fftw and online DFT calculator get different results - c++

I calculated the FFT of array {1,2,3,4,5,6} with fftw/C++ and an online calculator (http://calculator-fx.com/calculator/fast-fourier-transform-calculator-fft/1d-discrete-fourier-transform). And the results seemed to be a bit different.
fftw output:
0 21.000000 0.000000
1 -3.000000 5.196152
2 -3.000000 1.732051
3 -3.000000 0.000000
4 0.000000 0.000000
5 0.000000 0.000000
Online calculator output:
21 + 0j
-3 + 5.196152j
-3 + 1.732051j
-3 + 0j
-3 - 1.732051j
-3 - 5.196152j
As is shown above, the latter two results of fftw turned to be zero.
Can't figure out why. Could anybody help me out? Thanks.
[EDITED]
cpp code:
int main()
{
fftw_complex *out;
fftw_plan plan;
double arr[]={1,2,3,4,5,6};
int n = sizeof(arr)/sizeof(double);
out = (fftw_complex*)fftw_malloc ( sizeof ( fftw_complex ) * n );
plan = fftw_plan_dft_r2c_1d ( n, arr, out, FFTW_ESTIMATE );
fftw_execute ( plan );
for (int i = 0; i < n; i++ )
{
printf ( " %3d %12lf %12lf\n", i, out[i][0], out[i][1] );
}
fftw_free(out);
fftw_destroy_plan(plan);
return 0;
}

Oh, you're using the R2C mode (don't know why I didn't think of that before). That only writes n/2 + 1 results, because of the symmetry.
This behaviour is documented: http://www.fftw.org/doc/One_002dDimensional-DFTs-of-Real-Data.html.

Related

Implementing 4-dimensional Halton Sequence

The psuedocode for the Halton sequnce can be found here. I wrote a function that does this but for some reason checking the Matlab results for the 4th dimensional Halton sequence my numbers do not match up and I am not sure why. Here is my code:
double Halton_Seq(int index, double base){
double f = 1, r;
while(index > 0){
f = f/base;
r = r + f*(fmod(index,base));
index = index/base;
}
return r;
}
Here are the first 10 results I get:
1
0.25
0.5
0.75
0.0625
0.3125
0.5625
0.8125
0.125
0.375
Here is the first 10 results MATLAB gets:
Columns 1 through 2
0 0.5000
Columns 3 through 4
0.2500 0.7500
Columns 5 through 6
0.1250 0.6250
Columns 7 through 8
0.3750 0.8750
Columns 9 through 10
0.0625 0.5625
You forgot to initialize r in line 2.
r = 0;
double Halton_Seq(int index, int base){
double f = 1, r = 0;
while(index > 0){
f = f/base;
r = r + f* (index% base);
index = index/base;
}
return r;
}
// Output for 10 (base 2)
0.000000
0.500000
0.250000
0.750000
0.125000
0.625000
0.375000
0.875000
0.062500
0.562500

Wrong Results for Matrix Diagonalization

I try and diagonalize the matrix:
In my analysis, I set $\hbar = 1$. The code is:
MODULE FUNCTION_CONTAINER
IMPLICIT NONE
SAVE
INTEGER, PARAMETER :: DBL = SELECTED_REAL_KIND(P = 15,R = 200)
COMPLEX(KIND = DBL), PARAMETER :: IMU = (0.0D0, 1.0D0)
REAL(KIND = DBL), PARAMETER :: S = 1.0D0
INTEGER, PARAMETER :: TEMP1 = NINT((2.0D0 * S) + 1.0D0)
INTEGER, PARAMETER :: DIMJ = TEMP1
INTEGER, PARAMETER :: TEMP2 = TEMP1*TEMP1
INTEGER, PARAMETER :: DIMMAT = TEMP2
CONTAINS
INTEGER FUNCTION KRONDELTAR(K,L)
IMPLICIT NONE
REAL(KIND = DBL), INTENT(IN)::K,L
REAL(KIND = DBL) :: TEMP
TEMP = DABS(K - L)
IF (TEMP < 0.000001D0) THEN
KRONDELTAR = 1
ELSE
KRONDELTAR = 0
END IF
END FUNCTION KRONDELTAR
SUBROUTINE MATJplus(MATOUT)
IMPLICIT NONE
COMPLEX(KIND = DBL),DIMENSION(DIMJ,DIMJ),INTENT(OUT)::MATOUT
INTEGER::K,L
REAL(KIND = DBL)::M,MP
DO K = 1,DIMJ
DO L = 1,DIMJ
MP = (S + 1.0D0) - L
M = (S + 1.0D0) - K
MATOUT(K,L) = DSQRT(S * (S + 1.0D0) - M * (M + 1.0D0)) * KRONDELTAR(MP,M + 1)
END DO
END DO
END SUBROUTINE MATJplus
SUBROUTINE MATJminus(MATOUT)
IMPLICIT NONE
COMPLEX(KIND = DBL),DIMENSION(DIMJ,DIMJ),INTENT(OUT)::MATOUT
INTEGER::K,L
REAL(KIND = DBL)::MP,M
DO K = 1,DIMJ
DO L = 1,DIMJ
MP = (S + 1) - L
M = (S + 1) - K
MATOUT(K,L) = DSQRT(S* (S + 1.0D0) - M * (M - 1.0D0)) * KRONDELTAR(MP,M - 1)
END DO
END DO
END SUBROUTINE MATJminus
SUBROUTINE MATJy(MATOUT)
IMPLICIT NONE
COMPLEX(KIND = DBL),DIMENSION(DIMJ,DIMJ),INTENT(OUT)::MATOUT
COMPLEX(KIND = DBL),DIMENSION(DIMJ,DIMJ)::Jp,Jm
CALL MATJplus(Jp)
CALL MATJminus(Jm)
MATOUT = (Jp - Jm)/(2.0D0 * IMU)
END SUBROUTINE MATJy
SUBROUTINE DIAGONALIZEJy(EIGENSTATESJy,EIGENVALUESJY)
IMPLICIT NONE
COMPLEX(KIND = DBL),DIMENSION(DIMJ,DIMJ),INTENT(OUT)::EIGENSTATESJy
REAL(KIND = DBL), DIMENSION(DIMJ),INTENT(OUT)::EIGENVALUESJY
COMPLEX(KIND = DBL),DIMENSION(DIMJ,DIMJ)::JyTEMP,Jy
COMPLEX(KIND = DBL),DIMENSION(2*DIMJ)::D1
REAL(KIND = DBL),DIMENSION(3*DIMJ - 2)::D2
INTEGER::D3
CALL MATJy(Jy)
JyTEMP = Jy
CALL ZHEEV('V','U',DIMJ,JyTEMP,DIMJ,EIGENVALUESJy,D1,2*DIMJ,D2,D3)
EIGENSTATESJy = JyTEMP
END SUBROUTINE DIAGONALIZEJy
END MODULE FUNCTION_CONTAINER
PROGRAM TEST
USE FUNCTION_CONTAINER
IMPLICIT NONE
COMPLEX(KIND = DBL), DIMENSION(DIMJ,DIMJ) :: EIGENSTATESJy, MatrixJy
REAL(KIND = DBL), DIMENSION(DIMJ) :: EIGENVALUESJy
CALL DIAGONALIZEJy(EIGENSTATESJy,EIGENVALUESJY)
CALL MATJy(MatrixJy)
OPEN(1, FILE = 'EIGENVALUESJy.DAT')
OPEN(2, FILE = 'EIGENSTATESJyREAL.DAT')
OPEN(3,FILE = 'EIGENSTATESJyCOMPLEX.DAT')
WRITE (1,*) EIGENVALUESJy
WRITE (2,*) REAL(EIGENSTATESJy)
WRITE (3,*) AIMAG(EIGENSTATESJy)
CLOSE(1)
CLOSE(2)
CLOSE(3)
END PROGRAM TEST
Up till the subroutine DIAGONALIZEJy, I am simply constructing the matrix stated above. One can easily check Fortran constructs is neatly by simply writing the result from the subroutine MatJy. I transfer the data to Mathematica. The results are:
{{-1., -9.19403*10^-17, 1.}}
This is the list of eigenvalues. The list of eigenvectors is:
{{-0.5 + 0. I, 0. - 0.707107 I, 0.5 + 0. I}, {0.707107 + 0. I,
0. + 1.04083*10^-16 I, 0.707107 + 0. I}, {-0.5 + 0. I,
0. + 0.707107 I, 0.5 + 0. I}}
The first eigenvector corresponds to the first eigenvalue (at least that's what I get by printing the column vectors from EigenvectorsJy one by one).
Clearly, the result is wrong. See:
http://www.wolframalpha.com/widgets/view.jsp?id=9aa01caf50c9307e9dabe159c9068c41
I hope the link shows the results for the eigenvalues problem done using a widget. The eigenvalues are correct but all the eigenvectors are way off.
Also, when I run only the subroutine that diagonlizes the matrix in my main program which contains a whole host of other stuff, the results are:
{{0.885212, 0., -0.920222}}
and
{{0.0439691 + 0. I, -0.388918 + 0. I, 0.5 + 0. I}, {0.707107 + 0. I,
0. + 1.04083*10^-16 I, 0.707107 + 0. I}, {-0.5 + 0. I,
0. + 0.707107 I, 0.5 + 0. I}}
As you can see, the non zero eigenvalues are a bit off and the eigenvectors are too (and still incorrect). Why is the main program giving a different result, perhaphs exacerbating the error? Also, in the first place (minimal example, see above), why am I getting wrong answers?
Edit: Apparently, the link doesn't show the results so here's a snippet:
In short, your Jy matrix in the code seems to be the complex conjugate of what is desired (i.e., the image posted in the Question), which results in the eigenvectors that are complex conjugate of the correct ones.
The above error seems to originate from the OP's assumption that list-directed output (as write(*,*) A) prints the matrix elements in the "row-major" order, while in fact they are printed in the "column-major" order (see the comments below). By noting this and correcting the program accordingly, I think the program will work as expected.
More specifically, adding the following utility routine to print a matrix
subroutine printmat( msg, mat )
implicit none
character(*), intent(in) :: msg
complex(DBL), intent(in) :: mat( dimJ, dimJ )
integer i1, i2
print *
print *, msg
do i1 = 1, dimJ
print "(3('(',f10.6,',',f10.6,' ) '))", ( mat( i1, i2 ), i2 = 1,dimJ )
enddo
end subroutine
and checking the value of Jp, Jm, Jy in the subroutine MATJy()
Jp:
( 0.000000, 0.000000 ) ( 0.000000, 0.000000 ) ( 0.000000, 0.000000 )
( 1.414214, 0.000000 ) ( 0.000000, 0.000000 ) ( 0.000000, 0.000000 )
( 0.000000, 0.000000 ) ( 1.414214, 0.000000 ) ( 0.000000, 0.000000 )
Jm:
( 0.000000, 0.000000 ) ( 1.414214, 0.000000 ) ( 0.000000, 0.000000 )
( 0.000000, 0.000000 ) ( 0.000000, 0.000000 ) ( 1.414214, 0.000000 )
( 0.000000, 0.000000 ) ( 0.000000, 0.000000 ) ( 0.000000, 0.000000 )
Jy * sqrt(2):
( 0.000000, 0.000000 ) ( 0.000000, 1.000000 ) ( 0.000000, 0.000000 )
( 0.000000, -1.000000 ) ( 0.000000, 0.000000 ) ( 0.000000, 1.000000 )
( 0.000000, 0.000000 ) ( 0.000000, -1.000000 ) ( 0.000000, 0.000000 )
eigenvaluesJy(1) = -1.000000
eigvec:
( -0.500000, 0.000000 )
( 0.000000, -0.707107 )
( 0.500000, 0.000000 )
eigenvaluesJy(2) = -0.000000
eigvec:
( 0.707107, 0.000000 )
( 0.000000, 0.000000 )
( 0.707107, 0.000000 )
eigenvaluesJy(3) = 1.000000
eigvec:
( -0.500000, 0.000000 )
( 0.000000, 0.707107 )
( 0.500000, 0.000000 )
we see that the above Jy matrix is the complex conjugate of the desired matrix (given as an image in the Question). The reason seems to be that the Jp and Jm matrices are given as the transpose of the correct ones (according to some pages like this and this). For example, if we change their index as
SUBROUTINE MATJplus(MATOUT)
IMPLICIT NONE
COMPLEX(KIND = DBL),DIMENSION(DIMJ,DIMJ),INTENT(OUT)::MATOUT
INTEGER::K,L
REAL(KIND = DBL)::M,MP
DO K = 1,DIMJ
DO L = 1,DIMJ
MP = (S + 1.0D0) - L !! 1, 0, -1 ("m_prime")
M = (S + 1.0D0) - K !! 1, 0, -1 ("m")
!>>> Here, we swap the indices K and L in the LHS
!! MATOUT(K,L) = DSQRT(S * (S + 1.0D0) - M * (M + 1.0D0)) * KRONDELTAR(MP, M + 1)
MATOUT(L,K) = DSQRT(S * (S + 1.0D0) - M * (M + 1.0D0)) * KRONDELTAR(MP, M + 1)
END DO
END DO
call printmat( "Jplus:", matout )
END SUBROUTINE
(and modifying MATJminus() similarly), we obtain the expected result:
Jp:
( 0.000000, 0.000000 ) ( 1.414214, 0.000000 ) ( 0.000000, 0.000000 )
( 0.000000, 0.000000 ) ( 0.000000, 0.000000 ) ( 1.414214, 0.000000 )
( 0.000000, 0.000000 ) ( 0.000000, 0.000000 ) ( 0.000000, 0.000000 )
Jm:
( 0.000000, 0.000000 ) ( 0.000000, 0.000000 ) ( 0.000000, 0.000000 )
( 1.414214, 0.000000 ) ( 0.000000, 0.000000 ) ( 0.000000, 0.000000 )
( 0.000000, 0.000000 ) ( 1.414214, 0.000000 ) ( 0.000000, 0.000000 )
Jy * sqrt(2):
( 0.000000, 0.000000 ) ( 0.000000, -1.000000 ) ( 0.000000, 0.000000 )
( 0.000000, 1.000000 ) ( 0.000000, 0.000000 ) ( 0.000000, -1.000000 )
( 0.000000, 0.000000 ) ( 0.000000, 1.000000 ) ( 0.000000, 0.000000 )
eigenvaluesJy(1) = -1.000000
eigvec:
( -0.500000, 0.000000 )
( 0.000000, 0.707107 )
( 0.500000, 0.000000 )
eigenvaluesJy(2) = -0.000000
eigvec:
( 0.707107, 0.000000 )
( 0.000000, -0.000000 )
( 0.707107, 0.000000 )
eigenvaluesJy(3) = 1.000000
eigvec:
( -0.500000, 0.000000 )
( 0.000000, -0.707107 )
( 0.500000, 0.000000 )
For convenience, here are some matrices taken from the above pages (which can be compared directly with the above Jp, Jm, Jy):

What's different with my lookAt and perspective calls VS gluPerspective and glLookat (cube stretched)

Side note: hey everyone, if you found my question/answer helpful, please don't forget to up vote. I kind of need it...
So there seems to be something different with my implementation of both matrix [projection and model] (other than the stuff I've commented out for debugging purposes). Below is a screenshot of the bug I see when drawing a cube. Keep in mind I do keep the viewport and matrix up to date with the window size and calculate screen ratio with float and not int, so don't bother asking, I've checked the usual suspects.....
Screen Shot
Files (linux build, see readme in ./build)
side note: while debugging, I've changed the cube's distance. To reproduce the screen shot, on line 76 of workspace.cpp set mDistance to about 90 and stretch the window frame to dimensions noted at lower right corner of the window.
Please keep in mind the screen shot and the debug text output are seperate events as I'm constantly debugging this problem and getting new numbers.
The code:
#define _AP_MAA 0
#define _AP_MAB 1
#define _AP_MAC 2
#define _AP_MAD 3
#define _AP_MBA 4
#define _AP_MBB 5
#define _AP_MBC 6
#define _AP_MBD 7
#define _AP_MCA 8
#define _AP_MCB 9
#define _AP_MCC 10
#define _AP_MCD 11
#define _AP_MDA 12
#define _AP_MDB 13
#define _AP_MDC 14
#define _AP_MDD 15
Setting up the camera perspective:
void APCamera::setPerspective(GMFloat_t fov, GMFloat_t aspect, GMFloat_t near, GMFloat_t far)
{
GMFloat_t difZ = near - far;
GMFloat_t *data;
mProjection->clear(); //set to identity matrix
data = mProjection->getData();
GMFloat_t v = 1.0f / tan(fov / 2.0f);
data[_AP_MAA] = v / aspect;
data[_AP_MBB] = v;
data[_AP_MCC] = (far + near) / (difZ);
data[_AP_MCD] = -1.0f;
data[_AP_MDD] = 0.0f;
data[_AP_MDC] = (2.0f * far * near)/ (difZ);
mRatio = aspect;
mInvProjOutdated = true;
mIsPerspective = true;
}
Setting up the camera direction:
bool APCamera::lookTo(Coordinate &to, Coordinate &from, Coordinate &up)
{
Coordinate f, unitUp, right;
GMFloat_t *data;
CoordinateOp::diff(&to, &from, &f);
VectorOp::toUnit(&f, &f);
VectorOp::toUnit(&up, &unitUp);
VectorOp::cross(&f, &unitUp, &right);
if((fabs(right.x) < FLOAT_THRESHOLD) && (fabs(right.y) < FLOAT_THRESHOLD) && (fabs(right.z) < FLOAT_THRESHOLD))
{
return false;
}
mCamPt = from;
VectorOp::toUnit(&right, &mRight);
mForward = f;
VectorOp::cross(&mRight, &mForward, &mUp);
mModelView->clear();
data = mModelView->getData();
data[_AP_MAA] = mRight.x;
data[_AP_MBA] = mRight.y;
data[_AP_MCA] = mRight.z;
data[_AP_MAB] = mUp.x;
data[_AP_MBB] = mUp.y;
data[_AP_MCB] = mUp.z;
data[_AP_MAC] = -mForward.x;
data[_AP_MBC] = -mForward.y;
data[_AP_MCC] = -mForward.z;
//translation part is commented out to narrow bugs down, "camera" is kept at the center (0,0,0)
//data[_AP_MDA] = (data[_AP_MAA] * -mCamPt.x) + (data[_AP_MBA] * -mCamPt.y) + (data[_AP_MCA] * -mCamPt.z);
//data[_AP_MDB] = (data[_AP_MAB] * -mCamPt.x) + (data[_AP_MBB] * -mCamPt.y) + (data[_AP_MCB] * -mCamPt.z);
//data[_AP_MDC] = (data[_AP_MAC] * -mCamPt.x) + (data[_AP_MBC] * -mCamPt.y) + (data[_AP_MCC] * -mCamPt.z);
mInvViewOutdated = true;
return true;
}
The debug output:
LookTo() From:<0,0,0> To:<-1,0,0>:
0.000000 0.000000 -1.000000 0.000000
0.000000 1.000000 0.000000 0.000000
1.000000 -0.000000 -0.000000 0.000000
0.000000 0.000000 0.000000 1.000000
setPerspective() fov:0.785398 ratio:1.185185 near:0.500000 far:100.000000:
2.036993 0.000000 0.000000 0.000000
0.000000 2.414213 0.000000 0.000000
0.000000 0.000000 -1.010050 -1.005025
0.000000 0.000000 -1.000000 0.000000
In the end, it looks like the trouble maker was just the FOV. So the quick answer is NO I didn't do anything different from the documented perspective and look at function. For anyone having a similar problem 2.0f * atan(tan(DEFAULT_FOV_RAD/mRatio) * mRatio) did the job for me.

Changes in class variables not being preserved

This has to be some stupid error, but I have been working at this bug for days and have finally narrowed it down to a bizarre issue. Maybe I'm just not seeing it because most of my experience is programming in java, not C++. I am animating a snowman to move on some terrain in openGL, and whenever I set the velocity of a snowman to be on a random walk, it is not preserved for the next time that the update function is called. I do this by calculating a probability, and if that probability check succeeds, the snowman is given a random velocity and that is added to the position every update. Somehow, the velocities keep getting reset to 0 every time the update function exits, causing them to jump a little bit for one frame, and then teleport back to their previous position for future frames, ultimately not making them move. The x and y position are also restored to their previous value across calls. A sample of the command prompt output is here:
DEBUG: new frame
2) dx dy 0.000000 0.000000
256.000000 15.000000 0.000000 0.000000
2) dx dy 0.000000 0.000000
104.000000 17.000000 0.000000 0.000000
2) dx dy 0.000000 0.000000
256.000000 256.000000 0.000000 0.000000
1) dx dy -0.100000 -0.400000
2) dx dy -0.100000 -0.400000
306.000000 498.000000 -0.100000 -0.400000
2)dx dy 0.000000 0.000000
6.000000 256.000000 0.000000 0.000000
DEBUG: new frame
2) dx dy 0.000000 0.000000
256.000000 15.000000 0.000000 0.000000
2) dx dy 0.000000 0.000000
104.000000 17.000000 0.000000 0.000000
2) dx dy 0.000000 0.000000
256.000000 256.000000 0.000000 0.000000
2) dx dy 0.000000 0.000000
256.000000 256.000000 0.000000 0.000000
2)dx dy 0.000000 0.000000
6.000000 256.000000 0.000000 0.000000
These print out a bunch of values, but the thing to note is that the 4th element should have the same values between calls, and they don't. They get reset.
Snowman.h
#pragma once
#include "ppm_canvas.h"
class Snowman
{
public:
Snowman(canvas_t);
~Snowman(void);
void setWireframe(bool);
void toggleWireframe(void);
void setAnimate(bool);
void toggleAnimate(void);
void setArmSegments(int);
void addArmSegment(void);
void subtractArmSegment(void);
void update(canvas_t);
void draw(void);
private:
bool wireFrame;
bool animate;
bool walking;
int armSegments;
int animationFrameNumber;
float manualUserOffset;
float x, y, z;
float dx, dy;
inline float f(void);
inline void drawMouth(int headRadius);
inline void drawFace(int headRadius);
void drawArm(int remainingSegments);
inline void drawBody();
inline float getHeight(canvas_t);
};
From Snowman.cpp
void Snowman::update(canvas_t texture){
//randomly toggle the walking variable
int probability = rand() % 100;
if(probability <= 2){
walking = !walking;
this->dx = static_cast<float>(( (rand() % 100) - 50))/10.0;
this->dy = static_cast<float>(( (rand() % 100) - 50))/10.0;
printf("1) dx dy %f %f\n", dx, dy);
}
printf("2) dx dy %f %f\n", dx, dy);
//code to control movement
if(walking){
this->animate = true;
this->x += this->dx;
this->y += this->dy;
constrain(this->x, 0, texture.width * 2);
constrain(this->y, 0, texture.height * 2);
}else{
animate = false;
}
//set the height after x and y are resolved
this->z = getHeight(texture);
}
void Snowman::draw(void){
glPushMatrix();{
//turns out x is correct, y is vertical, and z is the other horozintal. oops...
float alittlebit = 10.0;//offset because the center of the bottom sphere is below 0
glRotatef(atan2(dy, dx), 0, 1, 0);
glTranslatef(x, z + alittlebit, y);
drawBody();
}glPopMatrix();
printf(" %f %f %f %f\n", this->x, this->y, this->dx, this->dy );
}
From Main.cpp
inline void drawSnowmen(){
printf("DEBUG: new frame\n");
glPushMatrix();{
glScalef(0.4, 0.4, 0.4);
glBindTexture(GL_TEXTURE_2D, 0);
for(Snowman i:snowmen){
i.update(terrain);
i.draw();
}
glBindTexture(GL_TEXTURE_2D, 1);
}glPopMatrix();
}
I've also included a video of the bug in action below. I'm so desperate to fix this having already spent over 8 hours on this alone, any help would be greatly appreciated.
http://www.youtube.com/watch?v=76uuu1sage0&feature=youtu.be
Also, there is no way to condense the problem to only this, but here is the entire source code:
http://people.ucsc.edu/~cchilder/openGLBug.zip
Try using a ref to the vector element in drawSnowmen(). See my comments above regarding the copy constructor.
for(Snowman &i:snowmen){
i.update(terrain);
i.draw();
}
Without the ref, the update() is modifying a temporary instance of Snowman, not the instance stored in the vector:
for(Snowman i:snowmen){
i.update(terrain);
i.draw();
}

GSL histogram issue

I am trying to compute the cumulative distribution function for a set of values.
I computed the histogram using gsl and I tried to computed the CDF from here, but it seems like the values are shifted by one position.
This is the code I am using:
gHist = gsl_histogram_alloc((maxRange - minRange) / 5);
gsl_histogram_set_ranges_uniform(gHist, minRange, maxRange);
for (int j = 0; j < ValidDataCount; j++)
gsl_histogram_increment (gHist, ValAdd[j]);
gsl_histogram_pdf * p = gsl_histogram_pdf_alloc(gsl_histogram_bins(gHist));
gsl_histogram_pdf_init (p, gHist);
for (int j = 0; j < gsl_histogram_bins(gHist) + 1 ; j++)
printf ("%f ", p->sum[j]);
The histogram is like this:
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 .... goes on like this. there is a total of 20 values
And the cdf is:
0.00 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.1 0.1 ...
Why is there a 0 on the first position? Shouldn't it start with 0.05?
Thank you.
GSL alloc sum to be an array of size n+1, where n is the number of bins. However, only n entries are necessary to calculate the pdf. This extra allocation of one element happens because gsl defines sum[0] = 0.
in the GSL source coode "pdf.c" you can see that
gsl_histogram_pdf *gsl_histogram_pdf_alloc (const size_t n)
{
(...)
p->sum = (double *) malloc ((n + 1) * sizeof (double));
}
int gsl_histogram_pdf_init (gsl_histogram_pdf * p, const gsl_histogram * h)
{
(...)
p->sum[0] = 0;
for (i = 0; i < n; i++)
{
sum += (h->bin[i] / mean) / n;
p->sum[i + 1] = sum;
}
}