Code translation from PASCAL to C++ giving unexpected results - c++

I am trying to implement the PASCAL code given in this paper in C++ and my attempt is
#include <iostream>
using namespace std;
int GenFact(int a, int b)
{ // calculates the generalised factorial
// (a)(a-1)...(a-b+1)
int gf = 1;
for (int jj = (a - b + 1); jj < a + 1; jj++)
{
gf = gf * jj;
}
return (gf);
} // end of GenFact function
double GramPoly(int i, int m, int k, int s)
{ // Calculates the Gram Polynomial ( s = 0 ),
// or its s'th
// derivative evaluated at i, order k, over 2m + 1 points
double gp_val;
if (k > 0)
{
gp_val = (4.0 * k - 2.0) / (k * (2.0 * m - k + 1.0)) *
(i * GramPoly(i, m, k - 1, s) +
s * GramPoly(i, m, k - 1.0, s - 1.0)) -
((k - 1.0) * (2.0 * m + k)) /
(k * (2.0 * m - k + 1.0)) *
GramPoly(i, m, k - 2.0, s);
}
else
{
if ((k == 0) && (s == 0))
{
gp_val = 1.0;
}
else
{
gp_val = 0.0;
} // end of if k = 0 & s = 0
} // end of if k > 0
return (gp_val);
} // end of GramPoly function
double Weight(int i, int t, int m, int n, int s)
{ // calculates the weight of the i'th data
// point for the t'th Least-square
// point of the s'th derivative, over 2m + 1 points, order n
double sum = 0.0;
for (int k = 0; k < n + 1; k++)
{
sum += (2.0 * k + 1.0) *
GenFact(2.0 * m + k + 1.0, k + 1.0) *
GramPoly(i, m, k, 0) * GramPoly(t, m, k, s);
} // end of for loop
return (sum);
} // end of Weight function
int main()
{
double z;
z = Weight(-2, -2, 2, 2, 0);
cout << "The result is " << z;
return 0;
}
however, when I run the code the output is 1145 whilst I'm expecting 31/35 = 0.88571 as per equation 12 and the tables given in the paper. Where is my error?

Your Weight function is wrong - there is a term missing... try this one:
double Weight( int i , int t , int m , int n , int s )
{ // calculates the weight of the i'th data point for the t'th Least-square
// point of the s'th derivative, over 2m + 1 points, order n
double sum = 0.0 ;
for ( int k = 0 ; k <= n ; k++ )
{
sum += (2*k+1) *
(
GenFact(2*m,k) / //<-- here
GenFact(2*m+k+1,k+1)
) * GramPoly(i,m,k,0) * GramPoly(t,m,k,s) ;
} // end of for loop
return ( sum ) ;
} // end of Weight function

First function GenFact should be return a float or double instead of int. Therefore gf should be a floating-point type too.
Second your function Weight is not the same as that in the paper. I think you missed the part GenFact(2 * m, k)

In addition to the previous answer - you should divide by GenFact(2.0 * m + k + 1.0, k + 1.0), not multiply (at least the paper says so).

Related

Why is C++ not changing my code's numbers' condition according to pow (-1,i)?

I have C++ code here:
#include <iostream>
#include <cmath>
#include <time.h>
using namespace std;
int main()
{
double n,x;
cin>>n>>x;
double b=1,c=0.0;
for (int i=1;i<=n;i++){
x=pow(x,i);
x=x*pow((-1),(i+1));
cout<<x<<endl;
b=i;
c=c+x/b;
}
cout<<c<<endl;
return 0;
}
I am creating this to calculate x^1-x^2/2+x^3/3-.....+(-1)^(n-1)*(x^n)/n. The user inputs n. The problem appears to be in this line: x=x*pow((-1),(i+1));.
I am creating this to calculate x^1 - x^2/2 + x^3/3 - ... + (-1)^(n-1)*(x^n)/n.
That seems to be the Maclaurin series of ln(1 + x), but it's not what the posted code evaluates, though:
for (int i=1;i<=n;i++)
{
x = pow(x,i);
// ^ This is updated at each iteration! It should be const.
x = x * pow((-1),(i+1));
// ^^^^^^^^^^^^^^^ Please don't (see later).
b=i;
c=c+x/b;
// ^ Okish, but why not use i directly?
}
At the very least, a variable different from x should be introduced to store the results of the powers.
The use of pow((-1),(i+1)) to generate the simple sequence {1, -1, 1, -1, ...} is also questionable, if not prone to rounding errors. I'll show two different ways to accomplish the same task.
// Evaluates the Mclaurin series of ln(1 + x) using n terms.
// Noting that (e.g. with n == 4):
// p(4) = x -x^2 / 2 + x^3 / 3 - x^4 / 4
// p(4) = x - x*x/2 + x*x*x/3 - x*x*x*x/4
// p(4) = k(1) -x*k(1)/2 + x*x*x/3 - x*x*x*x/4 k(1) = x
// p(4) = k(1) -x*k(1)/2 -x*k(2)/3 - x*x*x*x/4 k(2) = -x*k(1)
// p(4) = k(1) -x*k(1)/2 -x*k(2)/3 -x*k(3)/4 k(3) = -x*k(2)
// Preconditions: n >= 1 and -1 < x <= 1
double fn(int n, double x)
{
double k{ x };
double sum{ x };
for (int i{ 2 }; i <= n; ++i)
{
k *= -x;
sum += k / i;
}
return sum;
}
Note that, in the interval of convergence, abs(k / i) tends to zero, while outside it grows. Eventually, due to the limited precision of floating-point types like double, sum += k/i won't change the value of sum.
Another approach may be based on Horner's rule.
// Evaluates the Mclaurin series of ln(1 + x) using n terms.
// Applying Horner's rule:
// p(4) = x -x^2 / 2 + x^3 / 3 - x^4 / 4
// = x*(1 + x*(-1/2 + x*(1/3 + x*(-1/4))))
// = x*(1 + x*(-1/2 + x*( 1/3 + x*k(4) ))) k(4) = 1/4
// = x*(1 + x*( -1/2 + x*k(3) )) k(3) = 1/3 + x*k(4)
// = x*( 1 + x*k(2) ) k(2) = -1/2 + x*k(3)
// = x * k(1) k(1) = 1 + x*k(2)
// Preconditions: n >= 1 and -1 < x <= 1
double fn(int n, double x)
{
double sign{ n % 2 == 0? -1.0 : 1.0 };
double k{ sign / n };
while ( --n > 0 )
{
sign = -sign;
k = sign / n + x * k;
}
return k * x;
}

Problem with getting calculations of an array inside of an array done right

Using the formula in the pic, I need to write a program that allows the user to calculate sin(x), cos(x), tan(x). The user should enter the angle in degrees, and then the program should transform it into radians before performing the three requested calculations. For each requested calculation (i.e., sin(x), cos(x), tan(x)), I only need to calculate the first 15 terms of the series.
The problem seems to be in the arrays of the last block in the code, it keeps returning wrong results of the tan(x) series; how can I fix it?
#include <iostream>
using namespace std;
//create a function to convert angles from degrees to radian
double convertToRadian(double deg)
{ //formula : radian = (degree * pi)/180
const double pi = 3.14159265359; //declaring pi's value as a constant
return (deg * (pi / 180)); //returning the radian value
}
//create a function to calculate the exponent/power
double power(double base, unsigned int exp)
{
double result = 1;
for(int i = 0; i < exp; i++){
result = result * base;
}
return result;
}
//create a function to get the factorial of a value
double factorial(int fac)
{
if(fac > 1)
return fac * factorial(fac - 1);
else
return 1;
}
//create a function to print out arrays as we will use it to print the terms in the series
void printTerms(double terms[15])
{ for (int i = 0; i < 15; i++)
{
cout<<terms[i]<<endl;
}
}
int main()
{
double degree; //declare the variables used in the program
double valueOfCos, valueOfSin, valueOfTan; //declare variables for terms of each function
cout << "Enter angle (x) in degrees: " << endl; //prompt for user to enter angle in deg
cin >> degree;
double radian = convertToRadian(degree); //first, converting from degrees to radian
//make an array for the first 15 terms of cos(x):
double cos[15];
//make a loop to insert values in the array
for (int n = 0; n < 15; n++)
{ //type the maclaurin series formula for cos(x):
valueOfCos = (( power(-1 , n)) / (factorial(2*n))) * (power(radian, (2*n)));
cos[n] = valueOfCos;
}
//print out the first 15 terms of cos(x) in the maclaurin series:
cout << "cos(x)= ";
printTerms (cos);
//make an array for the first 15 terms of sin(x):
double sin[15];
for (int n = 0; n < 15; n++)
{
valueOfSin = ((power(-1 , n)) / (factorial((2*n + 1)))) * (power(radian, (2*n + 1)));
sin[n] = valueOfSin;
}
cout << "sin(x)= ";
printTerms (sin);
double tan[15];
for (int n = 0; n < 15; n++)
{ double bernoulli[15] = {(1/6), (-1/30),(1/42), (-1/30), (5/66), (-691/2730),
(7/6), (-3617/510), (43867/798), (-174611/330), (854513/138), (-236364091/2730),
(8553103/6),(-23749461029/870),(8615841276005/14322) };
for (int i = 0; i < 15; i++)
{
double firstNum = 0, secondNum = 0 , thirdNum = 0 , denominator = 0;
firstNum = power(-1 , n);
secondNum = power(2 , 2*n + 2);
thirdNum = ((secondNum) - 1);
denominator = factorial(2*n + 2);
valueOfTan = ((firstNum * secondNum * thirdNum * (bernoulli[i])) / denominator) *
(power(radian, 2*n + 1));
tan [n] = valueOfTan;
}
}
cout << "tan(x)= ";
printTerms (tan);
return 0;
}
This loop : for (int n = 0; n < 15; n++) is not running or entire expression. You'll need to correct something like this :
double bernoulli[15] = {(1/6), (-1/30),(1/42), (-1/30), (5/66), (-691/2730),(7/6), (-3617/510), (43867/798), (-174611/330), (854513/138), (-236364091/2730),(8553103/6),(-23749461029/870),(8615841276005/14322) };
for (int n = 0; n < 15; n++){
double firstNum = 0, secondNum = 0 , thirdNum = 0 , denominator = 0;
firstNum = power(-1 , n);
secondNum = power(2 , 2*n + 2);
thirdNum = ((secondNum) - 1);
denominator = factorial(2*n + 2);
valueOfTan = ((firstNum * secondNum * thirdNum * (bernoulli[n])) / denominator) * (power(radian, 2*n + 1));
tan [n] = valueOfTan;
}
}
You are incorrectly calculating the tan value.
In valueOfTan = ((firstNum * secondNum * thirdNum * (bernoulli[i])) / denominator) * (power(radian, 2 * n + 1));
Instead of bernoulli[i], you need to have bernoulli[2*i+2] as per the formulae.
And one more suggestion please pull the double bernoulli[15] = {(1/6), (-1/30),(1/42), (-1/30), (5/66), (-691/2730), (7/6), (-3617/510), (43867/798), (-174611/330), (854513/138), (-236364091/2730), (8553103/6),(-23749461029/870),(8615841276005/14322) array initialization out of the for loop, as it's constant you don't need to initialize it every time unnecessarily. It will increase your code runtime

Matlab VS. C++ in matrix calculation

I am using C++ to do some matrix calculations using Armadillo library.
I tried to make it similar to the Matlab version.
But when I run the code.
While Matlab took about 2 - 3 min, C++ took about 20 min.
I searched a bit and realized that some people also asked why C++ is slower than Matlab in matrix calculations.
But I heard that C++ is way faster than Matlab. So I was wondering whether C++ is not as good as Matlab in terms of Matrix calculations in usual.
Below is just part of my entire code.
Is there any way I can speed up C++ matrix calculations?
Should I use a different library?
while (dif >= tol && it <= itmax) {
it = it + 1;
V = Vnew;
Vfuture = beta * (Ptrans(0) * Vnew.slice(0) + Ptrans(1) * Vnew.slice(1) + Ptrans(2) * Vnew.slice(2));
for (int a = 0; a < Na; a++) {
for (int b = 0; b < Nd; b++) {
for (int c = 0; c < Ny; c++) {
Mat<double> YY(Na, Nd);
YY.fill(Y(c));
Mat<double> AA(Na, Nd);
AA.fill(A(a));
Mat<double> DD(Na, Nd);
DD.fill(D(b));
Mat<double> CC = YY + AA - mg_A_v / R - (mg_D_v - (1 - delta) * DD);
Mat<double> Val = 1 / (1 - 1 / sig) * pow(pow(CC, psi) % pow(mg_D_v, 1 - psi), (1 - 1 / sig)) + Vfuture;
double max_val = Val.max();
uword maxindex_val = Val.index_max();
int index_column = maxindex_val / Na; // column
int index_row = maxindex_val - index_column * Na; // row
Vnew(a, b, c) = max_val;
maxposition_a(a, b, c) = index_row;
maxposition_d(a, b, c) = index_column;
}
}
}
// Howard improvement
for (int h = 0; h < H; h++) {
Vhoward = Vnew;
for (int i = 0; i < Na; i++) {
for (int j = 0; j < Nd; j++) {
for (int k = 0; k < Ny; k++) {
temphoward(i, j) = beta * Vhoward(maxposition_a(i, j, k), maxposition_d(i, j, k), 0) * Ptrans(0) + beta * Vhoward(maxposition_a(i, j, k), maxposition_d(i, j, k), 1) * Ptrans(1) + beta * Vhoward(maxposition_a(i, j, k), maxposition_d(i, j, k), 2) * Ptrans(2);
Vnew(i, j, k) = temphoward(i, j) + utility(Y(k) + A(i) - A(maxposition_a(i, j, k)) / R - D(maxposition_d(i, j, k)) + (1 - delta) * D(j), D(maxposition_d(i, j, k)), sig, psi);
}
}
}
}
tempdiff = abs(V - Vnew);
dif = tempdiff.max();
cout << dif << endl;
cout << it << endl;
}
And this is the part from the matlab.
while dif >= tol && it <= itmax
tic;
it = it + 1;
V = Vnew;
vFuture = beta*reshape(V,Na*Nd,Ny)*P;
for i_a = 1:Na %Loop over state variable a
for i_d = 1:Nd %Loop over state variable d
for i_y = 1:Ny %Loop over state variable y
val = reshape(Utility(Y(i_y) + A(i_a) - mg_A_v/R - (mg_D_v - (1-delta)*D(i_d)),mg_D_v),Na*Nd,1) + vFuture;
[Vnew(i_a,i_d,i_y), indpol(i_a,i_d,i_y)] = max(val);
[indpol_ap(i_a,i_d,i_y),indpol_dp(i_a,i_d,i_y)] = ind2sub([Na,Nd],indpol(i_a,i_d,i_y));
end
end
end
% Howard improvement step
for h = 1:H
Vhoward = Vnew;
for i_a = 1:Na %Loop over state variable a
for i_d = 1:Nd %Loop over state variable d
for i_y = 1:Ny %Loop over state variable y
Vnew(i_a,i_d,i_y) = Utility(Y(i_y) + A(i_a) - A(indpol_ap(i_a,i_d,i_y))/R - ...
(D(indpol_dp(i_a,i_d,i_y)) - (1-delta)*D(i_d)),D(indpol_dp(i_a,i_d,i_y))) ...
+ beta*reshape(Vhoward(indpol_ap(i_a,i_d,i_y),indpol_dp(i_a,i_d,i_y),:),1,Ny)*P;
end
end
end
end
dif = max(max(max(abs(V-Vnew))));
disp([it dif toc])
end

how do I replace pow()?

how do I replace the pow() function in two cases in my code ?
I think this can be done with a for loop
#include <iostream>
#include <cmath>
using namespace std;
int main(){
double a, b, h, PI = 3.141592;
int n;
cin >> a >> b >> h >> n;
for (double x = a; x <= b; x += h) {
double ans = 1, y;
for (int k = 0; k <= n; k++) {
ans *= cos(k * PI / 4) * pow(x, k);
for (int i = 2; i <= k; i++) {
ans /= i;
}
}
y = pow(exp(cos(x * sin(PI / 4))), x * cos(PI / 4));
cout << ans << " " << y << " " << fabs(y-ans) << endl;
}
return 0;
}
Do not write everything in main.
Define double S(double x, int n) and double U(double x).
each element of sum can be calculated based on previous element.
cos(k * M_PI / 4) has repeating values so it can be stored in table.
double S(double x, int n)
{
double a = 1;
double s = a;
constexpr double q = std::cos(M_PI / 4);
constexpr double cos_val[]{ 1, q, 0, -q, -1, -q, 0, q };
for (int k = 1; k <= n; ++k) {
a *= x / k;
s += cos_val[k & 7] * a
}
return s;
}
For the inner loop, you need not calculate the power in each iteration if you consider that on the previous iteration you already calculated pow(x,k-1) and that pow(x,k) == pow(x,k-1)*x:
double pow_x = 1; // on first iteration pow(x,0) == 1
for (int k = 0; k <= n; k++) {
ans *= cos(k * PI / 4) * pow_x;
// ...
pow_x *= x; // pow(x,k) -> pow(x,k+1)
}
The second use of pow in your code cannot be easily replaced, because of the floating point exponent. You would have to rewrite pow to get the same result. However, your code does not match the formula in the image. The image says (pseudo maths notation):
e ^ ( x * C1 ) * C2
your code is calculating
y = pow(exp(cos(x * sin(PI / 4))), x * cos(PI / 4));
( e^(C2) ) ^ (x * C1)
change it to
y = exp(x * cos(PI / 4)) * cos(x * sin(PI / 4))

My perlin noise looks like wrong, almost like grey t-shirt material (heather). Why?

I tried a quick and dirty translation of the code here.
However, my version outputs noise comparable to grey t-shirt material, or heather if it please you:
#include <fstream>
#include "perlin.h"
double Perlin::cos_Interp(double a, double b, double x)
{
ft = x * 3.1415927;
f = (1 - cos(ft)) * .5;
return a * (1 - f) + b * f;
}
double Perlin::noise_2D(double x, double y)
{
/*
int n = (int)x + (int)y * 57;
n = (n << 13) ^ n;
int nn = (n * (n * n * 60493 + 19990303) + 1376312589) & 0x7fffffff;
return 1.0 - ((double)nn / 1073741824.0);
*/
int n = (int)x + (int)y * 57;
n = (n<<13) ^ n;
return ( 1.0 - ( (n * (n * n * 15731 + 789221) + 1376312589) & 0x7fffffff) / 1073741824.0);
}
double Perlin::smooth_2D(double x, double y)
{
corners = ( noise_2D(x - 1, y - 1) + noise_2D(x + 1, y - 1) + noise_2D(x - 1, y + 1) + noise_2D(x + 1, y + 1) ) / 16;
sides = ( noise_2D(x - 1, y) + noise_2D(x + 1, y) + noise_2D(x, y - 1) + noise_2D(x, y + 1) ) / 8;
center = noise_2D(x, y) / 4;
return corners + sides + center;
}
double Perlin::interp(double x, double y)
{
int x_i = int(x);
double x_left = x - x_i;
int y_i = int(y);
double y_left = y - y_i;
double v1 = smooth_2D(x_i, y_i);
double v2 = smooth_2D(x_i + 1, y_i);
double v3 = smooth_2D(x_i, y_i + 1);
double v4 = smooth_2D(x_i + 1, y_i + 1);
double i1 = cos_Interp(v1, v2, x_left);
double i2 = cos_Interp(v3, v4, x_left);
return cos_Interp(i1, i2, y_left);
}
double Perlin::perlin_2D(double x, double y)
{
double total = 0;
double p = .25;
int n = 1;
for(int i = 0; i < n; ++i)
{
double freq = pow(2, i);
double amp = pow(p, i);
total = total + interp(x * freq, y * freq) * amp;
}
return total;
}
int main()
{
Perlin perl;
ofstream ofs("./noise2D.ppm", ios_base::binary);
ofs << "P6\n" << 512 << " " << 512 << "\n255\n";
for(int i = 0; i < 512; ++i)
{
for(int j = 0; j < 512; ++j)
{
double n = perl.perlin_2D(i, j);
n = floor((n + 1.0) / 2.0 * 255);
unsigned char c = n;
ofs << c << c << c;
}
}
ofs.close();
return 0;
}
I don't believe that I strayed too far from the aforementioned site's directions aside from adding in the ppm image generation code, but then again I'll admit to not fully grasping what is going on in the code.
As you'll see by the commented section, I tried two (similar) ways of generating pseudorandom numbers for noise. I also tried different ways of scaling the numbers returned by perlin_2D to RGB color values. These two ways of editing the code have just yielded different looking t-shirt material. So, I'm forced to believe that there's something bigger going on that I am unable to recognize.
Also, I'm compiling with g++ and the c++11 standard.
EDIT: Here's an example: http://imgur.com/Sh17QjK
To convert a double in the range of [-1.0, 1.0] to an integer in range [0, 255]:
n = floor((n + 1.0) / 2.0 * 255.99);
To write it as a binary value to the PPM file:
ofstream ofs("./noise2D.ppm", ios_base::binary);
...
unsigned char c = n;
ofs << c << c << c;
Is this a direct copy of your code? You assigned an integer to what should be the Y fractional value - it's a typo and it will throw the entire noise algorithm off if you don't fix:
double Perlin::interp(double x, double y)
{
int x_i = int(x);
double x_left = x - x_i;
int y_i = int(y);
double y_left = y = y_i; //This Should have a minus, not an "=" like the line above
.....
}
My guess is if you're successfully generating the bitmap with the proper color computation, you're getting vertical bars or something along those lines?
You also need to remember that the Perlin generator usually spits out numbers in the range of -1 to 1 and you need to multiply the resultant value as such:
value * 127 + 128 = {R, G, B}
to get a good grayscale image.