write the same code twice. But once done, it works. Right?
Well, usually. But sometimes it does not. When creating Foo, we actually depend on the compiler to do the return value optimisation for us, because the C++ standard is benevolent enough for the compiler vendors not to specify when will the object created in-place and when will it be copied when returning a temporary object by value in C++. So if Foo is expensive to copy, this approach is risky.
And what if Foo is not copiable at all? Well, doh. (Note that in C++17 with guaranteed copy elision, not-being-copiable is no problem anymore for the code above)
Conclusion: Making a factory by returning an object is indeed a solution for some cases (such as the 2-D vector previously mentioned), but still not a general replacement for constructors.
3) Two-phase construction
Another thing that someone would probably come up with is separating the issue of object allocation and its initialisation. This usually results in code like this:
class Foo {
public:
Foo() {
// empty or almost empty
}
// ...
};
class FooFactory {
public:
void createFooInSomeWay(Foo& foo, some, args);
};
void clientCode() {
Foo staticFoo;
auto_ptr<Foo> dynamicFoo = new Foo();
FooFactory factory;
factory.createFooInSomeWay(&staticFoo);
factory.createFooInSomeWay(&dynamicFoo.get());
// ...
}
One may think it works like a charm. The only price we pay for in our code...
Since I've written all of this and left this as the last, I must dislike it too. :) Why?
First of all... I sincerely dislike the concept of two-phase construction and I feel guilty when I use it. If I design my objects with the assertion that "if it exists, it is in valid state", I feel that my code is safer and less error-prone. I like it that way.
Having to drop that convention AND changing the design of my object just for the purpose of making factory of it is.. well, unwieldy.
I know that the above won't convince many people, so let's me give some more solid arguments. Using two-phase construction, you cannot:
initialise const or reference member variables,
pass arguments to base class constructors and member object constructors.
And probably there could be some more drawbacks which I can't think of right now, and I don't even feel particularly obliged to since the above bullet points convince me already.
So: not even close to a good general solution for implementing a factory.
Conclusions:
We want to have a way of object instantiation which would:
allow for uniform instantiation regardless of allocation,
give different, meaningful names to construction methods (thus not relying on by-argument overloading),
not introduce a significant performance hit and, preferably, a significant code bloat hit, especially at client side,
be general, as in: possible to be introduced for any class.
I believe I have proven that the ways I have mentioned don't fulfil those requirements.
Any hints? Please provide me with a solution, I don't want to think that this language won't allow me to properly implement such a trivial concept.
First of all, there are cases when
object construction is a task complex
enough to justify its extraction to
another class.
I believe this point is incorrect. The complexity doesn't really matter. The relevance is what does. If an object can be constructed in one step (not like in the builder pattern), the constructor is the right place to do it. If you really need another class to perform the job, then it should be a helper class that is used from the constructor anyway.
Vec2(float x, float y);
Vec2(float angle, float magnitude); // not a valid overload!
There is an easy workaround for this:
struct Cartesian {
inline Cartesian(float x, float y): x(x), y(y) {}
float x, y;
};
struct Polar {
inline Polar(float angle, float magnitude): angle(angle), magnitude(magnitude) {}
float angle, magnitude;
};
Vec2(const Cartesian &cartesian);
Vec2(const Polar &polar);
The only disadvantage is that it looks a bit verbose:
Vec2 v2(Vec2::Cartesian(3.0f, 4.0f));
But the good thing is that you can immediately see what coordinate type you're using, and at the same time you don't have to worry about copying. If you want copying, and it's expensive (as proven by profiling, of course), you may wish to use something like Qt's shared classes to avoid copying overhead.
As for the allocation type, the main reason to use the factory pattern is usually polymorphism. Constructors can't be virtual, and even if they could, it wouldn't make much sense. When using static or stack allocation, you can't create objects in a polymorphic way because the compiler needs to know the exact size. So it works only with pointers and references. And returning a reference from a factory doesn't work too, because while an object technically can be deleted by reference, it could be rather confusing and bug-prone, see Is the practice of returning a C++ reference variable, evil? for example. So pointers are the only thing that's left, and that includes smart pointers too. In other words, factories are most useful when used with dynamic allocation, so you can do things like this:
class Abstract {
public:
virtual void do() = 0;
};
class Factory {
public:
Abstract *create();
};
Factory f;
Abstract *a = f.create();
a->do();
In other cases, factories just help to solve minor problems like those with overloads you have mentioned. It would be nice if it was possible to use them in a uniform way, but it doesn't hurt much that it is probably impossible.
Simple Factory Example:
// Factory returns object and ownership
// Caller responsible for deletion.
#include <memory>
class FactoryReleaseOwnership{
public:
std::unique_ptr<Foo> createFooInSomeWay(){
return std::unique_ptr<Foo>(new Foo(some, args));
}
};
// Factory retains object ownership
// Thus returning a reference.
#include <boost/ptr_container/ptr_vector.hpp>
class FactoryRetainOwnership{
boost::ptr_vector<Foo> myFoo;
public:
Foo& createFooInSomeWay(){
// Must take care that factory last longer than all references.
// Could make myFoo static so it last as long as the application.
myFoo.push_back(new Foo(some, args));
return myFoo.back();
}
};
Have you thought about not using a factory at all, and instead making nice use of the type system? I can think of two different approaches which do this sort of thing:
Option 1:
struct linear {
linear(float x, float y) : x_(x), y_(y){}
float x_;
float y_;
};
struct polar {
polar(float angle, float magnitude) : angle_(angle), magnitude_(magnitude) {}
float angle_;
float magnitude_;
};
struct Vec2 {
explicit Vec2(const linear &l) { /* ... */ }
explicit Vec2(const polar &p) { /* ... */ }
};
Which lets you write things like:
Vec2 v(linear(1.0, 2.0));
Option 2:
you can use "tags" like the STL does with iterators and such. For example:
struct linear_coord_tag linear_coord {}; // declare type and a global
struct polar_coord_tag polar_coord {};
struct Vec2 {
Vec2(float x, float y, const linear_coord_tag &) { /* ... */ }
Vec2(float angle, float magnitude, const polar_coord_tag &) { /* ... */ }
};
This second approach lets you write code which looks like this:
Vec2 v(1.0, 2.0, linear_coord);
which is also nice and expressive while allowing you to have unique prototypes for each constructor.
You can read a very good solution in: http://www.codeproject.com/Articles/363338/Factory-Pattern-in-Cplusplus
The best solution is on the "comments and discussions", see the "No need for static Create methods".
From this idea, I've done a factory. Note that I'm using Qt, but you can change QMap and QString for std equivalents.
#ifndef FACTORY_H
#define FACTORY_H
#include <QMap>
#include <QString>
template <typename T>
class Factory
{
public:
template <typename TDerived>
void registerType(QString name)
{
static_assert(std::is_base_of<T, TDerived>::value, "Factory::registerType doesn't accept this type because doesn't derive from base class");
_createFuncs[name] = &createFunc<TDerived>;
}
T* create(QString name) {
typename QMap<QString,PCreateFunc>::const_iterator it = _createFuncs.find(name);
if (it != _createFuncs.end()) {
return it.value()();
}
return nullptr;
}
private:
template <typename TDerived>
static T* createFunc()
{
return new TDerived();
}
typedef T* (*PCreateFunc)();
QMap<QString,PCreateFunc> _createFuncs;
};
#endif // FACTORY_H
Sample usage:
Factory<BaseClass> f;
f.registerType<Descendant1>("Descendant1");
f.registerType<Descendant2>("Descendant2");
Descendant1* d1 = static_cast<Descendant1*>(f.create("Descendant1"));
Descendant2* d2 = static_cast<Descendant2*>(f.create("Descendant2"));
BaseClass *b1 = f.create("Descendant1");
BaseClass *b2 = f.create("Descendant2");
I mostly agree with the accepted answer, but there is a C++11 option that has not been covered in existing answers:
Return factory method results by value, and
Provide a cheap move constructor.
Example:
struct sandwich {
// Factory methods.
static sandwich ham();
static sandwich spam();
// Move constructor.
sandwich(sandwich &&);
// etc.
};
Then you can construct objects on the stack:
sandwich mine{sandwich::ham()};
As subobjects of other things:
auto lunch = std::make_pair(sandwich::spam(), apple{});
Or dynamically allocated:
auto ptr = std::make_shared<sandwich>(sandwich::ham());
When might I use this?
If, on a public constructor, it is not possible to give meaningful initialisers for all class members without some preliminary calculation, then I might convert that constructor to a static method. The static method performs the preliminary calculations, then returns a value result via a private constructor which just does a member-wise initialisation.
I say 'might' because it depends on which approach gives the clearest code without being unnecessarily inefficient.
Loki has both a Factory Method and an Abstract Factory. Both are documented (extensively) in Modern C++ Design, by Andei Alexandrescu. The factory method is probably closer to what you seem to be after, though it's still a bit different (at least if memory serves, it requires you to register a type before the factory can create objects of that type).
I don't try to answer all of my questions, as I believe it is too broad. Just a couple of notes:
there are cases when object construction is a task complex enough to justify its extraction to another class.
That class is in fact a Builder, rather than a Factory.
In the general case, I don't want to force the users of the factory to be restrained to dynamic allocation.
Then you could have your factory encapsulate it in a smart pointer. I believe this way you can have your cake and eat it too.
This also eliminates the issues related to return-by-value.
Conclusion: Making a factory by returning an object is indeed a solution for some cases (such as the 2-D vector previously mentioned), but still not a general replacement for constructors.
Indeed. All design patterns have their (language specific) constraints and drawbacks. It is recommended to use them only when they help you solve your problem, not for their own sake.
If you are after the "perfect" factory implementation, well, good luck.
This is my c++11 style solution. parameter 'base' is for base class of all sub-classes. creators, are std::function objects to create sub-class instances, might be a binding to your sub-class' static member function 'create(some args)'. This maybe not perfect but works for me. And it is kinda 'general' solution.
template <class base, class... params> class factory {
public:
factory() {}
factory(const factory &) = delete;
factory &operator=(const factory &) = delete;
auto create(const std::string name, params... args) {
auto key = your_hash_func(name.c_str(), name.size());
return std::move(create(key, args...));
}
auto create(key_t key, params... args) {
std::unique_ptr<base> obj{creators_[key](args...)};
return obj;
}
void register_creator(const std::string name,
std::function<base *(params...)> &&creator) {
auto key = your_hash_func(name.c_str(), name.size());
creators_[key] = std::move(creator);
}
protected:
std::unordered_map<key_t, std::function<base *(params...)>> creators_;
};
An example on usage.
class base {
public:
base(int val) : val_(val) {}
virtual ~base() { std::cout << "base destroyed\n"; }
protected:
int val_ = 0;
};
class foo : public base {
public:
foo(int val) : base(val) { std::cout << "foo " << val << " \n"; }
static foo *create(int val) { return new foo(val); }
virtual ~foo() { std::cout << "foo destroyed\n"; }
};
class bar : public base {
public:
bar(int val) : base(val) { std::cout << "bar " << val << "\n"; }
static bar *create(int val) { return new bar(val); }
virtual ~bar() { std::cout << "bar destroyed\n"; }
};
int main() {
common::factory<base, int> factory;
auto foo_creator = std::bind(&foo::create, std::placeholders::_1);
auto bar_creator = std::bind(&bar::create, std::placeholders::_1);
factory.register_creator("foo", foo_creator);
factory.register_creator("bar", bar_creator);
{
auto foo_obj = std::move(factory.create("foo", 80));
foo_obj.reset();
}
{
auto bar_obj = std::move(factory.create("bar", 90));
bar_obj.reset();
}
}
Factory Pattern
class Point
{
public:
static Point Cartesian(double x, double y);
private:
};
And if you compiler does not support Return Value Optimization, ditch it, it probably does not contain much optimization at all...
extern std::pair<std::string_view, Base*(*)()> const factories[2];
decltype(factories) factories{
{"blah", []() -> Base*{return new Blah;}},
{"foo", []() -> Base*{return new Foo;}}
};
I know this question has been answered 3 years ago, but this may be what your were looking for.
Google has released a couple of weeks ago a library allowing easy and flexible dynamic object allocations. Here it is: http://google-opensource.blogspot.fr/2014/01/introducing-infact-library.html