Does anyone know how to change a date variable from Date9 to MMDDYY10 format in SAS9.3? I've tried using the put and input functions, but the result is null
Formats are nothing but instructions on how to display a value. Dates are numeric represented as the number of days from 1JAN1960.
data x;
format formated1 date9. formated2 mmddyy10.;
noformated = "01JAN1960"d;
formated1 = noformated;
formated2 = noformated;
run;
proc print data=x;
run;
Obs formated1 formated2 noformated
1 01JAN1960 01/01/1960 0
In short, just change the format on the dataset and the date will be displayed with the new format.
Try both functions:
tmpdate = put(olddate,DATE9.);
newdate = input(tmpdate,MMDDYY10.);
Or maybe even
newdate = input(put(olddate,DATE9.),MMDDYY10.);
For changing the format of variable in a table - PROC SQL or PROC DATASETS:
data WORK.TABLE1;
format DATE1 DATE2 date9.;
DATE1 = today();
DATE2 = DATE1;
run;
proc contents;
run;
proc datasets lib=WORK nodetails nolist;
modify TABLE1;
format DATE1 mmddyy10.;
quit;
proc sql;
alter table WORK.TABLE1
modify DATE2 format=mmddyy10.
;
quit;
proc contents;
run;
Related
I need to convert dates in the following forma:
30-giu-18
30-nov-20
......
into:
30JUN2018
30NOV2020
.......
I tried:
data Test;
set input;
mydates = input(myolddates, ddmmyy10.;)
format mydates ddmmyy10.;
run;
It doesn't work. The variable myolddates is character $9.
Can anyone help me please?
Try this
data have;
input myolddates $9.;
datalines;
30-giu-18
30-nov-20
;
options dflang = Italian ;
data want;
set have;
date = input(myolddates, EURDFDE9.);
format date ddmmyy10.;
run;
I'm using PROC SQL within SAS and trying to get a count where the current month is equal to the month on a date field I'm reading. the format of the input date is - mmddyy10.
This is a sample of what I'm trying –
data test;
input job $ lastrun;
DateNew = datejul(lastrun);
Format datenew mmddyy10.;
datalines;
joba 19300
jobb 19200
jobc 19303
jobx 19288
run;
proc print; run;
proc sql;
select
count(job) AS cnt_LastMonth
from test
where datepart(datenew) = intnx('month', today(), -1, 'same');
quit;
In this example I'm expecting the cnt_LastMonth to return 3, however it returns 0.
You can't calculate datepart from date variable, only from datetime. And if you want to compare dates that belong to one month, don't ignore year value.
proc sql;
create table qert as
select
count(job) AS cnt_LastMonth
from test
where intnx('month', DateNew, 0, 'b') = intnx('month', today(), -1, 'b');
/*Increments both dates to the month's begin
Instead of it you can try to use:
where month(DateNew) = month(today())-1 and year(DateNew)=year(today());
*/
quit;
proc sql;
select count(job) AS cnt_LastMonth
from test
where month(DateNew)= 10;
quit;
OR
proc sql;
SELECT count(A2.job) AS cnt_LastMonth
FROM (SELECT *,
MONTH(Date_Minus_1) as Month_filter,
MONTH(DateNew) as Month
FROM(SELECT *,
intnx('Month',today(),-1,'s') as Date_Minus_1 format=mmddyy10.
FROM test) A1)A2
Where A2.Month =A2.Month_filter;
Run;
Suppose I have these data read into SAS:
I would like to list each unique name and the number of months it appeared in the data above to give a data set like this:
I have looked into PROC FREQ, but I think I need to do this in a DATA step, because I would like to be able to create other variables within the new data set and otherwise be able to manipulate the new data.
Data step:
proc sort data=have;
by name month;
run;
data want;
set have;
by name month;
m=month(lag(month));
if first.id then months=1;
else if month(date)^=m then months+1;
if last.id then output;
keep name months;
run;
Pro Sql:
proc sql;
select distinct name,count(distinct(month(month))) as months from have group by name;
quit;
While it's possible to do this in a data step, you wouldn't; you'd use proc freq or similar. Almost every PROC can give you an output dataset (rather than just print to the screen).
PROC FREQ data=sashelp.class;
tables age/out=age_counts noprint;
run;
Then you can use this output dataset (age_counts) as a SET input to another data step to perform your further calculations.
You can also use proc sql to group the variable and count how many are in that group. It might be faster than proc freq depending on how large your data is.
proc sql noprint;
create table counts as
select AGE, count(*) as AGE_CT from sashelp.class
group by AGE;
quit;
If you want to do it in a data step, you can use a Hash Object to hold the counted values:
data have;
do i=1 to 100;
do V = 'a', 'b', 'c';
output;
end;
end;
run;
data _null_;
set have end=last;
if _n_ = 1 then do;
declare hash cnt();
rc = cnt.definekey('v');
rc = cnt.definedata('v','v_cnt');
rc = cnt.definedone();
call missing(v_cnt);
end;
rc = cnt.find();
if rc then do;
v_cnt = 1;
cnt.add();
end;
else do;
v_cnt = v_cnt + 1;
cnt.replace();
end;
if last then
rc = cnt.output(dataset: "want");
run;
This is very efficient as it is a single loop over the data. The WANT data set contains the key and count values.
I have the following problem:
I want to fill missing values with proc expand be simply taking the value from the next data row.
My data looks like this:
date;index;
29.Jun09;-1693
30.Jun09;-1692
01.Jul09;-1691
02.Jul09;-1690
03.Jul09;-1689
04.Jul09;.
05.Jul09;.
06.Jul09;-1688
07.Jul09;-1687
08.Jul09;-1686
09.Jul09;-1685
10.Jul09;-1684
11.Jul09;.
12.Jul09;.
13.Jul09;-1683
As you can see for some dates the index is missing. I want to achieve the following:
date;index;
29.Jun09;-1693
30.Jun09;-1692
01.Jul09;-1691
02.Jul09;-1690
03.Jul09;-1689
04.Jul09;-1688
05.Jul09;-1688
06.Jul09;-1688
07.Jul09;-1687
08.Jul09;-1686
09.Jul09;-1685
10.Jul09;-1684
11.Jul09;-1683
12.Jul09;-1683
13.Jul09;-1683
As you can see the values for the missing data where taken from the next row (11.Jul09 and 12Jul09 got the value from 13Jul09)
So proc expand seems to be the right approach and i started using this code:
PROC EXPAND DATA=DUMMY
OUT=WORK.DUMMY_TS
FROM = DAY
ALIGN = BEGINNING
METHOD = STEP
OBSERVED = (BEGINNING, BEGINNING);
ID date;
CONVERT index /;
RUN;
QUIT;
This filled the gaps but from the previous row and whatever I set for ALIGN, OBSERVED or even sorting the data descending I do not achieve the behavior I want.
If you know how to make it right it would be great if you could give me a hint. Good papers on proc expand are apprechiated as well.
Thanks for your help and kind regards
Stephan
I don't know about proc expand. But apparently this can be done with a few steps.
Read the dataset and create a new variable that will get the value of n.
data have;
set have;
pos = _n_;
run;
Sort this dataset by this new variable, in descending order.
proc sort data=have;
by descending pos;
run;
Use Lag or retain to fill the missing values from the "next" row (After sorting, the order will be reversed).
data want;
set have (rename=(index=index_old));
retain index;
if not missing(index_old) then index = index_old;
run;
Sort back if needed.
proc sort data=want;
by pos;
run;
I'm no PROC EXPAND expert but this is what I came up with. Create LEADS for the maximum gap run (2) then coalesce them into INDEX.
data index;
infile cards dsd dlm=';';
input date:date11. index;
format date date11.;
cards4;
29.Jun09;-1693
30.Jun09;-1692
01.Jul09;-1691
02.Jul09;-1690
03.Jul09;-1689
04.Jul09;.
05.Jul09;.
06.Jul09;-1688
07.Jul09;-1687
08.Jul09;-1686
09.Jul09;-1685
10.Jul09;-1684
11.Jul09;.
12.Jul09;.
13.Jul09;-1683
;;;;
run;
proc print;
run;
PROC EXPAND DATA=index OUT=index2 method=none;
ID date;
convert index=lead1 / transform=(lead 1);
CONVERT index=lead2 / transform=(lead 2);
RUN;
QUIT;
proc print;
run;
data index3;
set index2;
pocb = coalesce(index,lead1,lead2);
run;
proc print;
run;
Modified to work for any reasonable gap size.
data index;
infile cards dsd dlm=';';
input date:date11. index;
format date date11.;
cards4;
27.Jun09;
28.Jun09;
29.Jun09;-1693
30.Jun09;-1692
01.Jul09;-1691
02.Jul09;-1690
03.Jul09;-1689
04.Jul09;.
05.Jul09;.
06.Jul09;-1688
07.Jul09;-1687
08.Jul09;-1686
09.Jul09;-1685
10.Jul09;-1684
11.Jul09;.
12.Jul09;.
13.Jul09;-1683
14.Jul09;
15.Jul09;
16.Jul09;
17.Jul09;-1694
;;;;
run;
proc print;
run;
/* find the largest gap */
data gapsize(keep=n);
set index;
by index notsorted;
if missing(index) then do;
if first.index then n=0;
n+1;
if last.index then output;
end;
run;
proc summary data=gapsize;
output out=maxgap(drop=_:) max(n)=maxgap;
run;
/* Gen the convert statement for LEADs */
filename FT67F001 temp;
data _null_;
file FT67F001;
set maxgap;
do i = 1 to maxgap;
put 'Convert index=lead' i ' / transform=(lead ' i ');';
end;
stop;
run;
proc expand data=index out=index2 method=none;
id date;
%inc ft67f001;
run;
quit;
data index3;
set index2;
pocb = coalesce(index,of lead:);
drop lead:;
run;
proc print;
run;
I have to calculate the correlation and covariance for my daily sales values for an event window. The event window is of 45 day period and my data looks like -
store_id date sales
5927 12-Jan-07 3,714.00
5927 12-Jan-07 3,259.00
5927 14-Jan-07 3,787.00
5927 14-Jan-07 3,480.00
5927 17-Jan-07 3,646.00
5927 17-Jan-07 3,316.00
4978 18-Jan-07 3,530.00
4978 18-Jan-07 3,103.00
4978 18-Jan-07 3,026.00
4978 21-Jan-07 3,448.00
Now, for every store_id, date combination, I need to go back 45 days (there is more data for each combination in my original data set) calculate the correlation between sales and lag(sales) i.e. autocorrelation of degree one. As you can see, the date column is not continuous. So something like (date - 45) is not going to work.
I have gotten till this part -
data ds1;
set ds;
by store_id;
LAG_SALE = lag(sales);
IF FIRST.store_idTHEN DO;
LAG_SALE = .;
END;
run;
For calculating correlation and covariances -
proc corr data=ds1 outp=Corr
by store_id date;
cov; /** include covariances **/
var sales lag_sale;
run;
But how do I insert the event window for each date, store_id combination? My final output should look something like this -
id date corr cov
5927 12-Jan-07 ... ...
5927 14-Jan-07 ... ...
Here is what I've come up with:
First I convert the date to a SAS date, which is the number of days since Jan. 1 1960:
data ds;
set ds (rename=(date=old_date));
date = input(old_date, date11.);
drop old_date;
run;
Then compute lag_sale (I am using the same calculation you used in the question, but make sure this is what you want to do. For some observations the lag sale is the previous recorded date, but for some it is the same store_id and date, just a different observation.):
proc sort data=ds; by store_id; run;
data ds;
set ds;
by store_id;
lag_sale = lag(sales);
if first.store_id then lag_sale = .;
run;
Then set up the final data set:
data final;
length store_id 8 date 8 cov 8 corr 8;
if _n_ = 0;
run;
Then create a macro which takes a store_id and date and runs proc corr. The first part of the macro selects only the data with that store_id and within the past 45 days of the date. Then it runs proc corr. Then it formats proc corr how you want it and appends the results to the "final" data set.
%macro corr(store_id, date);
data ds2;
set ds;
where store_id = &store_id and %eval(&date-45) <= date <=&date
and lag_sale ne .;
run;
proc corr noprint data=ds2 cov outp=corr;
by store_id;
var sales lag_sale;
run;
data corr2;
set corr;
where _type_ in ('CORR', 'COV') and _name_ = 'sales';
retain cov;
date = &date;
if _type_ = 'COV' then cov = lag_sale;
else do;
corr = lag_sale;
output;
end;
keep store_id date corr cov;
run;
proc append base=final data=corr2 force; run;
%mend corr;
Finally run the macro for each store_id/date combination.
proc sort data=ds out=ds3 nodupkey;
by store_id date;
run;
data _null_;
set ds3;
call execute('%corr('||store_id||','||date||');');
run;
proc sort data=final;
by store_id date;
run;