std::generate_n function with list - c++

I'm making a program that uses the std::generate_n function. I can get it to work fine with arrays, but I can't figure out how to make it work with a list container. Here is what I have:
#include <iostream>
#include <algorithm>
#include <list>
using namespace std;
int current = 0;
int UniqueNumber () { return ++current; }
int main ()
{
list<int> L;
list<int>::iterator it;
generate_n (L.begin(), 9, UniqueNumber);
cout << "list contains:";
for (it=L.begin(); it!=L.end(); ++it)
cout << ' ' << *it << '\n';
return 0;
}
The output only displays "list contains:" with nothing after that. I know my output loop functions correctly because I tried it manually with the insert() method, so the problem is something with the generate_n function. I think I'm passing the arguments wrong. Anyone know what I did?

You want to use an insert-iterator to add items to your list:
generate_n (back_inserter(L), 9, UniqueNumber);
Be sure to #include <iterator> to use it. Another possibility would be to use std::iota:
list<int> L(10);
std::iota(L.begin(), L.end(), 1);
Oh, and to display the contents of the list, you probably want:
std::copy(L.begin(), L.end(), ostream_iterator<int>(std::cout, "\n"));
or (in C++11):
for (auto i : L)
std::cout << ' ' << i << '\n';

generate_n doesn't insert, it just dereferences and assigns.
See the below possible implementation of generate_n (copied from here):
template< class OutputIt, class Size, class Generator >
OutputIt generate_n( OutputIt first, Size count, Generator g )
{
for( Size i = 0; i < count; i++ ) {
*first++ = g();
}
return first;
}
So you need to make sure the list is the appropriate size before you call it.
So, change:
list<int> L;
to:
list<int> L(9);

Related

How to apply the concept of counting occurrences on strings variables in C++

following program ca calculate the frequency of ints in an array
how to apply this concept on string variable because a string is also an array on the back end
using namespace std;
int counter[10]={0,0,0,0,0,0,0,0,0,0};
int arr [9][9],x;
int main()
{
srand(time(NULL));
cout<<"enter the array \n";
for(int i=0;i<9;i++){
for(int j=0;j<9;j++){
arr[i][j]=rand()%10;
}
}
for(int i=0;i<9;i++){
for(int j=0;j<9;j++){
cout<<arr[i][j]<<" ";
}
cout<<endl;
}
for(int i=0;i<9;i++){
for(int j=0;j<9;j++){
counter[arr[i][j]]++;
}
}
for(int j=0;j<10;j++){
cout<<j<<" : "<< counter[j]<<endl;
}
return 0;
}
Here is how one can count occurrences of anything from anything:
Code
#include <iterator>
#include <map>
#include <algorithm>
template<class InputIt>
auto
occurrences(InputIt begin, InputIt end)
{
std::map<typename std::iterator_traits<InputIt>::value_type, std::size_t> result;
std::for_each(begin, end, [&result](auto const& item){ ++result[item]; });
return result;
}
Usage
#include <string>
#include <iostream>
int main()
{
auto text = std::string{"Hello, World!"};
auto occ = occurrences(begin(text), end(text));
std::cout << occ['l'] << '\n'; // outputs 3
}
Live demo
Explanation
template<class InputIt>
This is a generic (template) function iterating over any input iterator.
auto
Its return type is inferred from its implementation. Spoiler alert: it is a std::map of (value counter, occurrence of this value).
occurrences(InputIt begin, InputIt end)
occurrences is called with a couple of iterators defining a range, generally calling begin(C) and end(C) on your container C.
std::for_each(begin, end, //...
For each element in the range...
[&result](auto const& item){ //...
...execute the following treatment...
++result[item]; });
...increment the occurrence count for the value item, starting with zero if its the first.
This is not an efficient implementation since it copies the values it counts. For integers, characters, etc. its perfect but for complex types you might want to improve this implementation.
It's generic and standard container compatible. You could count anything iterable.
If I understand correctly, you want to count occurrences of strings. STL container map is useful for this purpose. Following is example code.
#include<iostream>
#include<map>
#include<string>
#include<vector>
int main()
{
std::vector<std::string> arrayString;
std::map<std::string, int> counter;
std::map<std::string, int>::iterator it;
arrayString.push_back("Hello");
arrayString.push_back("World");
arrayString.push_back("Hello");
arrayString.push_back("Around");
arrayString.push_back("the");
arrayString.push_back("World");
// Counting logic
for(std::string strVal : arrayString)
{
it = counter.find(strVal);
if(it != counter.end())
it->second += 1; // increment count
else
counter.insert(std::pair<std::string, int>(strVal, 1)); // first occurrence
}
// Results
for(std::map<std::string, int>::iterator it = counter.begin(); it != counter.end(); ++it)
std::cout << it->first << ": " << it->second << std::endl;
return 0;
}
More compact way to write the counting logic is :
// Counting logic
for(std::string strVal : arrayString)
{
++counter[strVal]; // first time -> init to 0 and increment
}

Display Vector elements in a reverse order

I have two questions but they are interlinked.:
part:a->
I have been trying to display the elements of vector in reverse order. But nothing is working. I have used iterotar like;
for (it=vec.end(); it!=vec.begin(); --it){
// it is iterator not reverse_iterator.
// do work
}
P.S I am not much familiar with iterators. I have used them for the first time today to
display elem in reverse order.
also tried;
for (int i=vec.size(); i!=0; i--){
//display
}
No matter what I do it always display the elem in same order as they are present i.e not in the reverse order.
part_b->
Is there any way that I can store the output of a recursive function direct into a vector. like the code is:
I know this does not work. I have tried but just giving you an idea
what I am upto.
#include <iostream>
using namespace std;
#include "vector"
int func(int num);
vector <int> vec;
int main() {
int num=34;
// I know this would not work. But is there any possibilitiy that
// I can store the output in a vector.
vec = binary(num);
// trying to display the vector.
for (int i=vec.size();i!=0;i--) {
cout<<vec[i]<<" ";
} // not working for reverse display.
} //main.
int func(int num) {
if (num==1) {
//vec.push_back(1);
return 1;
}
else if(num==0) {
//vec.push_back(0);
return 0;
}
else {
//vec.push_back(input%2);
return binary(input/2);
}
} //func.
I hope you do unnderstand the question. if I am able to do the part b the there is no need to reverse the elem of the vector.
The standard solution uses reverse iterators:
for (auto it = v.rbegin(); it != v.rend(); ++it)
{
if (it != v.rbegin()) { std::cout << ' '; }
std::cout << *it;
}
Alternatively, you can use indices, but keep the "reversal" idiom and increment the index:
for (std::size_t i = 0; i != v.size(); ++i)
{
if (i != 0) { std::cout << ' '; }
std::cout << v[v.size() - i - 1];
}
Note that reverse iterators are literally just doing something very similar to the explicit loop under the hood. In particular, the base() member function of a reverse iterator gives you the corresponding ordinary iterator offset by one, just as we have a - 1 in the index computation. (E.g. rbegin() is just end() under the hood, but decrements by one upon dereferencing.)
Use reverse iterators:
for (auto it = vec.crend(); it != vec.crbegin(); ++it) {
std::cout << *it << ' ';
}
std::cout << '\n';
Part A
Assuming you haven't got access to C++11:
vector<int>::const_reverse_iterator it;
for (it=vec.rbegin(); it!=vec.rend(); ++it)
{
// do work
}
Part B
It looks very much like you're trying to display a number in binary. Unfortunately the standard flags on ostream only allow hex, decimal or octal as far as I'm aware, but can I suggest a simpler way of doing this?
#include <bitset>
bitset< sizeof(int) << 3 > b(34);
cout << b << endl;
Which gives:
00000000000000000000000000100010
The rather ugly looking sizeof(int) << 3 is just a way of getting the size of an int in bits to avoid truncation.
I wrote little program which may help. Maybe your vector is empty?
#include <iostream>
#include <vector>
using namespace std;
int main(int argc, char *argv[])
{
vector<int> vec;
vec.insert(vec.begin(), 1, 1);
vec.insert(vec.begin(), 1, 2);
vec.insert(vec.begin(), 1, 3);
vector<int>::iterator i;
for (i = vec.end(); i != vec.begin(); --i)
{
cout << *i;
}
cout << *i;
return 0;
}

Why remove_copy_if returns an empty vector?

Could you please explain to me what am I doing wrong in the following code?
I would expect values >= 80 in the second vector but it's empty.
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
class Tester
{
public:
int value;
Tester(int foo)
{
value = foo;
}
};
bool compare(Tester temp)
{
if (temp.value < 80)
return true;
else
return false;
}
int main()
{
vector<Tester> vec1;
vector<Tester> vec2;
vec1.reserve(100);
vec2.reserve(100);
for(int foo=0; foo<100; ++foo)
vec1.push_back(Tester(foo));
remove_copy_if(vec1.begin(), vec1.end(), vec2.begin(), compare);
cout<< "Size: " << vec2.size() << endl;
cout<< "Elements"<<endl;
for(int foo=0; foo < vec2.size(); ++foo)
cout << vec2.at(foo).value << " ";
cout<<endl;
return 0;
}
The function std::remove_copy_if() copies the non-matching elements from one sequence to another sequence. The call
remove_copy_if(vec1.begin(), vec1.end(), vec2.begin(), compare);
assumes that there is a suitable sequence starting at vec2.begin() which is actually not the case: there is nothing. If there weren't any memory reserve()d for vec2 you would probably get a crash. What you want is an iterator which expand the sequence as necessary:
std::remove_copy_if(vec1.begin(), vec1.end(), std::back_inserter(vec2), compare);
With this the call to reserve() isn't necessary but only a potential performance optimization.
Standard algorithms work on iterators and don't know nothing about the containers those iterators belong to. You passed vec2.begin() as the output iterator parameter to remove_copy_if and it will blindly increment it, not knowing that vec2 is empty, running off the allocated space. You need to pass a back_insert_iterator or resize the vector to a suitable size prior to the call.

Keeping track of removed elements using std::remove_if

I want to remove some elements from a vector and am using remove_if algorithm to do this. But I want to keep track of the removed elements so that I can perform some operation on them later. I tried this with the following code:
#include <vector>
#include <algorithm>
#include <iostream>
using namespace std;
struct IsEven
{
bool operator()(int n)
{
if(n % 2 == 0)
{
evens.push_back(n);
return true;
}
return false;
}
vector<int> evens;
};
int main(int argc, char **argv)
{
vector<int> v;
for(int i = 0; i < 10; ++i)
{
v.push_back(i);
}
IsEven f;
vector<int>::iterator newEnd = remove_if(v.begin(), v.end(), f);
for(vector<int>::iterator it = f.evens.begin(); it != f.evens.end(); ++it)
{
cout<<*it<<"\n";
}
v.erase(newEnd, v.end());
return 0;
}
But this doesn't work as remove_if accepts the copy of my functor object, so the the stored evens vector is not accessible. What is the correct way of achieving this?
P.S. : The example, with even and odds is just for example sake, my real code is somethinf different. So don't suggest a way to identify even or odds differently.
The solution is not remove_if, but it's cousin partial_sort partition. The difference is that remove_if only guarantees that [begin, middle) contains the matching elements, but partition also guarantees that [middle, end) contains the elements which didn't match the predicate.
So, your example becomes just (note that evens is no longer needed):
vector<int>::iterator newEnd = partition(v.begin(), v.end(), f);
for(vector<int>::iterator it = newEnd; it != v.end(); ++it)
{
cout<<*it<<"\n";
}
v.erase(newEnd, v.end());
Your best bet is std::partition() which will rearrange all elts in the sequence such as all elts for which your predicate return true will precede those for which it returns false.
Exemple:
vector<int>::iterator bound = partition (v.begin(), v.end(), IsEven);
std::cout << "Even numbers:" << std::endl;
for (vector<int>::iterator it = v.begin(); it != bound; ++it)
std::cout << *it << " ";
std::cout << "Odd numbers:" << std::endl;
for (vector<int>::iterator it = bound; it != v.end(); ++it)
std::cout << *it << " ";
You can avoid copying your functor (i.e. pass by value) if you pass ist by reference like this:
vector<int>::iterator newEnd = remove_if(v.begin(), v.end(),
boost::bind<int>(boost::ref(f), _1));
If you can't use boost, the same is possible with std::ref. I tested the code above and it works as expected.
An additional level of indirection. Declare the vector locally, and
have IsEven contain a copy to it. It's also possible for IsEven to
own the vector, provided that it is dynamically allocated and managed by
a shared_ptr. In practice, I've generally found the local variable
plus pointer solution more convenient. Something like:
class IsEven
{
std::vector<int>* myEliminated;
public:
IsEven( std::vector<int>* eliminated = NULL )
: myEliminated( eliminated )
{
}
bool
operator()( int n ) const
{
bool results = n % 2 == 0;
if ( results && myEliminated != NULL ) {
myEliminated->push_back( n );
}
return results;
}
}
Note that this also allows the operator()() function to be const. I
think this is formally required (although I'm not sure).
The problem that I see with the code is that the evens vector that you create inside the struct gets created everytime the remove_if algorithm calls it. So no matter if you pass in a functor to remove_if it will create a new vector each time. So once the last element is removed and when the function call ends and comes out of the function the f.evens will always fetch an empty vector. This could be sorted in two ways,
Replace the struct with a class and declare evens as static (if that is what you wanted)
Or you could make evens global. I wouldn't personally recommend that( it makes the code bad, say no to globals unless you really need them).
Edit:
As suggested by nabulke you could also std::ref something likke this, std::ref(f). This prevents you from making the vector global and avoids for unnecessary statics.
A sample of making it global is as follows,
#include <vector>
#include <algorithm>
#include <iostream>
using namespace std;
vector<int> evens;
struct IsEven
{
bool operator()(int n)
{
if(n % 2 == 0)
{
evens.push_back(n);
return true;
}
return false;
}
};
int main(int argc, char **argv)
{
vector<int> v;
for(int i = 0; i < 10; ++i)
{
v.push_back(i);
}
IsEven f;
vector<int>::iterator newEnd = remove_if(v.begin(), v.end(), f);
for(vector<int>::iterator it = evens.begin(); it != evens.end(); ++it)
{
cout<<*it<<"\n";
}
v.erase(newEnd, v.end());
return 0;
}
This code seems to work just fine for me. Let me know if this is not what you wanted.
You may have another solution; only if you don't need to remove elts in the same time (do you?). With std::for_each() which returns a copy of your functor. Exemple:
IsEven result = std::for_each(v.begin(), v.end(), IsEven());
// Display the even numbers.
std::copy(result.evens.begin(), result.evens.end(), std::ostream_iterator<int> (cout, "\n"));
Take note that it is always better to create unnamed variables in c++ when possible. Here that solution does not exactly answer your primary issue (removing elts from the source container), but it reminds everyone that std::for_each() returns a copy of your functor. :-)

Printing an array in C++?

Is there a way of printing arrays in C++?
I'm trying to make a function that reverses a user-input array and then prints it out. I tried Googling this problem and it seemed like C++ can't print arrays. That can't be true can it?
Just iterate over the elements. Like this:
for (int i = numElements - 1; i >= 0; i--)
cout << array[i];
Note: As Maxim Egorushkin pointed out, this could overflow. See his comment below for a better solution.
Use the STL
#include <iostream>
#include <vector>
#include <algorithm>
#include <iterator>
#include <ranges>
int main()
{
std::vector<int> userInput;
// Read until end of input.
// Hit control D
std::copy(std::istream_iterator<int>(std::cin),
std::istream_iterator<int>(),
std::back_inserter(userInput)
);
// ITs 2021 now move this up as probably the best way to do it.
// Range based for is now "probably" the best alternative C++20
// As we have all the range based extension being added to the language
for(auto const& value: userInput)
{
std::cout << value << ",";
}
std::cout << "\n";
// Print the array in reverse using the range based stuff
for(auto const& value: userInput | std::views::reverse)
{
std::cout << value << ",";
}
std::cout << "\n";
// Print in Normal order
std::copy(userInput.begin(),
userInput.end(),
std::ostream_iterator<int>(std::cout,",")
);
std::cout << "\n";
// Print in reverse order:
std::copy(userInput.rbegin(),
userInput.rend(),
std::ostream_iterator<int>(std::cout,",")
);
std::cout << "\n";
}
May I suggest using the fish bone operator?
for (auto x = std::end(a); x != std::begin(a); )
{
std::cout <<*--x<< ' ';
}
(Can you spot it?)
Besides the for-loop based solutions, you can also use an ostream_iterator<>. Here's an example that leverages the sample code in the (now retired) SGI STL reference:
#include <iostream>
#include <iterator>
#include <algorithm>
int main()
{
short foo[] = { 1, 3, 5, 7 };
using namespace std;
copy(foo,
foo + sizeof(foo) / sizeof(foo[0]),
ostream_iterator<short>(cout, "\n"));
}
This generates the following:
./a.out
1
3
5
7
However, this may be overkill for your needs. A straight for-loop is probably all that you need, although litb's template sugar is quite nice, too.
Edit: Forgot the "printing in reverse" requirement. Here's one way to do it:
#include <iostream>
#include <iterator>
#include <algorithm>
int main()
{
short foo[] = { 1, 3, 5, 7 };
using namespace std;
reverse_iterator<short *> begin(foo + sizeof(foo) / sizeof(foo[0]));
reverse_iterator<short *> end(foo);
copy(begin,
end,
ostream_iterator<short>(cout, "\n"));
}
and the output:
$ ./a.out
7
5
3
1
Edit: C++14 update that simplifies the above code snippets using array iterator functions like std::begin() and std::rbegin():
#include <iostream>
#include <iterator>
#include <algorithm>
int main()
{
short foo[] = { 1, 3, 5, 7 };
// Generate array iterators using C++14 std::{r}begin()
// and std::{r}end().
// Forward
std::copy(std::begin(foo),
std::end(foo),
std::ostream_iterator<short>(std::cout, "\n"));
// Reverse
std::copy(std::rbegin(foo),
std::rend(foo),
std::ostream_iterator<short>(std::cout, "\n"));
}
There are declared arrays and arrays that are not declared, but otherwise created, particularly using new:
int *p = new int[3];
That array with 3 elements is created dynamically (and that 3 could have been calculated at runtime, too), and a pointer to it which has the size erased from its type is assigned to p. You cannot get the size anymore to print that array. A function that only receives the pointer to it can thus not print that array.
Printing declared arrays is easy. You can use sizeof to get their size and pass that size along to the function including a pointer to that array's elements. But you can also create a template that accepts the array, and deduces its size from its declared type:
template<typename Type, int Size>
void print(Type const(& array)[Size]) {
for(int i=0; i<Size; i++)
std::cout << array[i] << std::endl;
}
The problem with this is that it won't accept pointers (obviously). The easiest solution, I think, is to use std::vector. It is a dynamic, resizable "array" (with the semantics you would expect from a real one), which has a size member function:
void print(std::vector<int> const &v) {
std::vector<int>::size_type i;
for(i = 0; i<v.size(); i++)
std::cout << v[i] << std::endl;
}
You can, of course, also make this a template to accept vectors of other types.
Most of the libraries commonly used in C++ can't print arrays, per se. You'll have to loop through it manually and print out each value.
Printing arrays and dumping many different kinds of objects is a feature of higher level languages.
It certainly is! You'll have to loop through the array and print out each item individually.
This might help
//Printing The Array
for (int i = 0; i < n; i++)
{cout << numbers[i];}
n is the size of the array
std::string ss[] = { "qwerty", "asdfg", "zxcvb" };
for ( auto el : ss ) std::cout << el << '\n';
Works basically like foreach.
My simple answer is:
#include <iostream>
using namespace std;
int main()
{
int data[]{ 1, 2, 7 };
for (int i = sizeof(data) / sizeof(data[0])-1; i >= 0; i--) {
cout << data[i];
}
return 0;
}
You can use reverse iterators to print an array in reverse:
#include <iostream>
int main() {
int x[] = {1,2,3,4,5};
for (auto it = std::rbegin(x); it != std::rend(x); ++it)
std::cout << *it;
}
output
54321
If you already reversed the array, you can replace std::rbegin and std::rend with std::begin/std::end, respectively, to iterate the array in forward direction.
It's quite straightforward to copy the array's elements to a suitable output iterator. For example (using C++20 for the Ranges version):
#include <algorithm>
#include <array>
#include <iostream>
#include <iterator>
template<typename T, std::size_t N>
std::ostream& print_array(std::ostream& os, std::array<T,N> const& arr)
{
std::ranges::copy(arr, std::ostream_iterator<T>(os, ", "));
return os;
}
Quick demo:
int main()
{
std::array example{ "zero", "one", "two", "three", };
print_array(std::cout, example) << '\n';
}
Of course it's more useful if we can output any kind of collection, not only arrays:
#include <algorithm>
#include <iterator>
#include <iosfwd>
#include <ranges>
template<std::ranges::input_range R>
std::ostream& print_array(std::ostream& os, R const& arr)
{
using T = std::ranges::range_value_t<R>;
std::ranges::copy(arr, std::ostream_iterator<T>(os, ", "));
return os;
}
The question mentions reversing the array for printing. That's easily achieved by using a view adapter:
print_array(std::cout, example | std::views::reverse) << '\n';
// Just do this, use a vector with this code and you're good lol -Daniel
#include <Windows.h>
#include <iostream>
#include <vector>
using namespace std;
int main()
{
std::vector<const char*> arry = { "Item 0","Item 1","Item 2","Item 3" ,"Item 4","Yay we at the end of the array"};
if (arry.size() != arry.size() || arry.empty()) {
printf("what happened to the array lol\n ");
system("PAUSE");
}
for (int i = 0; i < arry.size(); i++)
{
if (arry.max_size() == true) {
cout << "Max size of array reached!";
}
cout << "Array Value " << i << " = " << arry.at(i) << endl;
}
}
If you want to make a function that prints every single element in an array;
#include <iostream>
using namespace std;
int myArray[] = {1,2,3,4, 77, 88};
void coutArr(int *arr, int size){
for(int i=0; i<size/4; i++){
cout << arr[i] << endl;
}
}
int main(){
coutArr(myArray, sizeof(myArray));
}
The function above prints every single element in an array only, not commas etc.
You may be wondering "Why sizeoff(arr) divided by 4?". It's because cpp prints 4 if there's only a single element in an array.